1
|
Kosovsky GY, Glazko GV, Skobel OI. Bos taurus and Bison bison conservative retrotransposon recombination products. Front Vet Sci 2025; 12:1516731. [PMID: 40370818 PMCID: PMC12075945 DOI: 10.3389/fvets.2025.1516731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Without identifying and studying the genomic characteristics associated with domestication, managing farm animal genetic resources becomes overwhelmingly difficult. Accumulated data confirm that mobile genetic elements participate in the domestication process and, in particular, generate widely abundant microRNAs. Methods The recombination products were compared in silico between the long interspersed nuclear element (LINE) and the endogenous retrovirus (ERV), forming the LINE/ERV/LINE sequence, located in a closely linked conserved block of 12 genes, as well as the microRNAs formed by these recombination products in domesticated-wild pairs of mammals. For this comparison, the reference genomes of domesticated cattle (Bos taurus) and its closely related wild species counterpart, bison (Bison bison), were used. Results It was found that the above-noted highly conserved recombination products (with more than 81.5% identity) were present in the corresponding block of 12 genes in bison. These recombination products served as sources of 51 microRNAs in bison and 129 microRNAs in cattle, including 50 microRNAs that were similar in both species. A total of 79 microRNAs were found only in cattle trinomial recombination products, with 98% belonging to the mir-30 family, including the cattle-specific bta-miR-30a-5p and bta-miR-30e-5p. The mir-30 family is closely associated with biological processes influencing the quantity and quality of agricultural products. Conclusion Trinomial retrotransposon recombination products were fixed in both the cattle genome and the genome of its closely related wild species, the bison. It was found that these products may be involved in the response to intensive artificial selection and the domestication process since interspecific differentiation of microRNAs is associated with regulatory networks that have a significant impact on the formation of economically important traits.
Collapse
Affiliation(s)
- Gleb Yu. Kosovsky
- Department of Biotechnology, Afanas‘ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Moscow, Russia
| | - Galina V. Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olga I. Skobel
- Department of Biotechnology, Afanas‘ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Moscow, Russia
| |
Collapse
|
2
|
Medina-Calzada Z, Jing R, Moxon S, Zhu H, Xu P, Dalmay T. An intron-split microRNA mediates cleavage of the mRNA encoded by low phosphate root in Solanaceae. PLANTA 2025; 261:27. [PMID: 39775091 PMCID: PMC11706861 DOI: 10.1007/s00425-024-04596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
MAIN CONCLUSION A microRNA with a non-canonical precursor structure harbours an intron in between its miRNA-5p and miRNA-3p relevant for its biogenesis, is conserved across Solanaceae, and targets the mRNA of low phosphate root. Hundreds of miRNAs have been identified in plants and great advances have been accomplished in the understanding of plant miRNA biogenesis, mechanisms and functions. Still, many miRNAs, particularly those with less conventional features, remain to be discovered. Likewise, additional layers of regulation from miRNA generation to action and turnover are still being revealed. The current study describes a microRNA not previously identified given its unusual intron-split stem-loop structure, that has been previously observed only within the monocot-specific miRNA444 family. It shows its conservation across a branch of Solanales including agriculturally relevant Solanaceae family, where its transcripts had already been predicted in several species within sequence databases. The miRNA is absent in Arabidopsis thaliana but present in Solanum lycopersicum, Nicotiana benthamiana, Petunia axillaris, and Ipomoea nil. It proves that at least two different pri-miRNA variants are produced from this miRNA gene, one spliced and the other one retaining the intron. It demonstrates the dual function of its intron in the miRNA biogenesis. On the one hand, its presence in the pri-miRNA positively influences mature miRNA accumulation, but on the other hand, it needs to be removed from the pri-miRNA for efficient mature miRNA production. Finally, it sets low phosphate root as one of its targets, a protein known to be involved in root growth regulation under phosphate starvation in other plant species.
Collapse
Affiliation(s)
- Zahara Medina-Calzada
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Runchun Jing
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hong Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Engineering Research Center of Plant Germplasm Resource, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
3
|
Delcher HA, DeMeis JD, Ghobar N, Godang NL, Knight SL, Alqudah SY, Nguyen KN, Watters BC, Borchert GM. SARS-Cov-2 small viral RNA suppresses gene expression via complementary binding to mRNA 3' UTR. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000790. [PMID: 38312351 PMCID: PMC10835431 DOI: 10.17912/micropub.biology.000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
SARS-CoV-2 (SC2) has been intensely studied since its emergence. However, the mechanisms of host immune dysregulation triggered by SC2 remain poorly understood. That said, it is well established that many prominent viral families encode microRNAs (miRNAs) or related small viral RNAs (svRNAs) capable of regulating human genes involved in immune function. Importantly, recent reports have shown that SC2 encodes its own svRNAs. In this study, we have identified 12 svRNAs expressed during SC2 infection and show that one of these svRNAs can regulate target gene expression via complementary binding to mRNA 3' untranslated regions (3'UTRs) much like human microRNAs.
Collapse
Affiliation(s)
- Haley A Delcher
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Jeffrey D DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Nicole Ghobar
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Noel L Godang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Sierra L Knight
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Shahem Y Alqudah
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Kevin N Nguyen
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Brianna C Watters
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Department of Biology, College of Arts and Sciences, University of South Alabama, Mobile, AL
| |
Collapse
|
4
|
Gultyaev AP, Koster C, van Batenburg DC, Sistermans T, van Belle N, Vijfvinkel D, Roussis A. Conserved structured domains in plant non-coding RNA enod40, their evolution and recruitment of sequences from transposable elements. NAR Genom Bioinform 2023; 5:lqad091. [PMID: 37850034 PMCID: PMC10578108 DOI: 10.1093/nargab/lqad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Plant long noncoding RNA enod40 is involved in the regulation of symbiotic associations with bacteria, in particular, in nitrogen-fixing root nodules of legumes, and with fungi in phosphate-acquiring arbuscular mycorrhizae formed by various plants. The presence of enod40 genes in plants that do not form such symbioses indicates its other roles in cell physiology. The molecular mechanisms of enod40 RNA function are poorly understood. Enod40 RNAs form several structured domains, conserved to different extents. Due to relatively low sequence similarity, identification of enod40 sequences in plant genomes is not straightforward, and many enod40 genes remain unannotated even in complete genomes. Here, we used comparative structure analysis and sequence similarity searches in order to locate enod40 genes and determine enod40 RNA structures in nitrogen-fixing clade plants and in grasses. The structures combine conserved features with considerable diversity of structural elements, including insertions of structured domain modules originating from transposable elements. Remarkably, these insertions contain sequences similar to tandem repeats and several stem-loops are homologous to microRNA precursors.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Celine Koster
- Life Science & Technology Honours College, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Amsterdam University Medical Center, Department of Human Genetics, section Ophthalmogenetics, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - Diederik Cames van Batenburg
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- CareRate, Unit E1.165, Stationsplein 45, 3013 AK Rotterdam, The Netherlands
| | - Tom Sistermans
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Niels van Belle
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Daan Vijfvinkel
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Andreas Roussis
- National & Kapodistrian University of Athens, Faculty of Biology, Section of Botany, Group Molecular Plant Physiology, Panepistimiopolis - Zografou - Athens, 15784, Greece
| |
Collapse
|
5
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
6
|
Park EG, Lee DH, Kim WR, Lee YJ, Bae WH, Kim JM, Shin HJ, Ha H, Yi JM, Cho SG, Choi YH, Leem SH, Cha HJ, Kim SW, Kim HS. Human Endogenous Retrovirus-H-Derived miR-4454 Inhibits the Expression of DNAJB4 and SASH1 in Non-Muscle-Invasive Bladder Cancer. Genes (Basel) 2023; 14:1410. [PMID: 37510314 PMCID: PMC10379226 DOI: 10.3390/genes14071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially cancer. A few studies have revealed that long non-coding RNAs that are transcribed from HERV sequences affect cancer progression. However, there is no study on microRNAs derived from HERVs related to cancer. In this study, we identified 29 microRNAs (miRNAs) derived from HERV sequences in the human genome. In particular, we discovered that miR-4454, which is HERV-H-derived miRNA, was upregulated in non-muscle-invasive bladder cancer (NMIBC) cells. To figure out the effects of upregulated miR-4454 in NMIBC, genes whose expression was downregulated in NMIBC, as well as tumor suppressor genes, were selected as putative target genes of miR-4454. The dual-luciferase assay was used to determine the negative relationship between miR-4454 and its target genes, DNAJB4 and SASH1, and they were confirmed to be promising target genes of miR-4454. Taken together, this study suggests that the upregulation of miR-4454 derived from HERV-H in NMIBC reduces the expression of the tumor suppressor genes, DNAJB4 and SASH1, to promote NMIBC progression.
