1
|
Félix-Martínez GJ, Osorio-Londoño D, Godínez-Fernández JR. Impact of oxygen and glucose availability on the viability and connectivity of islet cells: A computational study of reconstructed avascular human islets. PLoS Comput Biol 2024; 20:e1012357. [PMID: 39137218 PMCID: PMC11343470 DOI: 10.1371/journal.pcbi.1012357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/23/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
The experimental study and transplantation of pancreatic islets requires their isolation from the surrounding tissue, and therefore, from the vasculature. Under these conditions, avascular islets rely on the diffusion of peripheral oxygen and nutrients to comply with the requirements of islet cells while responding to changes in body glucose. As a complement to the experimental work, computational models have been widely used to estimate how avascular islets would be affected by the hypoxic conditions found both in culture and transplant sites. However, previous models have been based on simplified representations of pancreatic islets which has limited the reach of the simulations performed. Aiming to contribute with a more realistic model of avascular human islets, in this work we used architectures of human islets reconstructed from experimental data to simulate the availability of oxygen for α, β and δ-cells, emulating culture and transplant conditions at different glucose concentrations. The modeling approach proposed allowed us to quantitatively estimate how the loss of cells due to severe hypoxia would impact interactions between islet cells, ultimately segregating the islet into disconnected subnetworks. According to the simulations performed, islet encapsulation, by reducing the oxygen available within the islets, could severely compromise cell viability. Moreover, our model suggests that even without encapsulation, only microislets composed of less than 100 cells would remain viable in oxygenation conditions found in transplant sites. Overall, in this article we delineate a novel modeling methodology to simulate detailed avascular islets in experimental and transplant conditions with potential applications in the field of islet encapsulation.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigadoras e investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, México City, México
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Iztapalapa, México City, México
| | - Diana Osorio-Londoño
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Iztapalapa, México City, México
| | | |
Collapse
|
2
|
Keshi E, Tang P, Lam T, Moosburner S, Haderer L, Reutzel-Selke A, Kloke L, Pratschke J, Sauer IM, Hillebrandt KH. Toward a 3D Printed Perfusable Islet Embedding Structure: Technical Notes and Preliminary Results. Tissue Eng Part C Methods 2023; 29:469-478. [PMID: 37528629 DOI: 10.1089/ten.tec.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
To date, islet transplantation to treat type 1 diabetes mellitus remains unsuccessful in long-term follow-up, mainly due to failed engraftment and reconstruction of the islet niche. Alternative approaches, such as islet embedding structures (IESs) based on 3D printing have been developed. However, most of them have been implanted subcutaneously and only a few are intended for direct integration into the vascular system through anastomosis. In this study, we 3D printed a proof-of-concept IES using gelatin methacrylate biocompatible ink. This structure consisted of a branched vascular system surrounding both sides of a central cavity dedicated to islets of Langerhans. Furthermore, we designed a bioreactor optimized for these biological structures. This bioreactor allows seeding and perfusion experiments under sterile and physiological conditions. Preliminary experiments aimed to analyze if the vascular channel could successfully be seeded with mature endothelial cells and the central cavity with rat islets. Subsequently, the structures were used for a humanized model seeding human endothelial progenitor cells (huEPC) within the vascular architecture and human islets co-cultured with huEPC within the central cavity. The constructs were tested for hemocompatibility, suture strength, and anastomosability. The 3D printed IES appeared to be hemocompatible and anastomosable using an alternative cuff anastomosis in a simple ex vivo perfusion model. While rat islets alone could not successfully be embedded within the 3D printed structure for 3 days, human islets co-cultivated with huEPC successfully engrafted within the same time. This result emphasizes the importance of co-culture, nursing cells, and islet niche. In conclusion, we constructed a proof-of-concept 3D printed islet embedding device consisting of a vascular channel that is hemocompatible and perspectively anastomosable to clinical scale blood vessels. However, there are numerous limitations in this model that need to be overcome to transfer this technology to the bedside.
