1
|
Guh CY, Hsieh YH, Chu HP. Functions and properties of nuclear lncRNAs-from systematically mapping the interactomes of lncRNAs. J Biomed Sci 2020; 27:44. [PMID: 32183863 PMCID: PMC7079490 DOI: 10.1186/s12929-020-00640-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Protein and DNA have been considered as the major components of chromatin. But beyond that, an increasing number of studies show that RNA occupies a large amount of chromatin and acts as a regulator of nuclear architecture. A significant fraction of long non-coding RNAs (lncRNAs) prefers to stay in the nucleus and cooperate with protein complexes to modulate epigenetic regulation, phase separation, compartment formation, and nuclear organization. An RNA strand also can invade into double-stranded DNA to form RNA:DNA hybrids (R-loops) in living cells, contributing to the regulation of gene expression and genomic instability. In this review, we discuss how nuclear lncRNAs orchestrate cellular processes through their interactions with proteins and DNA and summarize the recent genome-wide techniques to study the functions of lncRNAs by revealing their interactomes in vivo.
Collapse
Affiliation(s)
- Chia-Yu Guh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Yu-Hung Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Hsueh-Ping Chu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
2
|
Programming asynchronous replication in stem cells. Nat Struct Mol Biol 2017; 24:1132-1138. [PMID: 29131141 DOI: 10.1038/nsmb.3503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 10/12/2017] [Indexed: 01/12/2023]
Abstract
Many regions of the genome replicate asynchronously and are expressed monoallelically. It is thought that asynchronous replication may be involved in choosing one allele over the other, but little is known about how these patterns are established during development. We show that, unlike somatic cells, which replicate in a clonal manner, embryonic and adult stem cells are programmed to undergo switching, such that daughter cells with an early-replicating paternal allele are derived from mother cells that have a late-replicating paternal allele. Furthermore, using ground-state embryonic stem (ES) cells, we demonstrate that in the initial transition to asynchronous replication, it is always the paternal allele that is chosen to replicate early, suggesting that primary allelic choice is directed by preset gametic DNA markers. Taken together, these studies help define a basic general strategy for establishing allelic discrimination and generating allelic diversity throughout the organism.
Collapse
|
3
|
Krivega I, Dean A. A tetrad of chromatin interactions for chromosome pairing in X inactivation. Nat Struct Mol Biol 2017; 24:607-608. [PMID: 28771462 PMCID: PMC6247907 DOI: 10.1038/nsmb.3447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An unusual pairing of homologous X chromosomes occurs during X inactivation. A new study in mouse embryonic stem cells shows that telomeres and the telomeric RNA PAR-TERRA are responsible for additional pairwise interactions that guide Xic–Xic pairing.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology at the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology at the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Hsu E. Assembly and Expression of Shark Ig Genes. THE JOURNAL OF IMMUNOLOGY 2017; 196:3517-23. [PMID: 27183649 DOI: 10.4049/jimmunol.1600164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203
| |
Collapse
|
5
|
Chu HP, Froberg JE, Kesner B, Oh HJ, Ji F, Sadreyev R, Pinter SF, Lee JT. PAR-TERRA directs homologous sex chromosome pairing. Nat Struct Mol Biol 2017; 24:620-631. [PMID: 28692038 PMCID: PMC5553554 DOI: 10.1038/nsmb.3432] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 06/09/2017] [Indexed: 12/25/2022]
Abstract
In mammals, homologous chromosomes rarely pair outside of meiosis. An exception is the X-chromosome, which transiently pairs during X-chromosome inactivation (XCI). How two chromosomes find each other in 3D space is not known. Here, we reveal a required interaction between the X-inactivation center (Xic) and the telomere in mouse embryonic stem cells. The sub-telomeric, pseudoautosomal region (PAR) of both sex chromosomes (X,Y) also undergoes pairing. PAR transcribes a class of telomeric RNA, dubbed “PAR-TERRA”, which accounts for a vast majority of all TERRA transcripts. PAR-TERRA binds throughout the genome, including PAR and Xic. PAR-TERRA anchors the Xic to PAR, creating a “tetrad” of pairwise homologous interactions (Xic:Xic, PAR:PAR, Xic:PAR). Xic pairing occurs within the tetrad. Depleting PAR-TERRA abrogates pairing and blocks initiation of XCI, whereas autosomal PAR-TERRA induces ectopic pairing. We proposed a Constrained Diffusion Model in which PAR-TERRA creates an interaction hub to guide Xic homology searching during XCI.