Collapse
Affiliation(s)
- Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Ssang Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea;
| | - Sun Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea;
| | - Hee Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Republic of Korea;
| | - Sang Woo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| | - Heui Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
7
|
Mustafin RN, Khusnutdinova E. Perspective for Studying the Relationship of miRNAs with Transposable Elements. Curr Issues Mol Biol 2023; 45:3122-3145. [PMID: 37185728 PMCID: PMC10136691 DOI: 10.3390/cimb45040204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Transposable elements are important sources of miRNA, long non-coding RNAs genes, and their targets in the composition of protein-coding genes in plants and animals. Therefore, the detection of expression levels of specific non-coding RNAs in various tissues and cells in normal and pathological conditions may indicate a programmed pattern of transposable elements' activation. This reflects the species-specific composition and distribution of transposable elements in genomes, which underlie gene regulation in every cell division, including during aging. TEs' expression is also regulated by epigenetic factors (DNA methylation, histone modifications), SIRT6, cytidine deaminases APOBEC3, APOBEC1, and other catalytic proteins, such as ERCC, TREX1, RB1, HELLS, and MEGP2. In evolution, protein-coding genes and their regulatory elements are derived from transposons. As part of non-coding regions and introns of genes, they are sensors for transcriptional and post-transcriptional control of expression, using miRNAs and long non-coding RNAs, that arose from transposable elements in evolution. Methods (Orbld, ncRNAclassifier) and databases have been created for determining the occurrence of miRNAs from transposable elements in plants (PlanTE-MIR DB, PlaNC-TE), which can be used to design epigenetic gene networks in ontogenesis. Based on the data accumulated in the scientific literature, the presence of 467 transposon-derived miRNA genes in the human genome has been reliably established. It was proposed to create an updated and controlled online bioinformatics database of miRNAs derived from transposable elements in healthy individuals, as well as expression changes of these miRNAs during aging and various diseases, such as cancer and difficult-to-treat diseases. The use of the information obtained can open new horizons in the management of tissue and organ differentiation to aging slow down. In addition, the created database could become the basis for clarifying the mechanisms of pathogenesis of various diseases (imbalance in the activity of transposable elements, reflected in changes in the expression of miRNAs) and designing their targeted therapy using specific miRNAs as targets. This article provides examples of the detection of transposable elements-derived miRNAs involved in the development of specific malignant neoplasms, aging, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Ufa Federal Research Centre, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
8
|
Naaz S, Sakib N, Houserova D, Badve R, Crucello A, Borchert GM. Characterization of a novel sRNA contributing to biofilm formation in Salmonella enterica serovar Typhimurium. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000796. [PMID: 37151214 PMCID: PMC10160853 DOI: 10.17912/micropub.biology.000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 01/01/1970] [Indexed: 05/09/2023]
Abstract
Small RNAs (sRNAs) are short noncoding RNAs of ~50-200 nucleotides believed to primarily function in regulating crucial activities in bacteria during periods of cellular stress. This study examined the relevance of specific sRNAs on biofilm formation in nutrient starved Salmonella enterica serovar Typhimurium. Eight unique sRNAs were selected for deletion primarily based on their genomic location and/or putative targets. Quantitative and qualitative analyses confirm one of these, sRNA1186573, is required for efficient biofilm formation in S. enterica further highlighting the significance of sRNAs during Salmonella stress response.
Collapse
Affiliation(s)
- Sayema Naaz
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Najmuj Sakib
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Rani Badve
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Aline Crucello
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Correspondence to: Glen M Borchert (
)
| |
Collapse
|
9
|
Mustafin RN. Interrelation of MicroRNAs and Transposons in Aging and Carcinogenesis. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Playfoot CJ, Sheppard S, Planet E, Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development. RNA (NEW YORK, N.Y.) 2022; 28:1157-1171. [PMID: 35732404 PMCID: PMC9380744 DOI: 10.1261/rna.079100.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) contribute to the evolution of gene regulatory networks and are dynamically expressed throughout human brain development and disease. One gene regulatory mechanism influenced by TEs is the miRNA system of post-transcriptional control. miRNA sequences frequently overlap TE loci and this miRNA expression landscape is crucial for control of gene expression in adult brain and different cellular contexts. Despite this, a thorough investigation of the spatiotemporal expression of TE-embedded miRNAs in human brain development is lacking. Here, we identify a spatiotemporally dynamic TE-embedded miRNA expression landscape between childhood and adolescent stages of human brain development. These miRNAs sometimes arise from two apposed TEs of the same subfamily, such as for L2 or MIR elements, but in the majority of cases stem from solo TEs. They give rise to in silico predicted high-confidence pre-miRNA hairpin structures, likely represent functional miRNAs, and have predicted genic targets associated with neurogenesis. TE-embedded miRNA expression is distinct in the cerebellum when compared to other brain regions, as has previously been described for gene and TE expression. Furthermore, we detect expression of previously nonannotated TE-embedded miRNAs throughout human brain development, suggestive of a previously undetected miRNA control network. Together, as with non-TE-embedded miRNAs, TE-embedded sequences give rise to spatiotemporally dynamic miRNA expression networks, the implications of which for human brain development constitute extensive avenues of future experimental research. To facilitate interactive exploration of these spatiotemporal miRNA expression dynamics, we provide the "Brain miRTExplorer" web application freely accessible for the community.
Collapse
Affiliation(s)
- Christopher J Playfoot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
A hypothesis: Retrotransposons as a relay of epigenetic marks in intergenerational epigenetic inheritance. Gene 2022; 817:146229. [PMID: 35063571 DOI: 10.1016/j.gene.2022.146229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Epigenetic marks in gametes, which both respond to the parental environmental factors and shape offspring phenotypes, are usually positioned to mediate intergenerational or transgenerational epigenetic inheritance. Nonetheless, the mechanisms through which gametic epigenetic signatures encode parental acquired phenotypes, and further initiate a cascade of molecular events to affect offspring phenotypes during early embryonic development, remain unclear. Retrotransposons are mobile DNA elements that could resist to genomic epigenetic reprogramming at specific loci and rewire the core regulatory networks of embryogenesis. Increasing evidences show that retrotransposons in the embryonic genome could interact with gametic epigenetic marks, which provides a tentative possibility that retrotransposons may serve as a relay of gametic epigenetic marks to transmit parental acquired traits. Here, we summarize the recent progress in exploring the crosstalk between gametic epigenetic marks and retrotransposons, and the regulation of gene expression and early embryonic development by retrotransposons. Accordingly, deciphering the mystery of interactions between gametic epigenetic marks and retrotransposons during early embryonic development will provide valuable insights into the intergenerational or transgenerational transmission of acquired traits.