Collapse
Affiliation(s)
- Eriselda Keshi
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Lam
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| | - Luna Haderer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Kloke
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2025-390648296, Berlin, Germany
| | - Igor Maximilian Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2025-390648296, Berlin, Germany
| | - Karl Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| |
Collapse
|
3
|
Novelli M, Beffy P, Masini M, Vantaggiato C, Martino L, Marselli L, Marchetti P, De Tata V. Selective beta-cell toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin on isolated pancreatic islets. CHEMOSPHERE 2021; 265:129103. [PMID: 33288281 DOI: 10.1016/j.chemosphere.2020.129103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
An association between exposure to environmental pollutants and diabetes risk has been repeatedly shown by epidemiological studies. However, the biological basis of this association still need to be clarified. In this research we explored the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on isolated pancreatic islets. After 1, 6 and 24 h exposure of isolated islets to different concentrations (1-50 nM) of TCDD we assayed: i) cell survival; ii) ultrastructure; iii) glucose-stimulated insulin secretion (GSIS); iv) expression of selected genes. A significant, dose-related increase of both necrosis and apoptosis was observed isolated rat islets after 24 h exposure to TCDD. The electron microscopic analysis revealed, at the same time point, the presence of several ultrastructural alterations (mitochondrial swelling, increased mitophagy, dilation of the endoplasmic reticulum) that, very interestingly, were exclusively observed in beta cells and not in other endocrine cells. Similar results were obtained in isolated human islets. GSIS was rapidly (1 h) and persistently (6 and 24 h) decreased by TCDD exposure even at the smallest concentration (1 nM). TCDD exposure significantly affected gene expression in isolated islets: Glut2, Gck, Bcl-xL, MafA, Pdx1 FoxO1 and IRE1 gene expression was significantly decreased, whereas Puma, DP5, iNOS and Chop gene expression was significantly increased after 6 h exposure to TCDD. In conclusion, our results clearly indicated that pancreatic beta cells represent not only a sensitive but also a specific target of the toxic action of dioxin.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, Italy
| | - Pascale Beffy
- Department of Translational Research and New Technologies in Medicine and Surgery, Italy
| | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, Italy
| | - Chiara Vantaggiato
- Department of Translational Research and New Technologies in Medicine and Surgery, Italy
| | - Luisa Martino
- Department of Translational Research and New Technologies in Medicine and Surgery, Italy
| | | | | | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, Italy; CIME (Centro Interdipartimentale di Microscopia Elettronica), University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Razavi M, Zheng F, Telichko A, Wang J, Ren G, Dahl J, Thakor AS. Improving the Function and Engraftment of Transplanted Pancreatic Islets Using Pulsed Focused Ultrasound Therapy. Sci Rep 2019; 9:13416. [PMID: 31527773 PMCID: PMC6746980 DOI: 10.1038/s41598-019-49933-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 11/24/2022] Open
Abstract
This study demonstrates that pulsed focused ultrasound (pFUS) therapy can non-invasively enhance the function and engraftment of pancreatic islets following transplantation. In vitro, we show that islets treated with pFUS at low (peak negative pressure (PNP): 106kPa, spatial peak temporal peak intensity (Isptp): 0.71 W/cm2), medium (PNP: 150kPa, Isptp: 1.43 W/cm2) or high (PNP: 212kPa, Isptp: 2.86 W/cm2) acoustic intensities were stimulated resulting in an increase in their function (i.e. insulin secretion at low-intensity: 1.15 ± 0.17, medium-intensity: 2.02 ± 0.25, and high-intensity: 2.54 ± 0.38 fold increase when compared to control untreated islets; P < 0.05). Furthermore, we have shown that this improvement in islet function is a result of pFUS increasing the intracellular concentration of calcium (Ca2+) within islets which was also linked to pFUS increasing the resting membrane potential (Vm) of islets. Following syngeneic renal sub-capsule islet transplantation in C57/B6 mice, pFUS (PNP: 2.9 MPa, Isptp: 895 W/cm2) improved the function of transplanted islets with diabetic animals rapidly re-establishing glycemic control. In addition, pFUS was able to enhance the engraftment by facilitating islet revascularization and reducing inflammation. Given a significant number of islets are lost immediately following transplantation, pFUS has the potential to be used in humans as a novel non-invasive therapy to facilitate islet function and engraftment, thereby improving the outcome of diabetic patients undergoing islet transplantation.
