1
|
Liang Y, Xue N, Wang X, Ding X, Fang Y. Superagonistic CD28 protects against renal ischemia injury induced fibrosis through a regulatory T-cell expansion dependent mechanism. BMC Nephrol 2019; 20:407. [PMID: 31706278 PMCID: PMC6842503 DOI: 10.1186/s12882-019-1581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yiran Liang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Medical Center of Kidney, Shanghai, China
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
2
|
Thaventhiran T, Wong W, Alghanem AF, Alhumeed N, Aljasir MA, Ramsey S, Sethu S, Yeang HXA, Chadwick AE, Cross M, Webb SD, Djouhri L, Ball C, Stebbings R, Sathish JG. CD28 Superagonistic Activation of T Cells Induces a Tumor Cell-Like Metabolic Program. Monoclon Antib Immunodiagn Immunother 2019; 38:60-69. [PMID: 31009338 PMCID: PMC6634261 DOI: 10.1089/mab.2018.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD28 superagonist (CD28SA), a therapeutic immunomodulatory monoclonal antibody triggered rapid and exaggerated activation of CD4+ effector memory T cells (TEMs) in humans with unwanted serious adverse effects. It is well known that distinct metabolic programs determine the fate and responses of immune cells. In this study, we show that human CD4+ TEMs stimulated with CD28SA adopt a metabolic program similar to those of tumor cells with enhanced glucose utilization, lipid biosynthesis, and proliferation in hypoxic conditions. Identification of metabolic profiles underlying hyperactive T cell activation would provide a platform to test safety of immunostimulatory antibodies.
Collapse
Affiliation(s)
- Thilipan Thaventhiran
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Wai Wong
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Ahmad F Alghanem
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Naif Alhumeed
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Mohammad A Aljasir
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Simeon Ramsey
- 2 Inflammation and Remodeling, Pfizer Research Unit, Cambridge, Massachusetts
| | - Swaminathan Sethu
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Han Xian Aw Yeang
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Amy E Chadwick
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Michael Cross
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Steven D Webb
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Laiche Djouhri
- 3 Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Christina Ball
- 4 National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Richard Stebbings
- 4 National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Jean G Sathish
- 1 Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Mariotti FR, Petrini S, Ingegnere T, Tumino N, Besi F, Scordamaglia F, Munari E, Pesce S, Marcenaro E, Moretta A, Vacca P, Moretta L. PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression. Oncoimmunology 2018; 8:1557030. [PMID: 30723590 PMCID: PMC6350684 DOI: 10.1080/2162402x.2018.1557030] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Under physiological conditions, PD-1/PD-L1 interactions regulate unwanted over-reactions of immune cells and contribute to maintain peripheral tolerance. However, in tumor microenvironment, this interaction may greatly compromise the immune-mediated anti-tumor activity. PD-1+ NK cells have been detected in high percentage in peripheral blood and ascitic fluid of ovarian carcinoma patients. To acquire information on PD-1 expression and physiology in human NK cells, we analyzed whether PD-1 mRNA and protein are present in resting, surface PD-1−, NK cells from healthy donors. Both different splicing isoforms of PD-1 mRNA and a cytoplasmic pool of PD-1 protein were detected. Similar results were obtained also from both in vitro-activated and tumor-associated NK cells. PD-1 mRNA and protein were higher in CD56dim than in CD56bright NK cells. Confocal microscopy analyses revealed that PD-1 protein is present in virtually all NK cells analyzed. The present findings are compatible with a rapid surface expression of PD-1 in NK cells in response to appropriate, still undefined, stimuli.
Collapse
Affiliation(s)
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Tiziano Ingegnere
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Enrico Munari
- Department of Pathology, Sacro Cuore Don Calabria Hospital, Negrar, Italy.,Department of Pathology AOUI, University of Verona, Verona, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
4
|
Abstract
Regulation of immune responses is critical for ensuring pathogen clearance and for preventing reaction against self-antigens. Failure or breakdown of immunological tolerance results in autoimmunity. CD28 is an important co-stimulatory receptor expressed on T cells that, upon specific ligand binding, delivers signals essential for full T-cell activation and for the development and homeostasis of suppressive regulatory T cells. Many
in vivo mouse models have been used for understanding the role of CD28 in the maintenance of immune homeostasis, thus leading to the development of CD28 signaling modulators that have been approved for the treatment of some autoimmune diseases. Despite all of this progress, a deeper understanding of the differences between the mouse and human receptor is required to allow a safe translation of pre-clinical studies in efficient therapies. In this review, we discuss the role of CD28 in tolerance and autoimmunity and the clinical efficacy of drugs that block or enhance CD28 signaling, by highlighting the success and failure of pre-clinical studies, when translated to humans.
