1
|
Llantén T, Cabrera S, Fuentes J, Gamboa C, González C, Zamorano A, Curkovic T, Burckhardt D, Fiore N. First Report of a Psyllid Vector of ' Candidatus Phytoplasma pruni' (Strain 16SrIII-J). PLANTS (BASEL, SWITZERLAND) 2025; 14:1279. [PMID: 40364308 PMCID: PMC12073468 DOI: 10.3390/plants14091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
In Graneros, O'Higgins Region, Chile, the mallow psyllid (Russelliana solanicola Tuthill, 1959) from Malva nicaeensis L. was identified as a potential vector of 'Candidatus Phytoplasma pruni'. Over an 8-month period, 2089 specimens of a species of Psylloidea, including immatures and adults, were captured. We only selected the adults used for transmission trials in Catharanthus roseus (L.) G. Don (periwinkle) plants. By nested PCR, using primer pairs for phytoplasma detection in 16S rRNA and IdpA genes, 7 out of 113 (6.2%) periwinkle plants used in transmission trials were found to be infected by phytoplasmas. Insects that fed on these plants also tested positive for the same phytoplasmas. Periwinkle plants never showed virescence and phyllody, as commonly occurs with phytoplasma 16SrIII-J infection due to the effector SAP54. In this case, using primer pairs for the SAP54 gene, an amplification product was never obtained. Virtual restriction fragment length polymorphism (RFLP) analysis of F2nR2 fragments indicated that the phytoplasma, found in both periwinkle plants and insects used in transmission trials, belongs to the 16SrIII-J ribosomal subgroup. The COI gene of the psyllids samples was amplified and sequenced, showing a similarity ranging from 84.84% to 85.02% with R. solanicola from Solanum tuberosum L. The mitochondrial genome of the psyllid was also sequenced, revealing a 14,835 bp circular DNA molecule with 37 genes. The mallow psyllid transmitted the phytoplasma 16SrIII-J to periwinkle plants. The molecular identification of the insect does not match the morphological one, indicating that the mallow psyllid may constitute a cryptic species within the polyphagous R. solanicola species. This is the first report of a psyllid as a vector of the phytoplasma 16SrIII-J.
Collapse
Affiliation(s)
- Tomás Llantén
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
- Programa de Magíster en Ciencias Agropecuaria, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile
| | - Sebastián Cabrera
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
| | - Javiera Fuentes
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
| | - Camila Gamboa
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
| | - Constanza González
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
| | - Alan Zamorano
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
| | - Tomislav Curkovic
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
| | | | - Nicola Fiore
- Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana 8820808, Chile; (T.L.); (S.C.); (J.F.); (C.G.); (C.G.); (A.Z.); (T.C.)
| |
Collapse
|
2
|
Zhang S, Gan P, Xie H, Li C, Tang T, Hu Q, Zhu Z, Zhang Z, Zhang J, Zhu Y, Hu Q, Hu J, Guan H, Zhao S, Wu J. Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae601. [PMID: 39509327 DOI: 10.1093/plphys/kiae601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of "Candidatus Phytoplasma oryzae" strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homolog of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Gan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiting Xie
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuan Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianxin Tang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihong Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Qun Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shanshan Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Song CS, Xu QC, Wan CP, Kong DZ, Lin CL, Yu SS. Molecular Variation and Phylogeny of Thymidylate Kinase Genes of Candidatus Phytoplasma ziziphi from Different Resistant and Susceptible Jujube Cultivars in China. BIOLOGY 2024; 13:886. [PMID: 39596841 PMCID: PMC11592322 DOI: 10.3390/biology13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The thymidylate kinase (tmk) gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the tmk genes of Candidatus phytoplasma ziziphi, in this study, the tmk genes of 50 phytoplasma strains infecting different resistant and susceptible jujube cultivars from different regions in China were amplified and analyzed. Two sequence types, tmk-x and tmk-y, were identified using clone-based sequencing. The JWB phytoplasma strains were classified into three types, type-X, type-Y, and type-XY, based on the sequencing chromatograms of the tmk genes. The type-X and type-Y strains contained only tmk-x and tmk-y genes, respectively. The type-XY strain contained both tmk-x and tmk-y genes. The type-X, type-Y, and type-XY strains comprised 42%, 12%, and 46% of all the strains, respectively. The type-X and type-XY strains were identified in both susceptible and resistant jujube cultivars, while type-Y strain was only identified in susceptible cultivars. Phylogenetic analysis indicated that the tmk genes of the phytoplasmas were divided into two categories: phylo-S and phylo-M. The phylo-S tmk gene was single-copied in the genome, with an evolutionary pattern similar to the 16S rRNA gene; the phylo-M tmk gene was multi-copied, related to PMU-mediated within-genome transposition and between-genome transfer. Furthermore, the phylogenetic tree suggested that the tmk genes shuttled between the genomes of the Paulownia witches' broom phytoplasma and JWB phytoplasma. These findings provide insights into the evolutionary and adaptive mechanisms of phytoplasmas.