Collapse
Affiliation(s)
- Hsueh-Ping Chu
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - John E Froberg
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Barry Kesner
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyun Jung Oh
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stefan F Pinter
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Joyce EF, Erceg J, Wu CT. Pairing and anti-pairing: a balancing act in the diploid genome. Curr Opin Genet Dev 2016; 37:119-128. [PMID: 27065367 DOI: 10.1016/j.gde.2016.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022]
Abstract
The presence of maternal and paternal homologs appears to be much more than just a doubling of genetic material. We know this because genomes have evolved elaborate mechanisms that permit homologous regions to sense and then respond to each other. One way in which homologs communicate is to come into contact and, in fact, Dipteran insects such as Drosophila excel at this task, aligning all pairs of maternal and paternal chromosomes, end-to-end, in essentially all somatic tissues throughout development. Here, we reexamine the widely held tenet that extensive somatic pairing of homologous sequences cannot occur in mammals and suggest, instead, that pairing may be a widespread and significant potential that has gone unnoticed in mammals because they expend considerable effort to prevent it. We then extend this discussion to interchromosomal interactions, in general, and speculate about the potential of nuclear organization and pairing to impact inheritance.
Collapse
Affiliation(s)
- Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
7
|
Marshall WF, Fung JC. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion. Phys Biol 2016; 13:026003. [PMID: 27046097 DOI: 10.1088/1478-3975/13/2/026003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, USA
| | | |
Collapse
|
8
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
9
|
Proudhon C, Hao B, Raviram R, Chaumeil J, Skok JA. Long-Range Regulation of V(D)J Recombination. Adv Immunol 2015; 128:123-82. [PMID: 26477367 DOI: 10.1016/bs.ai.2015.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given their essential role in adaptive immunity, antigen receptor loci have been the focus of analysis for many years and are among a handful of the most well-studied genes in the genome. Their investigation led initially to a detailed knowledge of linear structure and characterization of regulatory elements that confer control of their rearrangement and expression. However, advances in DNA FISH and imaging combined with new molecular approaches that interrogate chromosome conformation have led to a growing appreciation that linear structure is only one aspect of gene regulation and in more recent years, the focus has switched to analyzing the impact of locus conformation and nuclear organization on control of recombination. Despite decades of work and intense effort from numerous labs, we are still left with an incomplete picture of how the assembly of antigen receptor loci is regulated. This chapter summarizes our advances to date and points to areas that need further investigation.
Collapse
Affiliation(s)
- Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Julie Chaumeil
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, USA.
| |
Collapse
|
10
|
McCole RB, Fonseka CY, Koren A, Wu CT. Abnormal dosage of ultraconserved elements is highly disfavored in healthy cells but not cancer cells. PLoS Genet 2014; 10:e1004646. [PMID: 25340765 PMCID: PMC4207606 DOI: 10.1371/journal.pgen.1004646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.