Collapse
|
12
|
Campo S, Sánchez‐Sanuy F, Camargo‐Ramírez R, Gómez‐Ariza J, Baldrich P, Campos‐Soriano L, Soto‐Suárez M, San Segundo B. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1798-1811. [PMID: 33780108 PMCID: PMC8428829 DOI: 10.1111/pbi.13592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species. miR812w is a 24nt-long that requires DCL3 for its biogenesis and is loaded into AGO4 proteins. Whereas overexpression of miR812w increased resistance to infection by the rice blast fungus Magnaporthe oryzae, CRISPR/Cas9-mediated MIR812w editing enhances disease susceptibility, supporting that miR812w plays a role in blast resistance. We show that miR812w derives from the Stowaway type of rice MITEs (Miniature Inverted-Repeat Transposable Elements). Moreover, miR812w directs DNA methylation in trans at target genes that have integrated a Stowaway MITE copy into their 3' or 5' untranslated region (ACO3, CIPK10, LRR genes), as well as in cis at the MIR812w locus. The target genes of miR812 were found to be hypo-methylated around the miR812 recognition site, their expression being up-regulated in transgene-free CRISPR/Cas9-edited miR812 plants. These findings further support that, in addition to post-transcriptional regulation of gene expression, miRNAs can exert their regulatory function at the transcriptional level. This relationship between miR812w and Stowaway MITEs integrated into multiple coding genes might eventually create a network for miR812w-mediated regulation of gene expression with implications in rice immunity.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Ferran Sánchez‐Sanuy
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Rosany Camargo‐Ramírez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Jorge Gómez‐Ariza
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Donald Danforth Plant Science Center975 N Warson RoadSt. LouisMO63132USA
| | - Lidia Campos‐Soriano
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Mauricio Soto‐Suárez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Corporación Colombiana de Investigación Agropecuaria. AGROSAVIAKm 14 vía Mosquera‐BogotáMosquera250047Colombia
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| |
Collapse
|
13
|
Evolution and Phylogeny of MicroRNAs - Protocols, Pitfalls, and Problems. Methods Mol Biol 2021. [PMID: 34432281 DOI: 10.1007/978-1-0716-1170-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
MicroRNAs are important regulators in many eukaryotic lineages. Typical miRNAs have a length of about 22nt and are processed from precursors that form a characteristic hairpin structure. Once they appear in a genome, miRNAs are among the best-conserved elements in both animal and plant genomes. Functionally, they play an important role in particular in development. In contrast to protein-coding genes, miRNAs frequently emerge de novo. The genomes of animals and plants harbor hundreds of mutually unrelated families of homologous miRNAs that tend to be persistent throughout evolution. The evolution of their genomic miRNA complement closely correlates with important morphological innovation. In addition, miRNAs have been used as valuable characters in phylogenetic studies. An accurate and comprehensive annotation of miRNAs is required as a basis to understand their impact on phenotypic evolution. Since experimental data on miRNA expression are limited to relatively few species and are subject to unavoidable ascertainment biases, it is inevitable to complement miRNA sequencing by homology based annotation methods. This chapter reviews the state of the art workflows for homology based miRNA annotation, with an emphasis on their limitations and open problems.
Collapse
|
14
|
Esposito S, Aversano R, Tripodi P, Carputo D. Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. PLANTS 2021; 10:plants10051004. [PMID: 34069771 PMCID: PMC8157229 DOI: 10.3390/plants10051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Whole-genome doubling (polyploidy) is common in angiosperms. Several studies have indicated that it is often associated with molecular, physiological, and phenotypic changes. Mounting evidence has pointed out that micro-RNAs (miRNAs) may have an important role in whole-genome doubling. However, an integrative approach that compares miRNA expression in polyploids is still lacking. Here, a re-analysis of already published RNAseq datasets was performed to identify microRNAs’ precursors (pre-miRNAs) in diploids (2x) and tetraploids (4x) of five species (Arabidopsis thaliana L., Morus alba L., Brassica rapa L., Isatis indigotica Fort., and Solanum commersonii Dun). We found 3568 pre-miRNAs, three of which (pre-miR414, pre-miR5538, and pre-miR5141) were abundant in all 2x, and were absent/low in their 4x counterparts. They are predicted to target more than one mRNA transcript, many belonging to transcription factors (TFs), DNA repair mechanisms, and related to stress. Sixteen pre-miRNAs were found in common in all 2x and 4x. Among them, pre-miRNA482, pre-miRNA2916, and pre-miRNA167 changed their expression after polyploidization, being induced or repressed in 4x plants. Based on our results, a common ploidy-dependent response was triggered in all species under investigation, which involves DNA repair, ATP-synthesis, terpenoid biosynthesis, and several stress-responsive transcripts. In addition, an ad hoc pre-miRNA expression analysis carried out solely on 2x vs. 4x samples of S. commersonii indicated that ploidy-dependent pre-miRNAs seem to actively regulate the nucleotide metabolism, probably to cope with the increased requirement for DNA building blocks caused by the augmented DNA content. Overall, the results outline the critical role of microRNA-mediated responses following autopolyploidization in plants.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano, Italy;
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence: ; Tel.: +39-08-1252-9225
| |
Collapse
|
15
|
Ariel FD, Manavella PA. When junk DNA turns functional: transposon-derived non-coding RNAs in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4132-4143. [PMID: 33606874 DOI: 10.1093/jxb/erab073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are major contributors to genome complexity in eukaryotes. TE mobilization may cause genome instability, although it can also drive genome diversity throughout evolution. TE transposition may influence the transcriptional activity of neighboring genes by modulating the epigenomic profile of the region or by altering the relative position of regulatory elements. Notably, TEs have emerged in the last few years as an important source of functional long and small non-coding RNAs. A plethora of small RNAs derived from TEs have been linked to the trans regulation of gene activity at the transcriptional and post-transcriptional levels. Furthermore, TE-derived long non-coding RNAs have been shown to modulate gene expression by interacting with protein partners, sequestering active small RNAs, and forming duplexes with DNA or other RNA molecules. In this review, we summarize our current knowledge of the functional and mechanistic paradigms of TE-derived long and small non-coding RNAs and discuss their role in plant development and evolution.
Collapse
Affiliation(s)
- Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
16
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
17
|
Lee HE, Park SJ, Huh JW, Imai H, Kim HS. The enhancer activity of long interspersed nuclear element derived microRNA 625 induced by NF-κB. Sci Rep 2021; 11:3139. [PMID: 33542430 PMCID: PMC7862687 DOI: 10.1038/s41598-021-82735-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences that cut or introduced into the genome, and they represent a massive portion of the human genome. TEs generate a considerable number of microRNAs (miRNAs) are derived from TEs (MDTEs). Numerous miRNAs are related to cancer, and hsa-miRNA-625 is a well-known oncomiR derived from long interspersed nuclear elements (LINEs). The relative expression of hsa-miRNA-625-5p differs in humans, chimpanzees, crab-eating monkeys, and mice, and four primers were designed against the 3'UTR of GATAD2B to analyze the different quantities of canonical binding sites and the location of miRNA binding sites. Luciferase assay was performed to score for the interaction between hsa-miRNA-625 and the 3'UTR of GATAD2B, while blocking NF-κB. In summary, the different numbers of canonical binding sites and the locations of miRNA binding sites affect gene expression, and NF-κB induces the enhancer activity of hsa-miRNA-625-5p by sharing the binding sites.