Collapse
Affiliation(s)
- Chuan-Sheng Song
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - Qi-Cong Xu
- International Nature Farming Research Center, Nagano 390-1401, Japan;
| | - Cui-Ping Wan
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - De-Zhi Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Cai-Li Lin
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
4
|
Toth R, Ilic AM, Huettel B, Duduk B, Kube M. Divergence within the Taxon ' Candidatus Phytoplasma asteris' Confirmed by Comparative Genome Analysis of Carrot Strains. Microorganisms 2024; 12:1016. [PMID: 38792845 PMCID: PMC11123874 DOI: 10.3390/microorganisms12051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon 'Candidatus Phytoplasma asteris' were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shotgun sequencing, utilising single-molecule-real-time (SMRT) long-read sequencing and sequencing-by-synthesis (SBS) paired-end short-read sequencing techniques. Hybrid assemblies resulted in complete de novo assemblies of two genomes harboring circular chromosomes and two plasmids. Analyses, including average nucleotide identity and sequence comparisons of established marker genes, confirmed the phylogenetic divergence of 'Ca. P. asteris' and a different assignment of strains to the 16S rRNA subgroup I-A for M33 and I-B for M8. These groups exhibited unique features, encompassing virulence factors and genes, associated with the mobilome. In contrast, pan-genome analysis revealed a highly conserved gene set related to metabolism across these strains. This analysis of the Aster Yellows (AY) group reaffirms the perception of phytoplasmas as bacteria that have undergone extensive genome reduction during their co-evolution with the host and an increase of genome size by mobilome.
Collapse
Affiliation(s)
- Rafael Toth
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| | - Anna-Marie Ilic
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| | | | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, 11080 Belgrade, Serbia;
| | - Michael Kube
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| |
Collapse
|
5
|
Kirdat K, Tiwarekar B, Manjula KN, Padma S, Sathe S, Sundararaj R, Yadav A. Draft genome sequence of ' Candidatus Phytoplasma asteris,' strain SW86 associated with sandal spike disease (SSD). 3 Biotech 2024; 14:109. [PMID: 38481824 PMCID: PMC10928027 DOI: 10.1007/s13205-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/02/2024] [Indexed: 04/11/2024] Open
Abstract
The sandal spike disease (SSD), related to 'Ca. Phytoplasma asteris' (Aster Yellows group), poses a significant threat to Indian sandalwood (Santalum album L.), making it the second most expensive wood globally due to declining population density. The epidemiology of SSD and the nature of the pathogen remain poorly understood. The SW86 isolate, collected from the Marayoor Sandalwood Reserve, was chosen for genome sequencing subsequent to confirming its titer and enriching phytoplasma DNA. Genome sequencing, utilizing Illumina and Oxford Nanopore Technology platforms, enabled a targeted hybrid metagenomic assembly resulting in 20 scaffolds totaling 554,025 bp, housing 436 protein-coding genes, 27 tRNA, and 1 rRNA operon. The genome analysis highlighted specific gene distributions, emphasizing translation, ribosomal structure, and biogenesis, with 352 genes assigned to 18 functional categories. Additionally, 322 proteins received functional assignments in the KEGG database, emphasizing 'Genetic Information Processing' and 'Environmental Information Processing'. Key potential pathogenicity factors, including signal peptide proteins and virulence proteins, were identified. Noteworthy findings include homologs of effectors genes like SAP11 and SAP05 and pathogenesis-related proteins, such as hemolysin III and SodA genes, in the SW86 genome. The duplicated cation-transporting P-type ATPase in the SW86 genome suggests a role in enhancing adaptability and contributing to the severity of SSD symptoms. This genome analysis provides crucial insights into the genomic features and potential virulence factors of 'Ca. Phytoplasma asteris' strain SW86, advancing our understanding of pathogenicity mechanisms and offering avenues for future disease management strategies in Indian sandalwood. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03952-5.
Collapse
Affiliation(s)
- Kiran Kirdat
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra 411007 India
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, Maharashtra 413102 India
| | - Bhavesh Tiwarekar
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra 411007 India
| | - K. N. Manjula
- Forest Protection Division, Institute of Wood Science and Technology, 18th Cross, Malleswaram, Bangalore, 560003 India
| | - S. Padma
- Forest Protection Division, Institute of Wood Science and Technology, 18th Cross, Malleswaram, Bangalore, 560003 India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, Maharashtra 413102 India
| | - R. Sundararaj
- Forest Protection Division, Institute of Wood Science and Technology, 18th Cross, Malleswaram, Bangalore, 560003 India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra 411007 India
| |
Collapse
|
6
|
Tokuda R, Iwabuchi N, Kitazawa Y, Nijo T, Suzuki M, Maejima K, Oshima K, Namba S, Yamaji Y. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front Genet 2023; 14:1132432. [PMID: 37252660 PMCID: PMC10210161 DOI: 10.3389/fgene.2023.1132432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Phytoplasmas are obligate intracellular plant pathogenic bacteria that can induce phyllody, which is a type of abnormal floral organ development. Phytoplasmas possess phyllogens, which are effector proteins that cause phyllody in plants. Phylogenetic comparisons of phyllogen and 16S rRNA genes have suggested that phyllogen genes undergo horizontal transfer between phytoplasma species and strains. However, the mechanisms and evolutionary implications of this horizontal gene transfer are unclear. Here, we analyzed synteny in phyllogen flanking genomic regions from 17 phytoplasma strains that were related to six 'Candidatus' species, including three strains newly sequenced in this study. Many of the phyllogens were flanked by multicopy genes within potential mobile units (PMUs), which are putative transposable elements found in phytoplasmas. The multicopy genes exhibited two distinct patterns of synteny that correlated with the linked phyllogens. The low level of sequence identities and partial truncations found among these phyllogen flanking genes indicate that the PMU sequences are deteriorating, whereas the highly conserved sequences and functions (e.g., inducing phyllody) of the phyllogens suggest that the latter are important for phytoplasma fitness. Furthermore, although their phyllogens were similar, PMUs in strains related to 'Ca. P. asteris' were often located in different regions of the genome. These findings strongly indicate that PMUs drive the horizontal transfer of phyllogens among phytoplasma species and strains. These insights improve our understanding of how symptom-determinant genes have been shared among phytoplasmas.
