1
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Ushasree MV, Shyam K, Vidya J, Pandey A. Microbial phytase: Impact of advances in genetic engineering in revolutionizing its properties and applications. BIORESOURCE TECHNOLOGY 2017; 245:1790-1799. [PMID: 28549814 DOI: 10.1016/j.biortech.2017.05.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Phytases are enzymes that increase the availability of phosphorous in monogastric diet and reduces the anti-nutrition effect of phytate. This review highlights contributions of recombinant technology to phytase research during the last decade with specific emphasis on new generation phytases. Application of modern molecular tools and genetic engineering have aided the discovery of novel phytase genes, facilitated its commercial production and expanded its applications. In future, by adopting most recent gene improvement techniques, more efficient next generation phytases can be developed for specific applications.
Collapse
Affiliation(s)
- Mrudula Vasudevan Ushasree
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - Krishna Shyam
- MIMS Research Foundation, Calicut 673 007, Kerala, India.
| | - Jalaja Vidya
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - Ashok Pandey
- Center of Innovative and Applied Bioprocessing, Mohali 160 071, Punjab, India.
| |
Collapse
|
3
|
Secco D, Bouain N, Rouached A, Prom-U-Thai C, Hanin M, Pandey AK, Rouached H. Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Crit Rev Biotechnol 2017; 37:898-910. [PMID: 28076998 DOI: 10.1080/07388551.2016.1268089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today's agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial.
Collapse
Affiliation(s)
- David Secco
- a Biochimie et Physiologie Moléculaire des Plantes , CNRS, INRA, Montpellier SupAgro, UM , Montpellier , France
| | - Nadia Bouain
- a Biochimie et Physiologie Moléculaire des Plantes , CNRS, INRA, Montpellier SupAgro, UM , Montpellier , France
| | - Aida Rouached
- a Biochimie et Physiologie Moléculaire des Plantes , CNRS, INRA, Montpellier SupAgro, UM , Montpellier , France
| | - Chanakan Prom-U-Thai
- b Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture , Chiang Mai University , Chiang Mai , Thailand
| | - Moez Hanin
- c Laboratoire de Biotechnologie et Amélioration des Plantes , Centre de Biotechnologie de Sfax , Sfax , Tunisie
| | - Ajay K Pandey
- d Department of Biotechnology, C-127 , National Agri-Food Biotechnology Institute , Punjab , India
| | - Hatem Rouached
- a Biochimie et Physiologie Moléculaire des Plantes , CNRS, INRA, Montpellier SupAgro, UM , Montpellier , France.,b Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture , Chiang Mai University , Chiang Mai , Thailand.,c Laboratoire de Biotechnologie et Amélioration des Plantes , Centre de Biotechnologie de Sfax , Sfax , Tunisie
| |
Collapse
|
4
|
Rao J, Yang L, Guo J, Quan S, Chen G, Zhao X, Zhang D, Shi J. Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. PLANT CELL REPORTS 2016; 35:429-437. [PMID: 26581949 DOI: 10.1007/s00299-015-1894-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/20/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Non-targeted metabolomics analysis revealed only intended metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2. Genetically modified (GM) crops account for a large proportion of modern agriculture worldwide, raising increasingly the public concerns of safety. Generally, according to substantial equivalence principle, if a GM crop is demonstrated to be equivalently safe to its conventional species, it is supposed to be safe. In this study, taking the advantage of an established non-target metabolomic profiling platform based on the combination of UPLC-MS/MS with GC-MS, we compared the mature seed metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2 with its non-transgenic counterpart and other 14 conventional maize lines. In total, levels of nine out of identified 210 metabolites were significantly changed in transgenic maize as compared with its non-transgenic counterpart, and the number of significantly altered metabolites was reduced to only four when the natural variations were taken into consideration. Notably, those four metabolites were all associated with targeted engineering pathway. Our results indicated that although both intended and non-intended metabolic changes occurred in the mature seeds of this GM maize event, only intended metabolic pathway was found to be out of the range of the natural metabolic variation in the metabolome of the transgenic maize. Therefore, only when natural metabolic variation was taken into account, could non-targeted metabolomics provide reliable objective compositional substantial equivalence analysis on GM crops.
Collapse
Affiliation(s)
- Jun Rao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
- Jiangxi Provincial Cancer Hospital, No. 519 East Beijing Road, Nanchang, 330029, China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
| | - Jinchao Guo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
| | - Sheng Quan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
- Shanghai Ruifeng Agro-biotechnology Co. Ltd, No 233 Rushan Rd., Shanghai, 200120, China
| | - Guihua Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
| | - Xiangxiang Zhao
- Departmen of Life Science, Huaiyin Normal College, Huaian, 223300, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan RD., Minghan District, Shanghai, 200240, China.
- Shanghai Ruifeng Agro-biotechnology Co. Ltd, No 233 Rushan Rd., Shanghai, 200120, China.
| |
Collapse
|
5
|
Development of event-specific qualitative and quantitative PCR detection methods for the transgenic maize BVLA430101. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-015-2631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Pacher-Zavisin M, Sleator RD. Landes Highlights. Bioengineered 2014. [DOI: 10.4161/bioe.26317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
|