Collapse
Affiliation(s)
- Hee-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
18
|
|
19
|
Evans TA, Erwin JA. Retroelement-derived RNA and its role in the brain. Semin Cell Dev Biol 2020; 114:68-80. [PMID: 33229216 DOI: 10.1016/j.semcdb.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.
Collapse
Affiliation(s)
- Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Ann Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Poretti M, Praz CR, Meile L, Kälin C, Schaefer LK, Schläfli M, Widrig V, Sanchez-Vallet A, Wicker T, Bourras S. Domestication of High-Copy Transposons Underlays the Wheat Small RNA Response to an Obligate Pathogen. Mol Biol Evol 2020; 37:839-848. [PMID: 31730193 PMCID: PMC7038664 DOI: 10.1093/molbev/msz272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs). Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in wheat immunity.
Collapse
Affiliation(s)
- Manuel Poretti
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Coraline Rosalie Praz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Carol Kälin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Michael Schläfli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Lee HE, Park SJ, Huh JW, Imai H, Kim HS. Enhancer Function of MicroRNA-3681 Derived from Long Terminal Repeats Represses the Activity of Variable Number Tandem Repeats in the 3' UTR of SHISA7. Mol Cells 2020; 43:607-618. [PMID: 32655015 PMCID: PMC7398795 DOI: 10.14348/molcells.2020.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
microRNAs (miRNAs) are non-coding RNA molecules involved in the regulation of gene expression. miRNAs inhibit gene expression by binding to the 3' untranslated region (UTR) of their target gene. miRNAs can originate from transposable elements (TEs), which comprise approximately half of the eukaryotic genome and one type of TE, called the long terminal repeat (LTR) is found in class of retrotransposons. Amongst the miRNAs derived from LTR, hsa-miR-3681 was chosen and analyzed using bioinformatics tools and experimental analysis. Studies on hsa-miR-3681 have been scarce and this study provides the relative expression analysis of hsa-miR-3681-5p from humans, chimpanzees, crab-eating monkeys, and mice. Luciferase assay for hsa-miR-3681-5p and its target gene SHISA7 supports our hypothesis that the number of miRNA binding sites affects target gene expression. Especially, the variable number tandem repeat (VNTR) and hsa-miR-3681-5p share the binding sites in the 3' UTR of SHISA7, which leads the enhancer function of hsa-miR-3681-5p to inhibit the activity of VNTR. In conclusion, hsa-miR-3681-5p acts as a super-enhancer and the enhancer function of hsa-miR-3681-5p acts as a repressor of VNTR activity in the 3' UTR of SHISA7.
Collapse
Affiliation(s)
- Hee-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan 4624, Korea
- Institute of Systems Biology, Pusan National University, Busan 4641, Korea
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon 3113, Korea
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama 484-806, Japan
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 4641, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 4241, Korea
| |
Collapse
|
22
|
Zhang Y, Rahmani RS, Yang X, Chen J, Shi T. Integrative expression network analysis of microRNA and gene isoforms in sacred lotus. BMC Genomics 2020; 21:429. [PMID: 32586276 PMCID: PMC7315500 DOI: 10.1186/s12864-020-06853-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/19/2020] [Indexed: 01/29/2023] Open
Abstract
Background Gene expression is complex and regulated by multiple molecular mechanisms, such as miRNA-mediated gene inhibition and alternative-splicing of pre-mRNAs. However, the coordination of interaction between miRNAs with different splicing isoforms, and the change of splicing isoform in response to different cellular environments are largely unexplored in plants. In this study, we analyzed the miRNA and mRNA transcriptome from lotus (Nelumbo nucifera), an economically important flowering plant. Results Through RNA-seq analyses on miRNAs and their target genes (isoforms) among six lotus tissues, expression of most miRNAs seem to be negatively correlated with their targets and tend to be tissue-specific. Further, our results showed that preferential interactions between miRNAs and hub gene isoforms in one coexpression module which is highly correlated with leaf. Intriguingly, for many genes, their corresponding isoforms were assigned to different co-expressed modules, and they exhibited more divergent mRNA structures including presence and absence of miRNA binding sites, suggesting functional divergence for many isoforms is escalated by both structural and expression divergence. Further detailed functional enrichment analysis of miRNA targets revealed that miRNAs are involved in the regulation of lotus growth and development by regulating plant hormone-related pathway genes. Conclusions Taken together, our comprehensive analyses of miRNA and mRNA transcriptome elucidate the coordination of interaction between miRNAs and different splicing isoforms, and highlight the functional divergence of many transcript isoforms from the same locus in lotus.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
23
|
Lee HE, Huh JW, Kim HS. Bioinformatics Analysis of Evolution and Human Disease Related Transposable Element-Derived microRNAs. Life (Basel) 2020; 10:life10060095. [PMID: 32630504 PMCID: PMC7345915 DOI: 10.3390/life10060095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Transposable element (TE) has the ability to insert into certain parts of the genome, and due to this event, it is possible for TEs to generate new factors and one of these factors are microRNAs (miRNA). miRNAs are non-coding RNAs made up of 19 to 24 nucleotides and numerous miRNAs are derived from TE. In this study, to support general knowledge on TE and miRNAs derived from TE, several bioinformatics tools and databases were used to analyze miRNAs derived from TE in two aspects: evolution and human disease. The distribution of TEs in diverse species presents that almost half of the genome is covered with TE in mammalians and less than a half in other vertebrates and invertebrates. Based on selected evolution-related miRNAs studies, a total of 51 miRNAs derived from TE were found and analyzed. For the human disease-related miRNAs, total of 34 miRNAs derived from TE were organized from the previous studies. In summary, abundant miRNAs derived from TE are found, however, the function of miRNAs derived from TE is not informed either. Therefore, this study provides theoretical understanding of miRNAs derived from TE by using various bioinformatics tools.
Collapse
Affiliation(s)
- Hee-Eun Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (H.-E.L.); (J.-W.H.)
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (H.-E.L.); (J.-W.H.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2259; Fax: +82-51-581-2962
| |
Collapse
|
24
|
Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet 2020; 21:311-331. [PMID: 32051563 DOI: 10.1038/s41576-019-0203-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi), a cellular process through which small RNAs target and regulate complementary RNA transcripts, has well-characterized roles in post-transcriptional gene regulation and transposon repression. Recent studies have revealed additional conserved roles for RNAi proteins, such as Argonaute and Dicer, in chromosome function. By guiding chromatin modification, RNAi components promote chromosome segregation during both mitosis and meiosis and regulate chromosomal and genomic dosage response. Small RNAs and the RNAi machinery also participate in the resolution of DNA damage. Interestingly, many of these lesser-studied functions seem to be more strongly conserved across eukaryotes than are well-characterized functions such as the processing of microRNAs. These findings have implications for the evolution of RNAi since the last eukaryotic common ancestor, and they provide a more complete view of the functions of RNAi.