Collapse
Affiliation(s)
- Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamichi Nijo
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Huang CT, Cho ST, Lin YC, Tan CM, Chiu YC, Yang JY, Kuo CH. Comparative Genome Analysis of ‘Candidatus Phytoplasma luffae’ Reveals the Influential Roles of Potential Mobile Units in Phytoplasma Evolution. Front Microbiol 2022; 13:773608. [PMID: 35300489 PMCID: PMC8923039 DOI: 10.3389/fmicb.2022.773608] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Phytoplasmas are insect-transmitted plant pathogens that cause substantial losses in agriculture. In addition to economic impact, phytoplasmas induce distinct disease symptoms in infected plants, thus attracting attention for research on molecular plant-microbe interactions and plant developmental processes. Due to the difficulty of establishing an axenic culture of these bacteria, culture-independent genome characterization is a crucial tool for phytoplasma research. However, phytoplasma genomes have strong nucleotide composition biases and are repetitive, which make it challenging to produce complete assemblies. In this study, we utilized Illumina and Oxford Nanopore sequencing technologies to obtain the complete genome sequence of ‘Candidatus Phytoplasma luffae’ strain NCHU2019 that is associated with witches’ broom disease of loofah (Luffa aegyptiaca) in Taiwan. The fully assembled circular chromosome is 769 kb in size and is the first representative genome sequence of group 16SrVIII phytoplasmas. Comparative analysis with other phytoplasmas revealed that NCHU2019 has a remarkably repetitive genome, possessing a pair of 75 kb repeats and at least 13 potential mobile units (PMUs) that account for ∼25% of its chromosome. This level of genome repetitiveness is exceptional for bacteria, particularly among obligate pathogens with reduced genomes. Our genus-level analysis of PMUs demonstrated that these phytoplasma-specific mobile genetic elements can be classified into three major types that differ in gene organization and phylogenetic distribution. Notably, PMU abundance explains nearly 80% of the variance in phytoplasma genome sizes, a finding that provides a quantitative estimate for the importance of PMUs in phytoplasma genome variability. Finally, our investigation found that in addition to horizontal gene transfer, PMUs also contribute to intra-genomic duplications of effector genes, which may provide redundancy for subfunctionalization or neofunctionalization. Taken together, this work improves the taxon sampling for phytoplasma genome research and provides novel information regarding the roles of mobile genetic elements in phytoplasma evolution.
Collapse
Affiliation(s)
- Ching-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Choon-Meng Tan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Chiu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Jun-Yi Yang,
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Chih-Horng Kuo,
| |
Collapse
|
8
|
Chen P, Chen L, Ye X, Tan B, Zheng X, Cheng J, Wang W, Yang Q, Zhang Y, Li J, Feng J. Phytoplasma effector Zaofeng6 induces shoot proliferation by decreasing the expression of ZjTCP7 in Ziziphus jujuba. HORTICULTURE RESEARCH 2022; 9:6510945. [PMID: 35043187 PMCID: PMC8769037 DOI: 10.1093/hr/uhab032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 05/02/2023]
Abstract
The jujube witches' broom (JWB) phytoplasma is associated with witches' broom, dwarfism, and smaller leaves in jujube, resulting in yield losses. In this study, eight putative JWB effector proteins were identified from potential mobile units of the JWB genome. Among them, Zaofeng6 induced witches' broom symptoms in Arabidopsis and jujube. Zaofeng6-overexpressing Arabidopsis and unrooted jujube transformants displayed witches' broom-like shoot proliferation. Transient expression of Zaofeng6 induced hypersensitive response like cell death and expression of hypersensitive response marker genes, like harpin-induced gene 1 (H1N1), and the pathogenesis-related genes PR1, PR2, and PR3 in transformed Nicotiana benthamiana leaves, suggesting that Zaofeng6 could be a virulence effector. Yeast two-hybrid library screening and bimolecular fluorescence complementation confirmed that Zaofeng6 interacts with ZjTCP7 through its first two α-helix domains in the cell nuclei. ZjTCP7 mRNA and protein abundance decreased in Zaofeng6 transgenic jujube seedlings. The expression of some genes in the strigolactone signaling pathway (ZjCCD7, ZjCCD8, and CYP711A1) were down-regulated in jujube shoots overexpressing Zaofeng6 and in zjtcp7 CRISPR/Cas9 mutants. Zaofeng6 induces shoot proliferation through decreased expression of ZjTCP7 at the transcriptional and translational levels.