Collapse
Affiliation(s)
- Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Fengyang Zheng
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA.,Department of Ultrasound, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Arsenii Telichko
- Jeremy Dahl Ultrasound Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Gang Ren
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Jeremy Dahl
- Jeremy Dahl Ultrasound Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA.
| |
Collapse
|
5
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Stephens CH, Orr KS, Acton AJ, Tersey SA, Mirmira RG, Considine RV, Voytik-Harbin SL. In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo. Am J Physiol Endocrinol Metab 2018; 315:E650-E661. [PMID: 29894201 PMCID: PMC6230705 DOI: 10.1152/ajpendo.00073.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Widespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy. We hypothesized that biophysical properties provided through type I oligomeric collagen macroencapsulation are important considerations when designing strategies to improve islet survival, phenotype, and function. Mouse islets were encapsulated at various Oligomer concentrations (0.5 -3.0 mg/ml) or suspended in media and cultured for 14 days, after which viability, protein expression, and function were assessed. Oligomer-encapsulated islets showed a density-dependent improvement in in vitro viability, cytoarchitecture, and insulin secretion, with 3 mg/ml yielding values comparable to freshly isolated islets. For transplantation into streptozotocin-induced diabetic mice, 500 islets were mixed in Oligomer and injected subcutaneously, where rapid in situ macroencapsulation occurred, or injected with saline. Mice treated with Oligomer-encapsulated islets exhibited rapid (within 24 h) diabetes reversal and maintenance of normoglycemia for 14 (immunocompromised), 90 (syngeneic), and 40 days (allogeneic). Histological analysis showed Oligomer-islet engraftment with maintenance of islet cytoarchitecture, revascularization, and no foreign body response. Oligomer-islet macroencapsulation may provide a useful strategy for prolonging the health and function of cultured islets and has potential as a subcutaneous injectable islet transplantation strategy for treatment of T1D.
Collapse
Affiliation(s)
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Anthony J Acton
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Robert V Considine
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University , West Lafayette, Indiana
| |
Collapse
|
7
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
8
|
Pellicciaro M, Vella I, Lanzoni G, Tisone G, Ricordi C. The greater omentum as a site for pancreatic islet transplantation. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2017; 5:e2410. [PMID: 33834082 PMCID: PMC8025931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The greater omentum is a highly vascularized anatomical structure in the peritoneal cavity. Its main components are connective, adipose and vascular cells, along with specialized immune cells. The omentum functions as a site for fat accumulation, it has adhesive properties to control traumatized and inflamed tissues, and a function in local hemostasis, immune responses, and revascularization. Other functions include the absorption of fluids, the phagocytosis of particulate matter, and foreign body reaction. The omentum is catalyzing significant interest for its potential as a site for pancreatic islet and cell transplantation. Our knowledge about this structure, its functions, and its potential as a site for transplantation is poised to grow in the coming years.