Collapse
Affiliation(s)
- Nicla Porciello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Dai S, Gu H, Lin Q, Xing T, Chen M, Zhong T, Wu G, Feng Y, Liu H, Gao Y, Jian H, Zhang M, Mo H, Zhu H, Chen D, Xu J, Zou Y, Chi H, Zhu Y. Disequilibrium in the CD8 +CD28 +/CD8 +CD28 - T Lymphocyte Balance Is Related to Prognosis in Rats with Trinitrobenzenesulfonic Acid-Induced Colitis. Dig Dis Sci 2017; 62:639-651. [PMID: 28035546 DOI: 10.1007/s10620-016-4424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE The CD8+CD28+/CD8+CD28- T lymphocyte balance is vital for human ulcerative colitis (UC) but has not been defined in experimental colitis. This investigation will try to identify the changes that occur in the CD8+CD28+/CD8+CD28- T lymphocyte balance during the progression of trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. METHODS The frequencies of blood CD8+CD28+ and CD8+CD28- T lymphocytes were detected in the rats belonging to the normal, model, and treated groups on five days using flow cytometry. The treated rats were administered with mesalazine and were euthanized after a 14-day treatment, as were the normal and model rats. The sensitivity and specificity of the CD8+CD28+/CD8+CD28- T lymphocyte balance in diagnosing early colitis were analyzed by receiver operating characteristics (ROC) curves. The frequencies of CD8+CD28+ and CD8+CD28- T lymphocytes in the colon tissue were tested via immunofluorescence. ELISA was used to measure the levels of the cytokines. Immunohistochemistry and Western blotting were used to detect the colonic expression of JAK3, STAT6, NFATc2, and GATA3. RESULTS We found that the ratio of CD8+CD28+/CD8+CD28- T lymphocytes decreased, as did the level of interleukin-7, but not IL-12p40, IL-13, or IL-15, in the blood; however, the ratio increased along with JAK3, STAT6, NFATc2, and GATA3 in the colon of the rats with colitis. The changes were effectively reversed through the administration of mesalazine for 13 days. Surprisingly, the balance in the blood could sensitively distinguish rats with early colitis from normal rats. CONCLUSION These data show that increase in CD8+CD28+ T cells in blood and decrease in CD8+CD28- T cells in colon are associated with experimental colitis.
Collapse
Affiliation(s)
- Shixue Dai
- Department of Rheumatology, TCM-Integrated Hospital, Southern Medical University, No. 13, Shiliugang Road, Haizhu District, Guangzhou, 510315, Guangdong, People's Republic of China.
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Gastroenterology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, 510080, People's Republic of China.
| | - Hongxiang Gu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qianyi Lin
- Undergraduate of Grade 2013, The First Clinical College, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Tiaosi Xing
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Minhua Chen
- Undergraduate of Grade 2013, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Tao Zhong
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Gang Wu
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yanling Feng
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Hongbo Liu
- Department of Spleen and Stomach Diseases, Tai'an Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Tai'an, 271000, Shandong, People's Republic of China
| | - Yong Gao
- Department of Thoracic Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, Guangdong, People's Republic of China
| | - Hongjian Jian
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Minhai Zhang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongmei Mo
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Huanjie Zhu
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Dongsheng Chen
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jun Xu
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ying Zou
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Honggang Chi
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Research Institute of Traditional Chinese Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 632] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Ramani T, Auletta CS, Weinstock D, Mounho-Zamora B, Ryan PC, Salcedo TW, Bannish G. Cytokines: The Good, the Bad, and the Deadly. Int J Toxicol 2015; 34:355-65. [PMID: 26015504 DOI: 10.1177/1091581815584918] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past 30 years, the world of pharmaceutical toxicology has seen an explosion in the area of cytokines. An overview of the many aspects of cytokine safety evaluation currently in progress and evolving strategies for evaluating these important entities was presented at this symposium. Cytokines play a broad role to help the immune system respond to diseases, and drugs which modulate their effect have led to some amazing therapies. Cytokines may be "good" when stimulating the immune system to fight a foreign pathogen or attack tumors. Other "good" cytokine effects include reduction of an immune response, for example interferon β reduction of neuron inflammation in patients with multiple sclerosis. They may be "bad" when their expression causes inflammatory diseases, such as the role of tumor necrosis factor α in rheumatoid arthritis or asthma and Crohn's disease. Therapeutic modulation of cytokine expression can help the "good" cytokines to generate or quench the immune system and block the "bad" cytokines to prevent damaging inflammatory events. However, care must be exercised, as some antibody therapeutics can cause "ugly" cytokine release which can be deadly. Well-designed toxicology studies should incorporate careful assessment of cytokine modulation that will allow effective therapies to treat unmet needs. This symposium discussed lessons learned in cytokine toxicology using case studies and suggested future directions.
Collapse
|