Collapse
Affiliation(s)
- Peng Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Lichuan Chen
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Qiqi Yang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Yu Zhang
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- Corresponding author. E-mail: ;
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
- Corresponding author. E-mail: ;
| |
Collapse
|
9
|
Tan CM, Lin YC, Li JR, Chien YY, Wang CJ, Chou L, Wang CW, Chiu YC, Kuo CH, Yang JY. Accelerating Complete Phytoplasma Genome Assembly by Immunoprecipitation-Based Enrichment and MinION-Based DNA Sequencing for Comparative Analyses. Front Microbiol 2021; 12:766221. [PMID: 34858377 PMCID: PMC8632452 DOI: 10.3389/fmicb.2021.766221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Phytoplasmas are uncultivated plant-pathogenic bacteria with agricultural importance. Those belonging to the 16SrII group, represented by 'Candidatus P. aurantifolia', have a wide range of plant hosts and cause significant yield losses in valuable crops, such as pear, sweet potato, peanut, and soybean. In this study, a method that combines immunoprecipitation-based enrichment and MinION long-read DNA sequencing was developed to solve the challenge of phytoplasma genome studies. This approach produced long reads with high mapping rates and high genomic coverage that can be combined with Illumina reads to produce complete genome assemblies with high accuracy. We applied this method to strain NCHU2014 and determined its complete genome sequence, which consists of one circular chromosome with 635,584 bp and one plasmid with 4,224 bp. Although 'Ca. P. aurantifolia' NCHU2014 has a small chromosome with only 471 protein-coding genes, it contains 33 transporter genes and 27 putative effector genes, which may contribute to obtaining nutrients from hosts and manipulating host developments for their survival and multiplication. Two effectors, the homologs of SAP11 and SAP54/PHYL1 identified in 'Ca. P. aurantifolia' NCHU2014, have the biochemical activities in destabilizing host transcription factors, which can explain the disease symptoms observed in infected plants. Taken together, this study provides the first complete genome available for the 16SrII phytoplasmas and contributes to the understanding of phytoplasma pathogenicity.
Collapse
Affiliation(s)
- Choon Meng Tan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jian-Rong Li
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Yu Chien
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Jui Wang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Wei Wang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Chiu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan.,Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan.,Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Garcion C, Béven L, Foissac X. Comparison of Current Methods for Signal Peptide Prediction in Phytoplasmas. Front Microbiol 2021; 12:661524. [PMID: 33841387 PMCID: PMC8026896 DOI: 10.3389/fmicb.2021.661524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although phytoplasma studies are still hampered by the lack of axenic cultivation methods, the availability of genome sequences allowed dramatic advances in the characterization of the virulence mechanisms deployed by phytoplasmas, and highlighted the detection of signal peptides as a crucial step to identify effectors secreted by phytoplasmas. However, various signal peptide prediction methods have been used to mine phytoplasma genomes, and no general evaluation of these methods is available so far for phytoplasma sequences. In this work, we compared the prediction performance of SignalP versions 3.0, 4.0, 4.1, 5.0 and Phobius on several sequence datasets originating from all deposited phytoplasma sequences. SignalP 4.1 with specific parameters showed the most exhaustive and consistent prediction ability. However, the configuration of SignalP 4.1 for increased sensitivity induced a much higher rate of false positives on transmembrane domains located at N-terminus. Moreover, sensitive signal peptide predictions could similarly be achieved by the transmembrane domain prediction ability of TMHMM and Phobius, due to the relatedness between signal peptides and transmembrane regions. Beyond the results presented herein, the datasets assembled in this study form a valuable benchmark to compare and evaluate signal peptide predictors in a field where experimental evidence of secretion is scarce. Additionally, this study illustrates the utility of comparative genomics to strengthen confidence in bioinformatic predictions.