Collapse
Affiliation(s)
- Michael J Gutbrod
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Robert A Martienssen
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
25
|
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Pimpinelli
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| |
Collapse
|
26
|
Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, Keller L, Moreau CS, Toth AL, Yeaman S, Hofmann HA. Coevolution of Genome Architecture and Social Behavior. Trends Ecol Evol 2019; 34:844-855. [PMID: 31130318 DOI: 10.1016/j.tree.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Columbia University, Department of Ecology, Evolution, and Environmental Biology and Center for Integrative Animal Behavior, New York, NY 10027, USA.
| | - J Arvid Ågren
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA
| | - Lucia Carbone
- Oregon Health & Science University, Department of Medicine, KCVI, Portland, OR 97239, USA; Oregon National Primate Research Center, Division of Genetics, Beaverton, OR 97006, USA
| | - Nels C Elde
- University of Utah School of Medicine, Department of Human Genetics, Salt Lake City, UT 84112, USA
| | - Hopi E Hoekstra
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA; Harvard University, Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Cambridge, MA 02138, USA
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, USA
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Biophore, UNIL, 1015 Lausanne, Switzerland
| | - Corrie S Moreau
- Cornell University, Departments of Entomology and Ecology and Evolutionary Biology, Ithaca, NY 14850, USA
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, USA
| | - Sam Yeaman
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Hans A Hofmann
- The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, 2415 Speedway C-0990, Austin, TX 78712, USA.
| |
Collapse
|
27
|
Almenar-Pérez E, Ovejero T, Sánchez-Fito T, Espejo JA, Nathanson L, Oltra E. Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clin Ther 2019; 41:675-698. [PMID: 30910331 DOI: 10.1016/j.clinthera.2019.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Studies to determine epigenetic changes associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain scarce; however, current evidence clearly shows that methylation patterns of genomic DNA and noncoding RNA profiles of immune cells differ between patients and healthy subjects, suggesting an active role of these epigenetic mechanisms in the disease. The present study compares and contrasts the available ME/CFS epigenetic data in an effort to evidence overlapping pathways capable of explaining at least some of the dysfunctional immune parameters linked to this disease. METHODS A systematic search of the literature evaluating the ME/CFS epigenome landscape was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Differential DNA methylation and noncoding RNA differential expression patterns associated with ME/CFS were used to screen for the presence of transposable elements using the Dfam browser, a search program nurtured with the Repbase repetitive sequence database and the RepeatMasker annotation tool. FINDINGS Unexpectedly, particular associations of transposable elements and ME/CFS epigenetic hallmarks were uncovered. A model for the disease emerged involving transcriptional induction of endogenous dormant transposons and structured cellular RNA interactions, triggering the activation of the innate immune system without a concomitant active infection. IMPLICATIONS Repetitive sequence filters (ie, RepeatMasker) should be avoided when analyzing transcriptomic data to assess the potential participation of repetitive sequences ("junk repetitive DNA"), representing >45% of the human genome, in the onset and evolution of ME/CFS. In addition, transposable element screenings aimed at designing cost-effective, focused empirical assays that can confirm or disprove the suspected involvement of transposon transcriptional activation in this disease, following the pilot strategy presented here, will require databases gathering large ME/CFS epigenetic datasets.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - José A Espejo
- School of Experimental Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Lubov Nathanson
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain; Unidad Mixta CIPF-UCV, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
28
|
Petri R, Brattås PL, Sharma Y, Jönsson ME, Pircs K, Bengzon J, Jakobsson J. LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genet 2019; 15:e1008036. [PMID: 30865625 PMCID: PMC6433296 DOI: 10.1371/journal.pgen.1008036] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/25/2019] [Accepted: 02/20/2019] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are dynamically expressed at high levels in multiple human tissues, but the function of TE-derived transcripts remains largely unknown. In this study, we identify numerous TE-derived microRNAs (miRNAs) by conducting Argonaute2 RNA immunoprecipitation followed by small RNA sequencing (AGO2 RIP-seq) on human brain tissue. Many of these miRNAs originated from LINE-2 (L2) elements, which entered the human genome around 100–300 million years ago. L2-miRNAs derived from the 3’ end of the L2 consensus sequence and thus shared very similar sequences, indicating that L2-miRNAs could target transcripts with L2s in their 3’UTR. In line with this, many protein-coding genes carried fragments of L2-derived sequences in their 3’UTR: these sequences served as target sites for L2-miRNAs. L2-miRNAs and their targets were generally ubiquitously expressed at low levels in multiple human tissues, suggesting a role for this network in buffering transcriptional levels of housekeeping genes. In addition, we also found evidence that this network is perturbed in glioblastoma. In summary, our findings uncover a TE-based post-transcriptional network that shapes transcriptional regulation in human cells. Transposable elements (TEs) are repetitive sequences, that have contributed to the landscaping of the genome by jumping into new positions and amplifying in number. TEs have been suggested to play a role in gene regulation, but it remains poorly understood how they contribute to this process. In this study, we show that in various human tissues, an ancient class of TEs give rise to small non-coding RNAs, called microRNAs (miRNAs), that are important regulators of gene expression. The same class of TEs also serves as target sites for these TE-derived miRNAs when they are part of protein-coding transcripts. We also provide evidence that TE-derived miRNAs and target sites may play a role in human disease, as they are dysregulated in aggressive brain tumors. Altogether, our study provides novel insight into how TEs acting as miRNAs play a role in gene regulation in both, healthy and diseased human tissues.
Collapse
Affiliation(s)
- Rebecca Petri
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Per Ludvik Brattås
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie E. Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Clinical Sciences, Division of Neurosurgery, Lund Stem Cell Center, Lund University and Region Skåne, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
29
|
Carlevaro-Fita J, Polidori T, Das M, Navarro C, Zoller TI, Johnson R. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res 2019. [PMID: 30587508 DOI: 10.1101/gr.229922.117.freely] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The sequence domains underlying long noncoding RNA (lncRNA) activities, including their characteristic nuclear enrichment, remain largely unknown. It has been proposed that these domains can originate from neofunctionalized fragments of transposable elements (TEs), otherwise known as RIDLs (repeat insertion domains of lncRNA), although just a handful have been identified. It is challenging to distinguish functional RIDL instances against a numerous genomic background of neutrally evolving TEs. We here show evidence that a subset of TE types experience evolutionary selection in the context of lncRNA exons. Together these comprise an enrichment group of 5374 TE fragments in 3566 loci. Their host lncRNAs tend to be functionally validated and associated with disease. This RIDL group was used to explore the relationship between TEs and lncRNA subcellular localization. By using global localization data from 10 human cell lines, we uncover a dose-dependent relationship between nuclear/cytoplasmic distribution and evolutionarily conserved L2b, MIRb, and MIRc elements. This is observed in multiple cell types and is unaffected by confounders of transcript length or expression. Experimental validation with engineered transgenes shows that these TEs drive nuclear enrichment in a natural sequence context. Together these data reveal a role for TEs in regulating the subcellular localization of lncRNAs.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Taisia Polidori
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Monalisa Das
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Carmen Navarro
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Tatjana I Zoller
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Rory Johnson
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
30
|
