1
|
Zhang H, Zhai W, Lin L, Wang P, Xu X, Wei W, Wei D. In Silico Rational Design and Protein Engineering of Disulfide Bridges of an α‐Amylase from
Geobacillus
sp. to Improve Thermostability. STARCH-STARKE 2021. [DOI: 10.1002/star.202000274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wenxin Zhai
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lin Lin
- Shanghai University of Medicine and Health Sciences Shanghai 200093 P. R. China
- Research Laboratory for Functional Nanomaterial National Engineering Research Center for Nanotechnology Shanghai 200241 P. R. China
| | - Ping Wang
- Weigao Shanghai R&D Center Shanghai 201203 P. R. China
| | - Xiangyang Xu
- Zaozhuang jie nuo enzyme co. ltd Zaozhuang 277100 P. R. China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
2
|
Xun Q, Wang Z, Hu X, Ding K, Lu X. Small-Molecule CSF1R Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:3944-3966. [PMID: 31215373 DOI: 10.2174/1573394715666190618121649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Persuasive evidence has been presented linking the infiltration of Tumor-Associated Macrophages (TAMs) with the driving force of tumorigenesis and in the suppression of antitumor immunity. In this context CSF1R, the cellular receptor for Colony Stimulating Factor-1 (CSF1) and Interleukin 34 (IL-34), occupies a central role in manipulating the behavior of TAMs and the dysregulation of CSF1R signaling has been implicated in cancer progression and immunosuppression in many specific cancers. Consequently, CSF1R kinase has been a target of great interest in cancer treatment and significant research efforts have focused on the development of smallmolecule CSF1R inhibitors. In this review, we highlight current progress on the development of these small molecule CSF1R inhibitors as anticancer agents. Special attention is paid to the compounds available in advanced clinical trials.
Collapse
Affiliation(s)
- Qiuju Xun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhen Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xianglong Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
3
|
Zhong J, Zhang S, Zhang L, Cai Y, Deng Y, Zheng Q, Deng N. Fine epitope mapping of a human disulphide-stabilized diabody against fibroblast growth factor-2. J Biochem 2019; 165:487-495. [PMID: 30597085 DOI: 10.1093/jb/mvy122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/24/2018] [Indexed: 01/05/2023] Open
Abstract
The human fibroblast growth factor-2 (FGF-2) highly expressed in tumours is an important factor to promote tumour angiogenesis and lymphangiogenesis. A disulphide-stabilized diabody (ds-Diabody) could specifically target FGF-2 and show its advantages in inhibition of tumour angiogenesis and growth. It is very important for antibody drugs to confirm the fine epitope. Here, theoretical structure models of FGF-2 and antibody were built by homology modelling. The amino acid residues in the interaction interface of antigen and antibody were analysed by molecular docking. The potential epitope was predicted by homology modelling and molecular docking of antigen-antibody and site-directed mutation assays of alanine scanning. The predicted epitope was verified by antigen mutagenesis and enzyme-linked immunosorbent assay (ELISA). The epitope mapping assay showed that the epitope of ds-Diabody against FGF-2 was defined by the discontinuous sites including six amino acid residues (P23, Q65, R69, G70, Y82 and R118). The results showed that the epitope was localized in the interaction interface of FGF-2 and ds-Diabody. The fine epitope mapping provided the important information for understanding the inhibition activity of ds-Diabody against FGF-2 and helping in the further development of ds-Diabody against FGF-2 as a potentially promising antibody drug for future cancer therapy.
Collapse
Affiliation(s)
- Jiangchuan Zhong
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Huangpu Avenue, 601, Guangzhou, Guangdong, China
| | - Simin Zhang
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Huangpu Avenue, 601, Guangzhou, Guangdong, China
| | - Ligang Zhang
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Huangpu Avenue, 601, Guangzhou, Guangdong, China
| | - Yaxiong Cai
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Huangpu Avenue, 601, Guangzhou, Guangdong, China
| | - Yanrui Deng
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Huangpu Avenue, 601, Guangzhou, Guangdong, China
| | - Qubo Zheng
- The 458 Hospital of PLA, Dongfeng East Road, 801, Guangzhou, Guangdong, China
| | - Ning Deng
- Department of Biology, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Huangpu Avenue, 601, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
El-Gamal MI, Al-Ameen SK, Al-Koumi DM, Hamad MG, Jalal NA, Oh CH. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J Med Chem 2018; 61:5450-5466. [PMID: 29293000 DOI: 10.1021/acs.jmedchem.7b00873] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| | - Shahad K Al-Ameen
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Dania M Al-Koumi
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Mawadda G Hamad
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Nouran A Jalal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Chang-Hyun Oh
- Center for Biomaterials , Korea Institute of Science and Technology , P.O. Box 131, Cheongryang , Seoul 130-650 , Republic of Korea.,Department of Biomolecular Science , University of Science and Technology , 113 Gwahangno, Yuseong-gu , Daejeon 305-333 , Republic of Korea
| |
Collapse
|
5
|
Antibody-Based Protective Immunity against Helminth Infections: Antibody Phage Display Derived Antibodies against BmR1 Antigen. Int J Mol Sci 2017; 18:ijms18112376. [PMID: 29165352 PMCID: PMC5713345 DOI: 10.3390/ijms18112376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
Collapse
|
6
|
Wu C, Li X, Song S, Pei Y, Guo L, Pei Z. QCM Biosensor Based on Polydopamine Surface for Real-Time Analysis of the Binding Kinetics of Protein-Protein Interactions. Polymers (Basel) 2017; 9:E482. [PMID: 30965783 PMCID: PMC6418727 DOI: 10.3390/polym9100482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022] Open
Abstract
A quartz crystal microbalance (QCM) biosensor based on polydopamine (PDA) surface was developed for real-time analysis of the binding kinetics of protein-protein interactions. The biosensor was fabricated by simply immersing the gold sensor chip into an aqueous dopamine solution at pH 8.5 leading to a spontaneous deposition of PDA film onto the sensor chip surface, which was followed by incubation with the protein to immobilize it onto the PDA-coated sensor chip surface via Michael addition and/or Schiff base reactions. In this paper, the interaction between monoclonal anti-myoglobin 7005 antibody (IgG1) and its antigen human cardiac myoglobin was used as a model system for real-time analysis of biomolecule interactions on the biosensor surface. The kinetic parameters of the interaction between anti-myoglobin 7005 and myoglobin were studied on the biosensor surface, which were consistent with the results obtained via amine coupling. The biosensor based on PDA surface has excellent regenerability, reproducibility, and specificity. Compared with the most frequently/typically used amine coupling method for immobilization of proteins on carboxylated substrates, the modification methodology presented in this paper is simple, mild and is not subjected to the limitations of the isoelectric point (pI) of the protein. In addition, the PDA biosensor chip can be easily reused, which makes QCM biosensor analysis more efficient and cost effective.