Collapse
Affiliation(s)
- Christophe Garcion
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Laure Béven
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Xavier Foissac
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| |
Collapse
|
11
|
Kirdat K, Tiwarekar B, Thorat V, Sathe S, Shouche Y, Yadav A. 'Candidatus Phytoplasma sacchari', a novel taxon - associated with Sugarcane Grassy Shoot (SCGS) disease. Int J Syst Evol Microbiol 2020; 71. [PMID: 33289626 DOI: 10.1099/ijsem.0.004591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sugarcane Grassy Shoot (SCGS) disease is known to be related to Rice Yellow Dwarf (RYD) phytoplasmas (16SrXI-B group) which are found predominantly in sugarcane growing areas of the Indian subcontinent and South-East Asia. The 16S rRNA gene sequences of SCGS phytoplasma strains belonging to the 16SrXI-B group share 98.07 % similarity with 'Ca. Phytoplasma cynodontis' strain BGWL-C1 followed by 97.65 % similarity with 'Ca. P. oryzae' strain RYD-J. Being placed distinctly away from both the phylogenetically related species, the taxonomic identity of SCGS phytoplasma is unclear and confusing. We attempted to resolve the phylogenetic positions of SCGS phytoplasma based on the phylogenetic analysis of 16S rRNA gene (>1500 bp), nine housekeeping genes (>3500 aa), core genome phylogeny (>10 000 aa) and OGRI values. The draft genome sequences of SCGS phytoplasma (strain SCGS) and Bermuda Grass White leaf (BGWL) phytoplasma (strain LW01), closely related to 'Ca. P. cynodontis', were obtained. The SCGS genome was comprised of 29 scaffolds corresponding to 505 173 bp while LW01 assembly contained 21 scaffolds corresponding to 483 935 bp with the fold coverages over 330× and completeness over 90 % for both the genomes. The G+C content of SCGS was 19.86 % while that of LW01 was 20.46 %. The orthoANI values for the strain SCGS against strains LW01 was 79.42 %, and dDDH values were 22. Overall analysis reveals that SCGS phytoplasma forms a distant clade in RYD group of phytoplasmas. Based on phylogenetic analyses and OGRI values obtained from the genome sequences, a novel taxon 'Candidatus Phytoplasma sacchari' is proposed.
Collapse
Affiliation(s)
- Kiran Kirdat
- Department of Microbiology, Tuljaram Chaturchand College, Baramati 413 102, Maharashtra, India
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Bhavesh Tiwarekar
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Vipool Thorat
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati 413 102, Maharashtra, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
12
|
Huang W, Reyes-Caldas P, Mann M, Seifbarghi S, Kahn A, Almeida RPP, Béven L, Heck M, Hogenhout SA, Coaker G. Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions. MOLECULAR PLANT 2020; 13:1379-1393. [PMID: 32835885 PMCID: PMC7769051 DOI: 10.1016/j.molp.2020.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Vector-borne plant diseases have significant ecological and economic impacts, affecting farm profitability and forest composition throughout the world. Bacterial vector-borne pathogens have evolved sophisticated strategies to interact with their hemipteran insect vectors and plant hosts. These pathogens reside in plant vascular tissue, and their study represents an excellent opportunity to uncover novel biological mechanisms regulating intracellular pathogenesis and to contribute to the control of some of the world's most invasive emerging diseases. In this perspective, we highlight recent advances and major unanswered questions in the realm of bacterial vector-borne disease, focusing on liberibacters, phytoplasmas, spiroplasmas, and Xylella fastidiosa.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paola Reyes-Caldas
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Marina Mann
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shirin Seifbarghi
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Alexandra Kahn
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Laure Béven
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE, Villenave d'Ornon 33882 France
| | - Michelle Heck
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA; Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, NY 14853, USA
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Iwabuchi N, Kitazawa Y, Maejima K, Koinuma H, Miyazaki A, Matsumoto O, Suzuki T, Nijo T, Oshima K, Namba S, Yamaji Y. Functional variation in phyllogen, a phyllody-inducing phytoplasma effector family, attributable to a single amino acid polymorphism. MOLECULAR PLANT PATHOLOGY 2020; 21:1322-1336. [PMID: 32813310 PMCID: PMC7488466 DOI: 10.1111/mpp.12981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR-based approach to identify 25 phytoplasma phyllogens related to nine "Candidatus Phytoplasma" species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl-A, -B, -C, and -D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl-A, -C, and -D groups induced phyllody, the phyl-B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl-B group phyllogens prevented interactions between phyllogens and A- and E-class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.