Collapse
Affiliation(s)
- Ruth B. McCole
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chamith Y. Fonseka
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Biological and Biomedical Sciences PhD program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Joyce EF, Apostolopoulos N, Beliveau BJ, Wu CT. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development. PLoS Genet 2013; 9:e1004013. [PMID: 24385920 PMCID: PMC3868550 DOI: 10.1371/journal.pgen.1004013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023] Open
Abstract
Homolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline. Here, we show that, contrary to long-standing assumptions, Drosophila meiotic pairing in the gonad is not an extension of pairing established during embryogenesis. Instead, we find that homologous chromosomes are unpaired in primordial germ cells from the moment the germline can be distinguished from the soma in the embryo and remain unpaired even in the germline stem cells of the adult gonad. We further establish that pairing originates immediately after the stem cell stage. This pairing occurs well before the initiation of meiosis and, strikingly, continues through the several mitotic divisions preceding meiosis. These discoveries indicate that the spatial organization of the Drosophila genome differs between the germline and the soma from the earliest moments of development and thus argue that homolog pairing in the germline is an active process as versus a passive continuation of pairing established during embryogenesis. Meiosis is a specialized cell division that permits the transmission of genetic material to following generations. A pivotal step for this process is the pairing and recombination between homologous chromosomes. In the case of Drosophila, which supports organismal-wide homolog pairing throughout development, it has been widely assumed that the homolog alignment occurring during meiosis in the adult gonad is an extension of the pairing established during embryogenesis. Here, we show that, contrary to this model, homologous chromosomes are unpaired in germline progenitors from embryogenesis to adulthood. This discovery refutes the presumption that homologous chromosomes are paired in Drosophila in all cell types and demonstrates that a specific form of chromosome organization, namely, homolog pairing, is a signature feature that distinguishes cells destined to be the soma from cells destined to be the germline.
Collapse
Affiliation(s)
- Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas Apostolopoulos
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian J Beliveau
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - C-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Chaumeil J, Skok JA. A new take on v(d)j recombination: transcription driven nuclear and chromatin reorganization in rag-mediated cleavage. Front Immunol 2013; 4:423. [PMID: 24367365 PMCID: PMC3853590 DOI: 10.3389/fimmu.2013.00423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
It is nearly 30 years since the Alt lab first put forward the accessibility model, which proposes that cleavage of the various antigen receptor loci is controlled by lineage and stage specific factors that regulate RAG access. Numerous labs have since demonstrated that locus opening is regulated at multiple levels that include sterile transcription, changes in chromatin packaging, and alterations in locus conformation. Here we focus on the interplay between transcription and RAG binding in facilitating targeted cleavage. We discuss the results of recent studies that implicate transcription in regulating nuclear organization and altering the composition of resident nucleosomes to promote regional access to the recombinase machinery. Additionally we include new data that provide insight into the role of the RAG proteins in defining nuclear organization in recombining T cells.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine , New York, NY , USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine , New York, NY , USA
| |
Collapse
|
13
|
Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M. E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Res 2013; 41:e190. [PMID: 24003033 PMCID: PMC3814377 DOI: 10.1093/nar/gkt789] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Use of transcription activator-like effector nucleases (TALENs) is a promising new technique in the field of targeted genome engineering, editing and reverse genetics. Its applications span from introducing knockout mutations to endogenous tagging of proteins and targeted excision repair. Owing to this wide range of possible applications, there is a need for fast and user-friendly TALEN design tools. We developed E-TALEN (http://www.e-talen.org), a web-based tool to design TALENs for experiments of varying scale. E-TALEN enables the design of TALENs against a single target or a large number of target genes. We significantly extended previously published design concepts to consider genomic context and different applications. E-TALEN guides the user through an end-to-end design process of de novo TALEN pairs, which are specific to a certain sequence or genomic locus. Furthermore, E-TALEN offers a functionality to predict targeting and specificity for existing TALENs. Owing to the computational complexity of many of the steps in the design of TALENs, particular emphasis has been put on the implementation of fast yet accurate algorithms. We implemented a user-friendly interface, from the input parameters to the presentation of results. An additional feature of E-TALEN is the in-built sequence and annotation database available for many organisms, including human, mouse, zebrafish, Drosophila and Arabidopsis, which can be extended in the future.
Collapse
Affiliation(s)
- Florian Heigwer
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Joyce EF, Williams BR, Xie T, Wu CT. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet 2012; 8:e1002667. [PMID: 22589731 PMCID: PMC3349724 DOI: 10.1371/journal.pgen.1002667] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/07/2012] [Indexed: 12/22/2022] Open
Abstract
The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.
