1
|
Plessis-Belair J, Russo T, Riessland M, Sher RB. Nuclear Import Defects Drive Cell Cycle Dysregulation in Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635269. [PMID: 39975276 PMCID: PMC11838365 DOI: 10.1101/2025.01.28.635269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurodegenerative diseases (NDDs) and other age-related disorders have been classically defined by a set of key pathological hallmarks. Two of these hallmarks, cell cycle dysregulation (CCD) and nucleocytoplasmic transport (NCT) defects, have long been debated as being either causal or consequential in the pathology of accelerated aging. Specifically, aberrant cell cycle activation in post-mitotic neurons has been shown to trigger neuronal cell death pathways and cellular senescence. Additionally, NCT has been observed to be progressively dysregulated during aging and in neurodegeneration, where the increased subcellular redistribution of nuclear proteins such as TAR DNA-Binding Protein-43 (TDP43) to the cytoplasm is a primary driver of many NDDs. However, the functional significance of NCT defects as either a primary driver or consequence of pathology, and how the redistribution of cell cycle machinery contributes to neurodegeneration, remains unclear. Here, we describe that pharmacological inhibition of importin-β nuclear import is capable of perturbing cell cycle machinery both in mitotic neuronal cell lines and post-mitotic primary neurons in vitro. Our Nemf R86S mouse model of motor neuron disease, characterized by nuclear import defects, further recapitulates the hallmarks of CCD in mitotic cell lines and in post-mitotic primary neurons in vitro, and in spinal motor neurons in vivo. The observed CCD is consistent with the transcriptional and phenotypical dysregulation observed in neuronal cell death and cellular senescence in NDDs. Together, this evidence suggests that impairment of nuclear import pathways resulting in CCD may be a common driver of pathology in neurodegeneration.
Collapse
Affiliation(s)
- Jonathan Plessis-Belair
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Taylor Russo
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Roger B Sher
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Two XMAP215/TOG Microtubule Polymerases, Alp14 and Dis1, Play Non-Exchangeable, Distinct Roles in Microtubule Organisation in Fission Yeast. Int J Mol Sci 2019; 20:ijms20205108. [PMID: 31618856 PMCID: PMC6834199 DOI: 10.3390/ijms20205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022] Open
Abstract
Proper bipolar spindle assembly underlies accurate chromosome segregation. A cohort of microtubule-associated proteins orchestrates spindle microtubule formation in a spatiotemporally coordinated manner. Among them, the conserved XMAP215/TOG family of microtubule polymerase plays a central role in spindle assembly. In fission yeast, two XMAP215/TOG members, Alp14 and Dis1, share essential roles in cell viability; however how these two proteins functionally collaborate remains undetermined. Here we show the functional interplay and specification of Alp14 and Dis1. Creation of new mutant alleles of alp14, which display temperature sensitivity in the absence of Dis1, enabled us to conduct detailed analyses of a double mutant. We have found that simultaneous inactivation of Alp14 and Dis1 results in early mitotic arrest with very short, fragile spindles. Intriguingly, these cells often undergo spindle collapse, leading to a lethal “cut” phenotype. By implementing an artificial targeting system, we have shown that Alp14 and Dis1 are not functionally exchangeable and as such are not merely redundant paralogues. Interestingly, while Alp14 promotes microtubule nucleation, Dis1 does not. Our results uncover that the intrinsic specification, not the spatial regulation, between Alp14 and Dis1 underlies the collaborative actions of these two XMAP215/TOG members in mitotic progression, spindle integrity and genome stability.
Collapse
|
3
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
4
|
Hayles J, Nurse P. Introduction to Fission Yeast as a Model System. Cold Spring Harb Protoc 2018; 2018:pdb.top079749. [PMID: 28733415 DOI: 10.1101/pdb.top079749] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we briefly outline the history of fission yeast, its life cycle, and aspects of its biology that make it a useful model organism for studying problems of eukaryotic molecular and cell biology.