Collapse
Affiliation(s)
- Nozomu Iwabuchi
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Akio Miyazaki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ouki Matsumoto
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takumi Suzuki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takamichi Nijo
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Shigetou Namba
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
14
|
Cho ST, Kung HJ, Huang W, Hogenhout SA, Kuo CH. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front Microbiol 2020; 11:1531. [PMID: 32754131 PMCID: PMC7366425 DOI: 10.3389/fmicb.2020.01531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
Phytoplasmas are plant-pathogenic bacteria that impact agriculture worldwide. The commonly adopted classification system for phytoplasmas is based on the restriction fragment length polymorphism (RFLP) analysis of their 16S rRNA genes. With the increased availability of phytoplasma genome sequences, the classification system can now be refined. This work examined 11 strains in the 16SrI group within the genus ‘Candidatus Phytoplasma’ and investigated the possible species boundaries. We confirmed that the RFLP classification method is problematic due to intragenomic variation of the 16S rRNA genes and uneven weighing of different nucleotide positions. Importantly, our results based on the molecular phylogeny, differentiations in chromosomal segments and gene content, and divergence in homologous sequences, all supported that these strains may be classified into multiple operational taxonomic units (OTUs) equivalent to species. Strains assigned to the same OTU share >97% genome-wide average nucleotide identity (ANI) and >78% of their protein-coding genes. In comparison, strains assigned to different OTUs share < 94% ANI and < 75% of their genes. Reduction in homologous recombination between OTUs is one possible explanation for the discontinuity in genome similarities, and these findings supported the proposal that 95% ANI could serve as a cutoff for distinguishing species in bacteria. Additionally, critical examination of these results and the raw sequencing reads led to the identification of one genome that was presumably mis-assembled by combining two sequencing libraries built from phytoplasmas belonging to different OTUs. This finding provided a cautionary tale for working on uncultivated bacteria. Based on the new understanding of phytoplasma divergence and the current genome availability, we developed five molecular markers that could be used for multilocus sequence analysis (MLSA). By selecting markers that are short yet highly informative, and are distributed evenly across the chromosome, these markers provided a cost-effective system that is robust against recombination. Finally, examination of the effector gene distribution further confirmed the rapid gains and losses of these genes, as well as the involvement of potential mobile units (PMUs) in their molecular evolution. Future improvements on the taxon sampling of phytoplasma genomes will allow further expansions of similar analysis, and thus contribute to phytoplasma taxonomy and diagnostics.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Jui Kung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Clements J, Garcia M, Bradford B, Crubaugh L, Piper S, Duerr E, Zwolinska A, Hogenhout S, Groves RL. Genetic Variation Among Geographically Disparate Isolates of Aster Yellows Phytoplasma in the Contiguous United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:604-611. [PMID: 31900490 PMCID: PMC7136194 DOI: 10.1093/jee/toz356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Aster Yellows phytoplasma (AYp; Candidatus Phytoplasma asteris) is associated with diseases of herbaceous plants, including ornamentals and important commercial vegetable and grain crops. The aster leafhopper (ALH; Macrosteles quadrilineatus Forbes) is the predominant vector of these bacteria, though other leafhopper species can acquire and transmit AYp. Potentially inoculative leafhoppers are reported to overwinter in the southern United States and migrate to northern latitudes in the spring. Examining the genetic similarities and differences in AYp associated with southern and northern populations of ALH may provide insight into the role that migrating ALH play in AYp disease development. To investigate similarities among geographically distinct populations of ALH and characterize the variation in AYp associated within these populations, we identified genetic variations in subgroup designation and the relative proportions of secreted AY-WB proteins from field-collected populations of AYp isolated from ALH from select locations in the southern (Arkansas, Kansas, Oklahoma, and Texas) and the northern United States (Wisconsin) in 2016, 2017, and 2018. Isolated phytoplasma were tested for variation of AYp genotypes, numbers of potentially inoculative (AYp-positive) ALH, and presence of specific AYp virulence (effector) genes. Geographically distinct populations of ALH collected in northern and southern regions were similar in CO1 genotype but carried different proportions of AYp genotypes. While similar AYp strains were detected in geographically distinct locations, the proportion of each genotype varied over time.
Collapse
Affiliation(s)
- Justin Clements
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| | - Marjorie Garcia
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| | - Benjamin Bradford
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| | - Linda Crubaugh
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| | - Shannon Piper
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| | - Emily Duerr
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| | | | | | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
16
|
Singh A, Lakhanpaul S. Genome-Wide Analysis of Putative G-Quadruplex Sequences (PGQSs) in Onion Yellows Phytoplasma (Strain OY-M): An Emerging Plant Pathogenic Bacteria. Indian J Microbiol 2019; 59:468-475. [PMID: 31762510 DOI: 10.1007/s12088-019-00831-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
Phytoplasma, an emerging plant pathogen is an endocellular obligate parasite of plant phloem tissues with highly reduced genomes and low GC content. They contain a minimal set of genes essential for survival as an intracellular parasite. The role of G-Quadruplexes in pathogenicity has been reported in a variety of microbial pathogens. Detailed investigation on the genome wide occurrence and distribution of Putative G-Quadruplex forming Sequences (PGQSs) in the AT-rich genome of Onion yellows phytoplasma (strain OY-M) was carried out. Relative enrichment and depletion of these putative secondary structures in different genomic regions of OY-M was investigated with an aim to unravel their association with functionally important genomic locations. PGQSs density of 0.4407/Kbp was detected in the genome of OY-M phytoplasma, which is significantly higher than the average PGQSs density (0.136/Kbp) reported for other members of its phylum, namely Tenericutes. A non-random distribution of PGQSs across the length of the genome was observed. Putative promoter regions of OY-M were found to be particularly enriched in PGQSs followed by genic regions. The repeat rich regions were identified to have minimum PGQSs density. Presence of PGQSs in important genes such as those involved in secretory pathways of virulent factors, transport related functions, rRNA and tRNA was particularly intriguing. Our study reports for the first time a detailed investigation on the genome-wide locations of putative G-Quadruplexes in phytoplasma and highlights the need to further investigate their role in the metabolism and also in the mechanism of pathogenicity.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
17
|