Panzade G, Gangwar I, Awasthi S, Sharma N, Shankar R. Plant Regulomics Portal (PRP): a comprehensive integrated regulatory information and analysis portal for plant genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5650983. [PMID: 31796964 PMCID: PMC6891001 DOI: 10.1093/database/baz130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Gene regulation is a highly complex and networked phenomenon where multiple tiers of control determine the cell state in a spatio-temporal manner. Among these, the transcription factors, DNA and histone modifications, and post-transcriptional control by small RNAs like miRNAs serve as major regulators. An understanding of the integrative and spatio-temporal impact of these regulatory factors can provide better insights into the state of a ‘cell system’. Yet, there are limited resources available to this effect. Therefore, we hereby report an integrative information portal (Plant Regulomics Portal; PRP) for plants for the first time. The portal has been developed by integrating a huge amount of curated data from published sources, RNA-, methylome- and sRNA/miRNA sequencing, histone modifications and repeats, gene ontology, digital gene expression and characterized pathways. The key features of the portal include a regulatory search engine for fetching numerous analytical outputs and tracks of the abovementioned regulators and also a genome browser for integrated visualization of the search results. It also has numerous analytical features for analyses of transcription factors (TFs) and sRNA/miRNA, spot-specific methylation, gene expression and interactions and details of pathways for any given genomic element. It can also provide information on potential RdDM regulation, while facilitating enrichment analysis, generation of visually rich plots and downloading of data in a selective manner. Visualization of intricate biological networks is an important feature which utilizes the Neo4j Graph database making analysis of relationships and long-range system viewing possible. Till date, PRP hosts 571-GB processed data for four plant species namely Arabidopsis thaliana, Oryza sativa subsp. japonica, Zea mays and Glycine max. Database URL: https://scbb.ihbt.res.in/PRP
Collapse
Affiliation(s)
- Ganesh Panzade
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.,Division of Biology, Kansas State University, Zinovyeva Lab, 28 Ackert Hall, Manhattan, KS, USA, 66506
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Supriya Awasthi
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India
| | - Nitesh Sharma
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
31
|
Carlevaro-Fita J, Polidori T, Das M, Navarro C, Zoller TI, Johnson R. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res 2018; 29:208-222. [PMID: 30587508 PMCID: PMC6360812 DOI: 10.1101/gr.229922.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
The sequence domains underlying long noncoding RNA (lncRNA) activities, including their characteristic nuclear enrichment, remain largely unknown. It has been proposed that these domains can originate from neofunctionalized fragments of transposable elements (TEs), otherwise known as RIDLs (repeat insertion domains of lncRNA), although just a handful have been identified. It is challenging to distinguish functional RIDL instances against a numerous genomic background of neutrally evolving TEs. We here show evidence that a subset of TE types experience evolutionary selection in the context of lncRNA exons. Together these comprise an enrichment group of 5374 TE fragments in 3566 loci. Their host lncRNAs tend to be functionally validated and associated with disease. This RIDL group was used to explore the relationship between TEs and lncRNA subcellular localization. By using global localization data from 10 human cell lines, we uncover a dose-dependent relationship between nuclear/cytoplasmic distribution and evolutionarily conserved L2b, MIRb, and MIRc elements. This is observed in multiple cell types and is unaffected by confounders of transcript length or expression. Experimental validation with engineered transgenes shows that these TEs drive nuclear enrichment in a natural sequence context. Together these data reveal a role for TEs in regulating the subcellular localization of lncRNAs.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Taisia Polidori
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Monalisa Das
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Carmen Navarro
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Tatjana I Zoller
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Rory Johnson
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
32
|
Urbarova I, Patel H, Forêt S, Karlsen BO, Jørgensen TE, Hall-Spencer JM, Johansen SD. Elucidating the Small Regulatory RNA Repertoire of the Sea Anemone Anemonia viridis Based on Whole Genome and Small RNA Sequencing. Genome Biol Evol 2018; 10:410-426. [PMID: 29385567 PMCID: PMC5793845 DOI: 10.1093/gbe/evy003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A. viridis genome with putative size of 313 Mb that appeared to be composed of about 36% repeats, including known transposable elements. We detected approximately equal fractions of DNA transposons and retrotransposons. Deep sequencing of small RNA libraries constructed from A. viridis adults sampled at a natural CO2 gradient off Vulcano Island, Italy, identified 70 distinct miRNAs. Eight were homologous to previously reported miRNAs in cnidarians, whereas 62 appeared novel. Nine miRNAs were recognized as differentially expressed along the natural seawater pH gradient. We found a highly abundant and diverse population of piRNAs, with a substantial fraction showing ping–pong signatures. We identified nearly 22% putative piRNAs potentially targeting transposable elements within the A. viridis genome. The A. viridis genome appeared similar in size to that of other hexacorals with a very high divergence of transposable elements resembling that of the sea anemone genus Exaiptasia. The genome encodes and expresses a high number of small regulatory RNAs, which include novel miRNAs and piRNAs. Differentially expressed small RNAs along the seawater pH gradient indicated regulatory gene responses to environmental stressors.
Collapse
Affiliation(s)
- Ilona Urbarova
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hardip Patel
- Genomics and Predictive Medicine, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sylvain Forêt
- Evolution, Ecology, and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bård Ove Karlsen
- Research Laboratory, Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jason M Hall-Spencer
- Marine Biology and Ecology Research Centre, University of Plymouth, United Kingdom.,Shimoda Marine Research Centre, University of Tsukuba, Shimoda City, Shizuoka, Japan
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.,Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
33
|
Shaping Plant Adaptability, Genome Structure and Gene Expression through Transposable Element Epigenetic Control: Focus on Methylation. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In plants, transposable elements (TEs) represent a large fraction of the genome, with potential to alter gene expression and produce genomic rearrangements. Epigenetic control of TEs is often used to stop unrestricted movement of TEs that would result in detrimental effects due to insertion in essential genes. The current review focuses on the effects of methylation on TEs and their genomic context, and how this type of epigenetic control affects plant adaptability when plants are faced with different stresses and changes. TEs mobilize in response to stress elicitors, including biotic and abiotic cues, but also developmental transitions and ‘genome shock’ events like polyploidization. These events transitionally lift TE repression, allowing TEs to move to new genomic locations. When TEs fall close to genes, silencing through methylation can spread to nearby genes, resulting in lower gene expression. The presence of TEs in gene promoter regions can also confer stress inducibility modulated through alternative methylation and demethylation of the TE. Bursts of transposition triggered by events of genomic shock can increase genome size and account for differences seen during polyploidization or species divergence. Finally, TEs have evolved several mechanisms to suppress their own repression, including the use of microRNAs to control genes that promote methylation. The interplay between silencing, transient TE activation, and purifying selection allows the genome to use TEs as a reservoir of potential beneficial modifications but also keeps TEs under control to stop uncontrolled detrimental transposition.
Collapse
|
34
|
Abstract
As masters of genome-wide regulation, miRNAs represent a key component in the complex architecture of cellular processes. Over the last decade, it has become increasingly apparent that miRNAs have many important roles in the development of disease and cancer. Recently, however, their role in viral and bacterial gene regulation as well as host gene regulation during disease progression has become a field of interest. Due to their small size, miRNAs are the ideal mechanism for bacteria and viruses that have limited room in their genomes, as a single miRNA can target up to ~30 genes. Currently, only a limited number of miRNA and miRNA-like RNAs have been found in bacteria and viruses, a number that is sure to increase rapidly in the future. The interactions of these small noncoding RNAs in such primitive species have wide-reaching effects, from increasing viral and bacterial proliferation, better responses to stress, increased virulence, to manipulation of host immune responses to provide a more ideal environment for these pathogens to thrive. Here, we explore those roles to obtain a better grasp of just how complicated disease truly is.
Collapse
|
35
|
King VM, Borchert GM. MicroRNA Expression: Protein Participants in MicroRNA Regulation. Methods Mol Biol 2018; 1617:27-37. [PMID: 28540674 DOI: 10.1007/978-1-4939-7046-9_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MiRNAs are ~20 nt small RNAs that regulate networks of proteins using a seed region of nucleotides 2-8 to complement the 3' UTR of target mRNAs. The biogenesis and function of miRNAs as translational repressors is facilitated by protein counterparts that process primary and precursor miRNAs to maturity (Drosha/DCGR8 and Dicer/TRBP respectively) and incorporate miRNAs into the protein complex RISC to recognize and repress target mRNAs (RISC proteins: Ago/TRBP1/TRBP2/DICER). Similarly, siRNAs through comparable mechanisms are loaded into the protein complex RITS to heterochromatin formation of DNA and suppress transcription of particular genes. MiRNAs are also regulated themselves through many different pathways including transcriptional regulation, post-transcriptional RNA editing, and RNA tailing. Dysregulation of miRNAs and the protein participants that mature them are implicated in the development of a number of diseases, tumorigenesis, and arrested development of embryonic cells. In this chapter, we will explore the biosynthesis, function, and regulation of miRNAs.