Collapse
Affiliation(s)
- Eric F. Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin R. Williams
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tiao Xie
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Image and Data Analysis Core, Harvard Medical School, Boston, Massachusetts, United States of America
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Josse T, Mokrani-Benhelli H, Benferhat R, Shestakova E, Mansuroglu Z, Kakanakou H, Billecocq A, Bouloy M, Bonnefoy E. Association of the interferon-β gene with pericentromeric heterochromatin is dynamically regulated during virus infection through a YY1-dependent mechanism. Nucleic Acids Res 2012; 40:4396-411. [PMID: 22287632 PMCID: PMC3378888 DOI: 10.1093/nar/gks050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear architecture as well as gene nuclear positioning can modulate gene expression. In this work, we have analyzed the nuclear position of the interferon-β (IFN-β) locus, responsible for the establishment of the innate antiviral response, with respect to pericentromeric heterochromatin (PCH) in correlation with virus-induced IFN-β gene expression. Experiments were carried out in two different cell types either non-infected (NI) or during the time course of three different viral infections. In NI cells, we showed a monoallelic IFN-β promoter association with PCH that strongly decreased after viral infection. Dissociation of the IFN-β locus away from these repressive regions preceded strong promoter transcriptional activation and was reversible within 12 h after infection. No dissociation was observed after infection with a virus that abnormally maintained the IFN-β gene in a repressed state. Dissociation induced after virus infection specifically targeted the IFN-β locus without affecting the general structure and nuclear distribution of PCH clusters. Using cell lines stably transfected with wild-type or mutated IFN-β promoters, we identified the proximal region of the IFN-β promoter containing YY1 DNA-binding sites as the region regulating IFN-β promoter association with PCH before as well as during virus infection.
Collapse
Affiliation(s)
- T Josse
- Régulation de la Transcription et Maladies Génétiques, CNRS FRE3235, Université Paris Descartes, 45 rue des Saints Pères, 75270, Paris cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Del Blanco B, García V, García-Mariscal A, Hernández-Munain C. Control of V(D)J Recombination through Transcriptional Elongation and Changes in Locus Chromatin Structure and Nuclear Organization. GENETICS RESEARCH INTERNATIONAL 2011; 2011:970968. [PMID: 22567371 PMCID: PMC3335570 DOI: 10.4061/2011/970968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/29/2011] [Indexed: 01/29/2023]
Abstract
V(D)J recombination is the assembly of gene segments at the antigen receptor loci to
generate antigen receptor diversity in T and B lymphocytes. This process is regulated,
according to defined developmental programs, by the action of a single specific
recombinase complex formed by the recombination antigen gene (RAG-1/2) proteins
that are expressed in immature lymphocytes. V(D)J recombination is strictly controlled
by RAG-1/2 accessibility to specific recombination signal sequences in chromatin at
several levels: cellular lineage, temporal regulation, gene segment order, and allelic
exclusion. DNA cleavage by RAG-1/2 is regulated by the chromatin structure,
transcriptional elongation, and three-dimensional architecture and position of the
antigen receptor loci in the nucleus. Cis-elements specifically direct transcription and
V(D)J recombination at these loci through interactions with transacting factors that form
molecular machines that mediate a sequence of structural events. These events open
chromatin to activate transcriptional elongation and to permit the access of RAG-1/2 to
their recombination signal sequences to drive the juxtaposition of the V, D, and J
segments and the recombination reaction itself. This chapter summarizes the advances
in this area and the important role of the structure and position of antigen receptor loci
within the nucleus to control this process.
Collapse
Affiliation(s)
- Beatriz Del Blanco
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n. 18100 Armilla, Spain
| | | | | | | |
Collapse
|
17
|
Skok JA. V(D)J recombination: a paradigm for studying chromosome interactions in mammalian cells. Epigenomics 2010; 2:175-7. [PMID: 22121867 DOI: 10.2217/epi.10.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|