Pecher P, Moro G, Canale MC, Capdevielle S, Singh A, MacLean A, Sugio A, Kuo CH, Lopes JRS, Hogenhout SA. Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize. PLoS Pathog 2019; 15:e1008035. [PMID: 31557268 PMCID: PMC6802841 DOI: 10.1371/journal.ppat.1008035] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/21/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Phytoplasmas are insect-transmitted bacterial pathogens that colonize a wide range of plant species, including vegetable and cereal crops, and herbaceous and woody ornamentals. Phytoplasma-infected plants often show dramatic symptoms, including proliferation of shoots (witch's brooms), changes in leaf shapes and production of green sterile flowers (phyllody). Aster Yellows phytoplasma Witches' Broom (AY-WB) infects dicots and its effector, secreted AYWB protein 11 (SAP11), was shown to be responsible for the induction of shoot proliferation and leaf shape changes of plants. SAP11 acts by destabilizing TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCP) transcription factors, particularly the class II TCPs of the CYCLOIDEA/TEOSINTE BRANCHED 1 (CYC/TB1) and CINCINNATA (CIN)-TCP clades. SAP11 homologs are also present in phytoplasmas that cause economic yield losses in monocot crops, such as maize, wheat and coconut. Here we show that a SAP11 homolog of Maize Bushy Stunt Phytoplasma (MBSP), which has a range primarily restricted to maize, destabilizes specifically TB1/CYC TCPs. SAP11MBSP and SAP11AYWB both induce axillary branching and SAP11AYWB also alters leaf development of Arabidopsis thaliana and maize. However, only in maize, SAP11MBSP prevents female inflorescence development, phenocopying maize tb1 lines, whereas SAP11AYWB prevents male inflorescence development and induces feminization of tassels. SAP11AYWB promotes fecundity of the AY-WB leafhopper vector on A. thaliana and modulates the expression of A. thaliana leaf defence response genes that are induced by this leafhopper, in contrast to SAP11MBSP. Neither of the SAP11 effectors promote fecundity of AY-WB and MBSP leafhopper vectors on maize. These data provide evidence that class II TCPs have overlapping but also distinct roles in regulating development and defence in a dicot and a monocot plant species that is likely to shape SAP11 effector evolution depending on the phytoplasma host range.
Collapse
Affiliation(s)
- Pascal Pecher
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Gabriele Moro
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Maria Cristina Canale
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, University of São Paulo, Piracicaba, Brazil
| | - Sylvain Capdevielle
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Archana Singh
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Allyson MacLean
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Akiko Sugio
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Joao R. S. Lopes
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, University of São Paulo, Piracicaba, Brazil
| | - Saskia A. Hogenhout
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Cho ST, Lin CP, Kuo CH. Genomic Characterization of the Periwinkle Leaf Yellowing (PLY) Phytoplasmas in Taiwan. Front Microbiol 2019; 10:2194. [PMID: 31608032 PMCID: PMC6761752 DOI: 10.3389/fmicb.2019.02194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
The periwinkle leaf yellowing (PLY) disease was first reported in Taiwan in 2005. This disease was caused by an uncultivated bacterium in the genus “Candidatus phytoplasma.” In subsequent years, this bacterium was linked to other plant diseases and caused losses in agriculture. For genomic investigation of this bacterium and its relatives, we conducted whole genome sequencing of a PLY phytoplasma from an infected periwinkle collected in Taoyuan. The de novo genome assembly produced eight contigs with a total length of 824,596 bp. The annotation contains 775 protein-coding genes, 63 pseudogenes, 32 tRNA genes, and two sets of rRNA operons. To characterize the genomic diversity across populations, a second strain that infects green onions in Yilan was collected for re-sequencing analysis. Comparison between these two strains identified 337 sequence polymorphisms and 10 structural variations. The metabolic pathway analysis indicated that the PLY phytoplasma genome contains two regions with highly conserved gene composition for carbohydrate metabolism. Intriguingly, each region contains several pseudogenes and the remaining functional genes in these two regions complement each other, suggesting a case of duplication followed by differential gene losses. Comparative analysis with other available phytoplasma genomes indicated that this PLY phytoplasma belongs to the 16SrI-B subgroup in the genus, with “Candidatus Phytoplasma asteris” that causes the onion yellowing (OY) disease in Japan as the closest known relative. For characterized effectors that these bacteria use to manipulate their plant hosts, the PLY phytoplasma has homologs for SAP11, SAP54/PHYL1, and TENGU. For genome structure comparison, we found that potential mobile unit (PMU) insertions may be the main factor that drives genome rearrangements in these bacteria. A total of 10 PMU-like regions were found in the PLY phytoplasma genome. Two of these PMUs were found to harbor one SAP11 homolog each, with one more similar to the 16SrI-B type and the other more similar to the 16SrI-A type, suggesting possible horizontal transfer. Taken together, this work provided a first look into population genomics of the PLY phytoplasmas in Taiwan, as well as identified several evolutionary processes that contributed to the genetic diversification of these plant-pathogenic bacteria.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chan-Pin Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Comparative genome analysis of jujube witches'-broom Phytoplasma, an obligate pathogen that causes jujube witches'-broom disease. BMC Genomics 2018; 19:689. [PMID: 30231900 PMCID: PMC6148798 DOI: 10.1186/s12864-018-5075-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND JWB phytoplasma is a kind of insect-transmitted and uncultivable bacterial plant pathogen causeing a destructive Jujube disease. To date, no genome information about JWB phytoplasma has been published, which hindered its characterization at genomic level. To understand its pathogenicity and ecology, the genome of a JWB phytoplasma isolate jwb-nky was sequenced and compared with other phytoplasmas enabled us to explore the mechanisms of genomic rearrangement. RESULTS The complete genome sequence of JWB phytoplasma (jwb-nky) was determined, which consisting of one circular chromosome of 750,803 bp with a GC content of 23.3%. 694 protein-encoding genes, 2 operons for rRNA genes and 31 tRNA genes as well as 4 potential mobile units (PMUs) containing clusters of DNA repeats were identified. Based on PHIbaes analysis, a large number of genes were genome-specific and approximately 13% of JWB phytoplasma genes were predicted to be associated with virulence. Although transporters for maltose, dipeptides/oligopeptides, spermidine/putrescine, cobalt, Mn/Zn and methionine were identified, KEGG pathway analysis revealed the reduced metabolic capabilities of JWB phytoplasma. Comparative genome analyses between JWB phytoplasma and other phytoplasmas shows the occurrence of large-scale gene rearrangements. The low synteny with other phytoplasmas indicated that the expansion of multiple gene families/duplication probably occurred separately after differentiation. CONCLUSIONS In this study, the complete genome sequence of a JWB phytoplasma isolate jwb-nky that causing JWB disease was reported for the first time and a number of species-specific genes were identified in the genome. The study enhanced our understandings about genomic basis and the pathogenicity mechanism of this pathogen, which will aid in the development of improved strategies for efficient management of JWB diseases.