Collapse
Affiliation(s)
- Valeria M King
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Glen M Borchert
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA. .,Department of Pharmacology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
36
|
Pedro DLF, Lorenzetti APR, Domingues DS, Paschoal AR. PlaNC-TE: a comprehensive knowledgebase of non-coding RNAs and transposable elements in plants. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:1-7. [PMID: 30101318 PMCID: PMC6146122 DOI: 10.1093/database/bay078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
Transposable elements (TEs) play an essential role in the genetic variability of eukaryotic species. In plants, they may comprise up to 90% of the total genome. Non-coding RNAs (ncRNAs) are known to control gene expression and regulation. Although the relationship between ncRNAs and TEs is known, obtaining the organized data for sequenced genomes is not straightforward. In this study, we describe the PlaNC-TE (http://planc-te.cp.utfpr.edu.br), a user-friendly portal harboring a knowledgebase created by integrating and analysing plant ncRNA-TE data. We identified a total of 14 350 overlaps between ncRNAs and TEs in 40 plant genomes. The database allows users to browse, search and download all ncRNA and TE data analysed. Overall, PlaNC-TE not only organizes data and provides insights about the relationship between ncRNA and TEs in plants but also helps improve genome annotation strategies. Moreover, this is the first database to provide resources to broadly investigate functions and mechanisms involving TEs and ncRNAs in plants.
Collapse
Affiliation(s)
- Daniel Longhi Fernandes Pedro
- Department of Computer Science, Bioinformatics Graduation Program (PPGBIOINFO), Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil
| | | | - Douglas Silva Domingues
- Department of Computer Science, Bioinformatics Graduation Program (PPGBIOINFO), Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil.,Department of Botany, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, SP, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics Graduation Program (PPGBIOINFO), Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil
| |
Collapse
|
37
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Moelling K, Broecker F, Russo G, Sunagawa S. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Front Microbiol 2017; 8:1745. [PMID: 28959243 PMCID: PMC5603734 DOI: 10.3389/fmicb.2017.01745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of ZurichZurich, Switzerland
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New YorkNY, United States
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology, ETH ZurichZurich, Switzerland
| |
Collapse
|
39
|
Ganie SA, Debnath AB, Gumi AM, Mondal TK. Comprehensive survey and evolutionary analysis of genome-wide miRNA genes from ten diploid Oryza species. BMC Genomics 2017; 18:711. [PMID: 28893199 PMCID: PMC5594537 DOI: 10.1186/s12864-017-4089-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/25/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding RNAs that play versatile roles in post-transcriptional gene regulation. Although much is known about their biogenesis, and gene regulation very little is known about their evolutionary relation among the closely related species. RESULT All the orthologous miRNA genes of Oryza sativa (japonica) from 10 different Oryza species were identified, and the evolutionary changes among these genes were analysed. Significant differences in the expansion of miRNA gene families were observed across the Oryza species. Analysis of the nucleotide substitution rates indicated that the mature sequences show the least substitution rates among the different regions of miRNA genes, and also show a very much less substitution rates as compared to that of all protein-coding genes across the Oryza species. Evolution of miRNA genes was also found to be contributed by transposons. A non-neutral selection was observed at 80 different miRNA loci across Oryza species which were estimated to have lost ~87% of the sequence diversity during the domestication. The phylogenetic analysis revealed that O. longistaminata diverged first among the AA-genomes, whereas O. brachyantha and O. punctata appeared as the eminent out-groups. The miR1861 family organised into nine distinct compact clusters in the studied Oryza species except O. brachyantha. Further, the expression analysis showed that 11 salt-responsive miRNAs were differentially regulated between O. coarctata and O. glaberrima. CONCLUSION Our study provides the evolutionary dynamics in the miRNA genes of 10 different Oryza species which will support more investigations about the structural and functional organization of miRNA genes of Oryza species.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India
| | - Ananda Bhusan Debnath
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India
| | - Abubakar Mohammad Gumi
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India.
| |
Collapse
|
40
|
Patel VD, Capra JA. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs. BMC Genomics 2017; 18:672. [PMID: 28859623 PMCID: PMC5579935 DOI: 10.1186/s12864-017-4073-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Background microRNAs (miRNAs) are essential to the regulation of gene expression in eukaryotes, and improper expression of miRNAs contributes to hundreds of diseases. Despite the essential functions of miRNAs, the evolutionary dynamics of how they are integrated into existing gene regulatory and functional networks is not well understood. Knowledge of the origin and evolutionary history a gene has proven informative about its functions and disease associations; we hypothesize that incorporating the evolutionary origins of miRNAs into analyses will help resolve differences in their functional dynamics and how they influence disease. Results We computed the phylogenetic age of miRNAs across 146 species and quantified the relationship between human miRNA age and several functional attributes. Older miRNAs are significantly more likely to be associated with disease than younger miRNAs, and the number of associated diseases increases with age. As has been observed for genes, the miRNAs associated with different diseases have different age profiles. For example, human miRNAs implicated in cancer are enriched for origins near the dawn of animal multicellularity. Consistent with the increasing contribution of miRNAs to disease with age, older miRNAs target more genes than younger miRNAs, and older miRNAs are expressed in significantly more tissues. Furthermore, miRNAs of all ages exhibit a strong preference to target older genes; 93% of validated miRNA gene targets were in existence at the origin of the targeting miRNA. Finally, we find that human miRNAs in evolutionarily related families are more similar in their targets and expression profiles than unrelated miRNAs. Conclusions Considering the evolutionary origin and history of a miRNA provides useful context for the analysis of its function. Consistent with recent work in Drosophila, our results support a model in which miRNAs increase their expression and functional regulatory interactions over evolutionary time, and thus older miRNAs have increased potential to cause disease. We anticipate that these patterns hold across mammalian species; however, comprehensively evaluating them will require refining miRNA annotations across species and collecting functional data in non-human systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4073-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vir D Patel
- Department of Biology, Duke University, Durham, NC, 27708, USA.,Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA
| | - John A Capra
- Departments of Biological Sciences, Biomedical Informatics, and Computer Science, Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
41
|
Lee D, Nam JW, Shin C. DROSHA targets its own transcript to modulate alternative splicing. RNA (NEW YORK, N.Y.) 2017; 23:1035-1047. [PMID: 28400409 PMCID: PMC5473138 DOI: 10.1261/rna.059808.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/06/2017] [Indexed: 05/23/2023]
Abstract
The nuclear RNase III enzyme DROSHA interacts with its cofactor DGCR8 to form the Microprocessor complex, which initiates microRNA (miRNA) maturation by cleaving hairpin structures embedded in primary transcripts. Apart from its central role in the biogenesis of miRNAs, DROSHA is also known to recognize and cleave miRNA-like hairpins in a subset of transcripts without apparent small RNA production. Here, we report that the human DROSHA transcript is one such noncanonical target of DROSHA. Mammalian DROSHA genes have evolved a conserved hairpin structure spanning a specific exon-intron junction, which serves as a substrate for the Microprocessor in human cells but not in murine cells. We show that it is this hairpin element that decides whether the overlapping exon is alternatively or constitutively spliced. We further demonstrate that DROSHA promotes skipping of the overlapping exon in human cells independently of its cleavage function. Our findings add to the expanding list of noncanonical DROSHA functions.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Syst 2017; 4:344-356.e7. [PMID: 28237796 DOI: 10.1016/j.cels.2017.01.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/06/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
DNA in cells is predominantly B-form double helix. Though certain DNA sequences in vitro may fold into other structures, such as triplex, left-handed Z form, or quadruplex DNA, the stability and prevalence of these structures in vivo are not known. Here, using computational analysis of sequence motifs, RNA polymerase II binding data, and genome-wide potassium permanganate-dependent nuclease footprinting data, we map thousands of putative non-B DNA sites at high resolution in mouse B cells. Computational analysis associates these non-B DNAs with particular structures and indicates that they form at locations compatible with an involvement in gene regulation. Further analyses support the notion that non-B DNA structure formation influences the occupancy and positioning of nucleosomes in chromatin. These results suggest that non-B DNAs contribute to the control of a variety of critical cellular and organismal processes.