Collapse
Affiliation(s)
- Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
5
|
Lewis RA, Li J, Allenby NEE, Errington J, Hayles J, Nurse P. Screening and purification of natural products from actinomycetes that affect the cell shape of fission yeast. J Cell Sci 2017; 130:3173-3185. [PMID: 28775153 PMCID: PMC5612171 DOI: 10.1242/jcs.194571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
This study was designed to identify bioactive compounds that alter the cellular shape of the fission yeast Schizosaccharomyces pombe by affecting functions involved in the cell cycle or cell morphogenesis. We used a multidrug-sensitive fission yeast strain, SAK950 to screen a library of 657 actinomycete bacteria and identified 242 strains that induced eight different major shape phenotypes in S. pombe. These include the typical cell cycle-related phenotype of elongated cells, and the cell morphology-related phenotype of rounded cells. As a proof of principle, we purified four of these activities, one of which is a novel compound and three that are previously known compounds, leptomycin B, streptonigrin and cycloheximide. In this study, we have also shown novel effects for two of these compounds, leptomycin B and cycloheximide. The identification of these four compounds and the explanation of the S. pombe phenotypes in terms of their known, or predicted bioactivities, confirm the effectiveness of this approach. Summary: A cell shape-based visual screen of S. pombe in the presence of actinomycete-derived bioactivities and an explanation for the phenotypes following identification of the compounds.
Collapse
Affiliation(s)
- Richard A Lewis
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Juanjuan Li
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicholas E E Allenby
- Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeffery Errington
- Demuris Ltd, Newcastle Biomedicine Bioincubators, William Leech Building, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
6
|
Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization. Cells 2015; 4:406-26. [PMID: 26308057 PMCID: PMC4588043 DOI: 10.3390/cells4030406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells.
Collapse
|
7
|
Jiang X, Zhang D, Zhang H, Huang Y, Teng M. Role of Ran-regulated nuclear-cytoplasmic trafficking of pVHL in the regulation of microtubular stability-mediated HIF-1α in hypoxic cardiomyocytes. Sci Rep 2015; 5:9193. [PMID: 25779090 PMCID: PMC4361876 DOI: 10.1038/srep09193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/25/2015] [Indexed: 12/30/2022] Open
Abstract
Our previous study suggested that microtubule network alteration affects the process of glycolysis in cardiomyocytes (CMs) via the regulation of hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known regarding the underlying mechanisms of microtubule network alteration-induced changes of HIF-1α. The von Hippel–Lindau tumor suppressor protein (pVHL) has been shown to mediate the ubiquitination of HIF-1α in the nuclear compartment prior to HIF-1α exportation to the cytoplasm, and pVHL dynamic nuclear-cytoplasmic trafficking is indicated to be involved in the process of HIF-1α degradation. In this study, by administering different microtubule-stabilizing and -depolymerizing interventions, we demonstrated that microtubule stabilization promoted pVHL nuclear export and drove the translocation of pVHL to the cytoplasm, while microtubule disruption prevented pVHL nuclear export in hypoxic CMs. Moreover, the ratio between nuclear and cytoplasmic pVHL was associated with HIF-1α regulation. Importantly, microtubule network alteration also affected the subcellular localization of Ran, which was involved in the regulation of pVHL nuclear-cytoplasmic trafficking. The above results suggest that the subcellular translocation of pVHL plays an important role in microtubular structure alteration-induced HIF-1α regulation. Interestingly, Ran is involved in the process of pVHL nuclear-cytoplasmic trafficking following microtubule network alteration in hypoxic CMs.
Collapse
Affiliation(s)
- Xupin Jiang
- 1] Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China [2] Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Hengshu Zhang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Katoh A, Ashida H, Kasajima I, Shigeoka S, Yokota A. Potato yield enhancement through intensification of sink and source performances. BREEDING SCIENCE 2015; 65:77-84. [PMID: 25931982 PMCID: PMC4374566 DOI: 10.1270/jsbbs.65.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/27/2015] [Indexed: 05/07/2023]
Abstract
The combined total annual yield of six major crops (maize, rice, wheat, cassava, soybean, and potato; Solanum tuberosum L.) amounts to 3.1 billion tons. In recent years, staple crops have begun to be used as substitutes for fossil fuel and feedstocks. The diversion of crop products to fuels and industrial feedstocks has become a concern in many countries because of competition for arable lands and increased food prices. These concerns are definitely justified; however, if plant biotechnology succeeds in increasing crop yields to double the current yields, it will be possible to divert the surplus to purposes other than food without detrimental effects. Maize, rice, wheat, and soybean bear their sink organs in the aerial parts of the plant, and potato in the underground parts. Plants with aerial storage organs cannot accumulate products beyond their capacity to support the weight of these organs. In contrast, potato has heavy storage organs that are supported by the soil. In this mini-review, we introduce strategies of intensifying potato productivity and discuss recent advances in this research area.