Collapse
|
20
|
Tomkins M, Kliot A, Marée AF, Hogenhout SA. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:39-48. [PMID: 29547737 DOI: 10.1016/j.pbi.2018.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 05/13/2023]
Abstract
Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages. A multi-layered mechanistic modelling approach will enable a better understanding of how phytoplasma effector-mediated modulations of plant host development and insect vector behaviour contribute to phytoplasma spread, and ultimately to predict the long reach of phytoplasma effector genes.
Collapse
Affiliation(s)
- Melissa Tomkins
- Department of Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Adi Kliot
- Department of Crop Genetics, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Athanasius Fm Marée
- Department of Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Saskia A Hogenhout
- Department of Crop Genetics, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
21
|
Orlovskis Z, Canale MC, Haryono M, Lopes JRS, Kuo CH, Hogenhout SA. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. ANNALS OF BOTANY 2017; 119:869-884. [PMID: 28069632 PMCID: PMC5379588 DOI: 10.1093/aob/mcw213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/16/2016] [Indexed: 05/18/2023]
Abstract
Background and Aims Maize bushy stunt phytoplasma (MBSP) is a bacterial pathogen of maize ( Zea mays L.) across Latin America. MBSP belongs to the 16SrI-B sub-group within the genus ' Candidatus Phytoplasma'. MBSP and its insect vector Dalbulus maidis (Hemiptera: Cicadellidae) are restricted to maize; both are thought to have coevolved with maize during its domestication from a teosinte-like ancestor. MBSP-infected maize plants show a diversity of symptoms. and it is likely that MBSP is under strong selection for increased virulence and insect transmission on maize hybrids that are widely grown in Brazil. In this study it was investigated whether the differences in genome sequences of MBSP isolates from two maize-growing regions in South-east Brazil explain variations in symptom severity of the MBSP isolates on various maize genotypes. Methods MBSP isolates were collected from maize production fields in Guaíra and Piracicaba in South-east Brazil for infection assays. One representative isolate was chosen for de novo whole-genome assembly and for the alignment of sequence reads from the genomes of other phytoplasma isolates to detect polymorphisms. Statistical methods were applied to investigate the correlation between variations in disease symptoms of infected maize plants and MBSP sequence polymorphisms. Key Results MBSP isolates contributed consistently to organ proliferation symptoms and maize genotype to leaf necrosis, reddening and yellowing of infected maize plants. The symptom differences are associated with polymorphisms in a phase-variable lipoprotein, which is a candidate effector, and an ATP-dependent lipoprotein ABC export protein, whereas no polymorphisms were observed in other candidate effector genes. Lipoproteins and ABC export proteins activate host defence responses, regulate pathogen attachment to host cells and activate effector secretion systems in other pathogens. Conclusions Polymorphisms in two putative virulence genes among MBSP isolates from maize-growing regions in South-east Brazil are associated with variations in organ proliferation symptoms of MBSP-infected maize plants.
Collapse
Affiliation(s)
- Zigmunds Orlovskis
- John Innes Centre, Department of Cell and Developmental Biology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria Cristina Canale
- John Innes Centre, Department of Cell and Developmental Biology, Norwich Research Park, Norwich NR4 7UH, UK
- Luiz de Queiroz College of Agriculture, University of São Paulo, Department of Entomology and Acarology, Piracicaba 13·418-900, Brazil
| | - Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - João Roberto Spotti Lopes
- Luiz de Queiroz College of Agriculture, University of São Paulo, Department of Entomology and Acarology, Piracicaba 13·418-900, Brazil
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Saskia A. Hogenhout
- John Innes Centre, Department of Cell and Developmental Biology, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
22
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|