Collapse
|
43
|
Computational Prediction of MicroRNA Target Genes, Target Prediction Databases, and Web Resources. Methods Mol Biol 2017; 1617:109-122. [PMID: 28540680 DOI: 10.1007/978-1-4939-7046-9_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNA (miRNA) mediated silencing and repression of mRNA molecules requires complementary base pairing between the "seed" region of the miRNA and the "seed match" region of target mRNAs. While this mechanism is fairly well understood, accurate prediction of valid miRNA targets remains challenging due to factors such as imperfect sequence specificity, target site availability, and the thermodynamic stability of the mRNA structure itself. As knowledge of what genes are being targeted by each miRNA is arguably the most important facet of miRNA biology, many approaches have been developed to address the need for reliable prediction and ranking of putative targets, with most using a combination of various strategies such as evolutionary conservation, statistical inference, and distinct features of the target sequences themselves. This chapter reviews the pros and cons of a number of different prediction algorithms, showcases some databases that store experimentally validated miRNA targets, and also provides a case study that profiles some of the potential microRNA-mRNA interactions predicted by each methodology for various human genes.
Collapse
|
44
|
Schönberger B, Chen X, Mager S, Ludewig U. Site-Dependent Differences in DNA Methylation and Their Impact on Plant Establishment and Phosphorus Nutrition in Populus trichocarpa. PLoS One 2016; 11:e0168623. [PMID: 27992519 PMCID: PMC5167412 DOI: 10.1371/journal.pone.0168623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
The propagation via clonal stem cuttings is a frequent practice in tree plantations. Despite their clonal origin, the trees establish differently according to weather, temperature and nutrient availability, as well as the presence of various stresses. Here, clonal Populus trichocarpa (cv. Muhle Larson) cuttings from different sites were transferred into a common, fully nutrient supplied environment. Despite identical underlying genetics, stem cuttings derived from sites with lower phosphorus availability established worse, independent of phosphorus (P) level after transplantation. Differential growth of material from the sites was reflected in differences in the whole genome DNA methylome. Methylation differences were sequence context-dependent, but differentially methylated regions (DMRs) were apparently unrelated to P nutrition genes. Despite the undisputed negative general correlation of DNA promoter methylation with gene repression, only few of the top-ranked DMRs resulted in differential gene expression in roots or shoots. However, differential methylation was associated with site-dependent, different total amounts of microRNAs (miRNAs), with few miRNAs sequences directly targeted by differential methylation. Interestingly, in roots and shoots, the miRNA amount was dependent on the previous habitat and changed in roots in a habitat-dependent way under phosphate starvation conditions. Differentially methylated miRNAs, together with their target genes, showed P-dependent expression profiles, indicating miRNA expression differences as a P-related epigenetic modification in poplar. Together with differences in DNA methylation, such epigenetic mechanisms may explain habitat or seasonal memory in perennials and site-dependent growth performances.
Collapse
Affiliation(s)
- Brigitte Schönberger
- Crop Science Institute, Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Xiaochao Chen
- Crop Science Institute, Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Svenja Mager
- Crop Science Institute, Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Crop Science Institute, Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
45
|
MicroTrout: A comprehensive, genome-wide miRNA target prediction framework for rainbow trout, Oncorhynchus mykiss. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:19-26. [DOI: 10.1016/j.cbd.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 11/17/2022]
|
46
|
Cook PR, Tabor GT. Deciphering fact from artifact when using reporter assays to investigate the roles of host factors on L1 retrotransposition. Mob DNA 2016; 7:23. [PMID: 27895722 PMCID: PMC5120415 DOI: 10.1186/s13100-016-0079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Long INterspersed Element-1 (L1, LINE-1) is the only autonomous mobile DNA element in humans and has generated as much as half of the genome. Due to increasing clinical interest in the roles of L1 in cancer, embryogenesis and neuronal development, it has become a priority to understand L1-host interactions and identify host factors required for its activity. Apropos to this, we recently reported that L1 retrotransposition in HeLa cells requires phosphorylation of the L1 protein ORF1p at motifs targeted by host cell proline-directed protein kinases (PDPKs), which include the family of mitogen-activated protein kinases (MAPKs). Using two engineered L1 reporter assays, we continued our investigation into the roles of MAPKs in L1 activity. RESULTS We found that the MAPK p38δ phosphorylated ORF1p on three of its four PDPK motifs required for L1 activity. In addition, we found that a constitutively active p38δ mutant appeared to promote L1 retrotransposition in HeLa cells. However, despite the consistency of these findings with our earlier work, we identified some technical concerns regarding the experimental methodology. Specifically, we found that exogenous expression of p38δ appeared to affect at least one heterologous promoter in an engineered L1 reporter, as well as generate opposing effects on two different reporters. We also show that two commercially available non-targeting control (NTC) siRNAs elicit drastically different effects on the apparent retrotransposition reported by both L1 assays, which raises concerns about the use of NTCs as normalizing controls. CONCLUSIONS Engineered L1 reporter assays have been invaluable for determining the functions and critical residues of L1 open reading frames, as well as elucidating many aspects of L1 replication. However, our results suggest that caution is required when interpreting data obtained from L1 reporters used in conjunction with exogenous gene expression or siRNA.
Collapse
Affiliation(s)
- Pamela R. Cook
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892 USA
| | - G. Travis Tabor
- National Institute of Child Health and Human Development, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892 USA
| |
Collapse
|
47
|
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2016; 18:71-86. [PMID: 27867194 DOI: 10.1038/nrg.2016.139] [Citation(s) in RCA: 859] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.
Collapse
Affiliation(s)
- Edward B Chuong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| |
Collapse
|
48
|
Wei G, Qin S, Li W, Chen L, Ma F. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:1155-1160. [PMID: 28055900 DOI: 10.1109/tcbb.2015.2511767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs are crucial regulators of gene expression at post-transcriptional level. Understanding origin and evolution of miRNAs and their functions. Transposable elements (TEs) provide a natural mechanism for the origin of new miRNAs derived from TEs (MDTEs) were collected to contruct a database named MDTE database (MDTE DB) for storing, searching and analyzing MDTEs. The database proveds a convenient source for studying the origin and evolution of miRNAs.
Collapse
|
49
|
Shapiro JA. Exploring the read-write genome: mobile DNA and mammalian adaptation. Crit Rev Biochem Mol Biol 2016; 52:1-17. [DOI: 10.1080/10409238.2016.1226748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|