Collapse
Affiliation(s)
- Akira Katoh
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
| | - Hiroki Ashida
- Graduate School of Human Development and Environment, Kobe University,
3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Ichiro Kasajima
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Institute of Floricultural Science, National Agriculture and Food Research Organization,
2-1, Fujimoto, Tsukuba, Ibaraki 305-8519,
Japan
| | - Shigeru Shigeoka
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University,
3327-204 Nakamachi, Nara 631-8505,
Japan
| | - Akiho Yokota
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
9
|
Okada N, Toda T, Yamamoto M, Sato M. CDK-dependent phosphorylation of Alp7-Alp14 (TACC-TOG) promotes its nuclear accumulation and spindle microtubule assembly. Mol Biol Cell 2014; 25:1969-82. [PMID: 24790093 PMCID: PMC4072571 DOI: 10.1091/mbc.e13-11-0679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/23/2022] Open
Abstract
As cells transition from interphase to mitosis, the microtubule cytoskeleton is reorganized to form the mitotic spindle. In the closed mitosis of fission yeast, a microtubule-associated protein complex, Alp7-Alp14 (transforming acidic coiled-coil-tumor overexpressed gene), enters the nucleus upon mitotic entry and promotes spindle formation. However, how the complex is controlled to accumulate in the nucleus only during mitosis remains elusive. Here we demonstrate that Alp7-Alp14 is excluded from the nucleus during interphase using the nuclear export signal in Alp14 but is accumulated in the nucleus during mitosis through phosphorylation of Alp7 by the cyclin-dependent kinase (CDK). Five phosphorylation sites reside around the nuclear localization signal of Alp7, and the phosphodeficient alp7-5A mutant fails to accumulate in the nucleus during mitosis and exhibits partial spindle defects. Thus our results reveal one way that CDK regulates spindle assembly at mitotic entry: CDK phosphorylates the Alp7-Alp14 complex to localize it to the nucleus.
Collapse
Affiliation(s)
- Naoyuki Okada
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, JapanLaboratory of Cell Response, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, JapanDepartment of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Center for Advanced Biomedical Sciences (TWIns), Tokyo 162-8480, JapanPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
10
|
Moser LA, Pollard AM, Knoll LJ. A genome-wide siRNA screen to identify host factors necessary for growth of the parasite Toxoplasma gondii. PLoS One 2013; 8:e68129. [PMID: 23840822 PMCID: PMC3695992 DOI: 10.1371/journal.pone.0068129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/30/2013] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that is able to infect virtually any nucleated cell of all warm-blooded animals. The host cell factors important for parasite attachment, invasion, and replication are poorly understood. We screened a siRNA library targeting 18,200 individual human genes in order to identify host proteins with a role in T. gondii growth. Our screen identified 19 genes whose inhibition by siRNA consistently and significantly lowered parasite replication. The gene ontology categories for those 19 genes represented a wide variety of functions with several genes implicated in regulation of the cell cycle, ion channels and receptors, G-protein coupled receptors, and cytoskeletal structure as well as genes involved in transcription, translation and protein degradation. Further investigation of 5 of the 19 genes demonstrated that the primary reason for the reduction in parasite growth was death of the host cell. Our results suggest that once T. gondii has invaded and established an infection, global changes in the host cell may be necessary to reduce parasite replication. While siRNA screens have been used, albeit rarely, in other parasite systems, this is the first report to describe a high-throughput siRNA screen for host proteins that affect T. gondii replication.