Collapse
Affiliation(s)
- M Pellicciaro
- Liver Transplant Center, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - I Vella
- Liver Transplant Center, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - G Lanzoni
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, USA
| | - G Tisone
- Liver Transplant Center, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - C Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Carlessi R, Keane KN, Mamotte C, Newsholme P. Nutrient regulation of β-cell function: what do islet cell/animal studies tell us? Eur J Clin Nutr 2017; 71:890-895. [DOI: 10.1038/ejcn.2017.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
|
10
|
Kozlovskaya V, Xue B, Lei W, Padgett LE, Tse HM, Kharlampieva E. Hydrogen-bonded multilayers of tannic acid as mediators of T-cell immunity. Adv Healthc Mater 2015; 4:686-94. [PMID: 25491369 DOI: 10.1002/adhm.201400657] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes is an autoimmune-mediated disease resulting in the destruction of insulin-secreting pancreatic β-cells. Transplantation of insulin-producing islets is a viable treatment to restore euglycemia in Type 1 diabetics; however, the clinical application remains limited due to the use of toxic immunosuppressive therapies to prevent immune-mediated rejection. A nanothin polymer material with dual antioxidant and immunosuppressive properties capable of modulating both innate and adaptive immune responses crucial for transplantation outcome is presented. Through the use of hollow microparticles (capsules) composed of hydrogen-bonded multilayers of natural polyphenol (tannic acid) with poly(N-vinylpyrrolidone) (TA/PVPON) and with poly(N-vinylcaprolactam) (TA/PVCL), proinflammatory reactive oxygen and nitrogen species are efficiently dissipated and the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α proinflammatory cytokines is attenuated by cognate antigen-stimulated autoreactive CD4+ T cells. These results provide evidence that TA-containing capsules are efficacious in immunomodulation and may provide physical transplant protection and prevent diabetogenic autoreactive T-cell responses. Future studies will determine if xeno- and allotransplantation with (TA/PVPON)- or (TA/PVCL)-coated pancreatic islets will decrease the risk of graft rejection due to attenuation of oxidative stress and IFN-γ, and restore euglycemia in Type 1 diabetics.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Bing Xue
- Department of Chemistry; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Weiqi Lei
- Department of Microbiology; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Lindsey E. Padgett
- Department of Microbiology; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Hubert M. Tse
- Department of Microbiology; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Eugenia Kharlampieva
- Department of Chemistry; University of Alabama at Birmingham; Birmingham AL 35294 USA
- Center for Nanoscale Materials and Biointegration; University of Alabama at Birmingham; Birmingham AL 35294 USA
| |
Collapse
|
11
|
Barker CJ, Berggren PO. New horizons in cellular regulation by inositol polyphosphates: insights from the pancreatic β-cell. Pharmacol Rev 2013; 65:641-69. [PMID: 23429059 DOI: 10.1124/pr.112.006775] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Studies of inositol polyphosphates in the pancreatic β-cell have led to an exciting synergism between new discoveries regarding their cellular roles and new insights into β-cell function. Because the loss or malfunction of the β-cell is central to diabetes, these studies open the possibility of new pharmacological interventions in a disease that has reached epidemic proportions worldwide. Using the β-cell as our prime but not exclusive example, we examine the inositol polyphosphates in three main groups: 1) inositol 1,4,5-trisphosphate and its influence on Ca(2+) signaling, specifically in a cell in which cytoplasmic-free Ca(2+) concentration is principally increased by plasma membrane standing voltage-gated Ca(2+) channels; 2) higher inositol polyphosphates including a novel second messenger inositol 3,4,5,6-tetrakisphosphate and a regulatory role for inositol hexakisphosphate in β-cell Ca(2+) homeostasis and exo- and endocytosis; and 3) inositol pyrophosphates and their role in β-cell exocytosis, together with the exciting possibility of being novel targets for therapy in diabetes. We conclude with some of the new perspectives that are likely to become apparent in the next few years.
Collapse
Affiliation(s)
- Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | |
Collapse
|
12
|
Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets. PLoS One 2012; 7:e36188. [PMID: 22563482 PMCID: PMC3341371 DOI: 10.1371/journal.pone.0036188] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/29/2012] [Indexed: 12/16/2022] Open
Abstract
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18–24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.
Collapse
|
13
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|