Collapse
Affiliation(s)
- Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China.
| | - Xueming Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China.
| | - Siyu Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China.
| | - Lili Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
7
|
Deng B, Zhu S, Macklin AM, Xu J, Lento C, Sljoka A, Wilson DJ. Suppressing allostery in epitope mapping experiments using millisecond hydrogen / deuterium exchange mass spectrometry. MAbs 2017; 9:1327-1336. [PMID: 28933661 PMCID: PMC5680795 DOI: 10.1080/19420862.2017.1379641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Localization of the interface between the candidate antibody and its antigen target, commonly known as epitope mapping, is a critical component of the development of therapeutic monoclonal antibodies. With the recent availability of commercial automated systems, hydrogen / deuterium eXchange (HDX) is rapidly becoming the tool for mapping epitopes preferred by researchers in both industry and academia. However, this approach has a significant drawback in that it can be confounded by ‘allosteric’ structural and dynamic changes that result from the interaction, but occur far from the point(s) of contact. Here, we introduce a ‘kinetic’ millisecond HDX workflow that suppresses allosteric effects in epitope mapping experiments. The approach employs a previously introduced microfluidic apparatus that enables millisecond HDX labeling times with on-chip pepsin digestion and electrospray ionization. The ‘kinetic’ workflow also differs from conventional HDX-based epitope mapping in that the antibody is introduced to the antigen at the onset of HDX labeling. Using myoglobin / anti-myoglobin as a model system, we demonstrate that at short ‘kinetic’ workflow labeling times (i.e., 200 ms), the HDX signal is already fully developed at the ‘true’ epitope, but is still largely below the significance threshold at allosteric sites. Identification of the ‘true’ epitope is supported by computational docking predictions and allostery modeling using the rigidity transmission allostery algorithm.
Collapse
Affiliation(s)
- Bin Deng
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Shaolong Zhu
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Andrew M Macklin
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Jianrong Xu
- c Department of Pharmacology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Cristina Lento
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| | - Adnan Sljoka
- d Department of Informatics , Kwansei Gakuin University , Nishinomiya , Hyogo , Japan
| | - Derek J Wilson
- a Chemistry Department , York University , 4700 Keele Street, Toronto , ON , Canada.,b The Centre for Research in Mass Spectrometry , York University , Toronto , ON , Canada
| |
Collapse
|
8
|
Xia L, Zhang J, Cui C, Bi X, Xiong J, Yu H, An Z, Luo W, Xia N. In vitro affinity maturation and characterization of anti-P24 antibody for HIV diagnostic assay. J Biochem 2015; 158:531-8. [PMID: 26163519 DOI: 10.1093/jb/mvv070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/06/2015] [Indexed: 11/13/2022] Open
Abstract
P24 antigen is the main structural protein of HIV-1, its detection provide a means to aid the early diagnosis of HIV-1 infection. The aim of this study was to improve the selectivity and sensitivity of the HIV P24 diagnostic assay by developing a cohort of 9E8 affinity-matured antibodies through in vitro phage affinity maturation which was performed by complementarity determining region (CDR)-hot spot mutagenesis strategy. Antibody 9E8-491 had an affinity constant of 5.64 × 10(-11) M, which was 5.7-fold higher than that of the parent antibody (9E8). Furthermore, the affinity, sensitivity and specificity of 9E8-491 were higher than those of 9E8, which indicate that 9E8-491 is a good candidate detection antibody for HIV P24 assay. Structure analysis of matured variants revealed that most hydrogen bonds resided in HCDR3. Among the antibody-antigen predicted binding residues, Tyr(100A/100B) was the original conserved residue that was commonly present in HCDR3 of 9E8 and variants. Arg(100)/Asp(100C) was the major variant substitution that most likely influenced the binding differences among variants and 9E8 monoclonal antibody. Both efficient library panning and predicted structural data were in agreement that the binding residues were mostly located in HCDR3 and enabled identification of key residues that influence antibody affinity.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| | - Juan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| | - Chuanjia Cui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| | - Xingjian Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| | - Junhui Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361105, China and
| |
Collapse
|