Collapse
Affiliation(s)
- Lindsey A. Moser
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Angela M. Pollard
- Agile Sciences, Inc., Raleigh, North Carolina, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tang NH, Takada H, Hsu KS, Toda T. The internal loop of fission yeast Ndc80 binds Alp7/TACC-Alp14/TOG and ensures proper chromosome attachment. Mol Biol Cell 2013; 24:1122-33. [PMID: 23427262 PMCID: PMC3623634 DOI: 10.1091/mbc.e12-11-0817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 01/19/2023] Open
Abstract
The Ndc80 outer kinetochore complex plays a critical role in kinetochore-microtubule attachment, yet our understanding of the mechanism by which this complex interacts with spindle microtubules for timely and accurate chromosome segregation remains limited. Here we address this issue using an ndc80 mutant (ndc80-NH12) from fission yeast that contains a point mutation within a ubiquitous internal loop. This mutant is normal for assembly of the Ndc80 complex and bipolar spindle formation yet defective in proper end-on attachment to the spindle microtubule, with chromosome alignment defects and missegregation happening later during mitosis. We find that ndc80-NH12 exhibits impaired localization of the microtubule-associated protein complex Alp7/transforming acidic coiled coil (TACC)-Alp14/tumor-overexpressed gene (TOG) to the mitotic kinetochore. Consistently, wild-type Ndc80 binds these two proteins, whereas the Ndc80-NH12 mutant protein displays a substantial reduction of interaction. Crucially, forced targeting of Alp7-Alp14 to the outer kinetochore rescues ndc80-NH12-mutant phenotypes. The loop was previously shown to bind Dis1/TOG, by which it ensures initial chromosome capture during early mitosis. Strikingly, ndc80-NH12 is normal in Dis1 localization. Genetic results indicate that the loop recruits Dis1/TOG and Alp7/TACC-Alp14/TOG independently. Our work therefore establishes that the Ndc80 loop plays sequential roles in spindle-kinetochore attachment by connecting the Ndc80 complex to Dis1/TOG and Alp7/TACC-Alp14/TOG.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | | | | | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
12
|
Milano SK, Kwon W, Pereira R, Antonyak MA, Cerione RA. Characterization of a novel activated Ran GTPase mutant and its ability to induce cellular transformation. J Biol Chem 2012; 287:24955-66. [PMID: 22679017 DOI: 10.1074/jbc.m111.306514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ran (Ras-related nuclear) protein, a member of the Ras superfamily of GTPases, is best known for its roles in nucleocytoplasmic transport, mitotic spindle fiber assembly, and nuclear envelope formation. Recently, we have shown that the overexpression of Ran in fibroblasts induces cellular transformation and tumor formation in mice (Ly, T. K., Wang, J., Pereira, R., Rojas, K. S., Peng, X., Feng, Q., Cerione, R. A., and Wilson, K. F. (2010) J. Biol. Chem. 285, 5815-5826). Here, we describe a novel activated Ran mutant, Ran(K152A), which is capable of an increased rate of GDP-GTP exchange and an accelerated GTP binding/GTP hydrolytic cycle compared with wild-type Ran. We show that its expression in NIH-3T3 fibroblasts induces anchorage-independent growth and stimulates cell invasion, as well as activates signaling pathways that lead to extracellular regulated kinase (ERK) activity. Furthermore, Ran(K152A) expression in the human mammary SKBR3 adenocarcinoma cell line gives rise to an enhanced transformed phenotype and causes a robust stimulation of both ERK and the N-terminal c-Jun kinase (JNK). Microarray analysis reveals that the expression of the gene encoding SMOC-2 (secreted modular calcium-binding protein-2), which has been shown to synergize with different growth factors, is increased by at least 50-fold in cells stably expressing Ran(K152A) compared with cells expressing control vector. Knocking down SMOC-2 expression greatly reduces the ability of Ran(K152A) to stimulate anchorage-independent growth in NIH-3T3 cells and in SKBR3 cells and also inhibits cell invasion in fibroblasts. Collectively, our findings highlight a novel connection between the hyper-activation of the small GTPase Ran and the matricellular protein SMOC-2 that has important consequences for oncogenic transformation.
Collapse
Affiliation(s)
- Shawn K Milano
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|