1
|
Xu J, Zhang Y, Zhao S, Zhang J, Wang Y, Liu W, Ji K, Xu G, Wen P, Wei X, Mei S, Lu L, Yao Y, Liu F, Ma Y, You J, Gao J, Buse JB, Wang J, Gu Z. A bioinspired polymeric membrane-enclosed insulin crystal achieves long-term, self-regulated drug release for type 1 diabetes therapy. NATURE NANOTECHNOLOGY 2025; 20:697-706. [PMID: 40011600 DOI: 10.1038/s41565-025-01860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/08/2025] [Indexed: 02/28/2025]
Abstract
The nuclear envelope serves as a highly regulated gateway for macromolecule exchange between the nucleus and cytoplasm in eukaryotes. Here we have developed a cell nucleus-mimicking polymeric membrane-enclosed system for long and self-regulated therapy. A polymeric nano-membrane with nanopores is conformally synthesized in situ on the surface of each insulin crystal, ensuring sustained, adjustable and zero-order drug release kinetics. Glucose- and β-hydroxybutyrate-dually sensitive microdomains are integrated into the nano-membranes. Under a normal state, the microdomains are uncharged and the channel is narrow enough to block insulin outflow. Under hyperglycaemia and ketonaemia, microdomains convert the high glucose and β-hydroxybutyrate concentration signals to the negative electric potential of membranes, widening the nanopores with rapid insulin outflow. In type 1 diabetic mice and minipigs, this system can maintain normoglycaemia for longer than 1 month and 3 weeks, respectively, with validated glucose- and β-hydroxybutyrate-triggered insulin release. Such membrane-enclosed drug crystal/powder formulation provides a broad platform for long-acting controlled release.
Collapse
Affiliation(s)
- Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yang Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Sheng Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Wei Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Guangzheng Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Ping Wen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shaoqian Mei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Leihao Lu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yuejun Yao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Feng Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yufei Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jianqing Gao
- Jinhua Institute of Zhejiang University, Jinhua, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Chen Y, Zhou G, Yu M. Conformational dynamics of the nuclear pore complex central channel. Biochem Soc Trans 2025; 53:BST20240507. [PMID: 39927798 DOI: 10.1042/bst20240507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025]
Abstract
The nuclear pore complex (NPC) is a vital regulator of molecular transport between the nucleus and cytoplasm in eukaryotic cells. At the heart of the NPC's function are intrinsically disordered phenylalanineglycine-rich nucleoporins (FG-Nups), which form a dynamic permeability barrier within the central channel. This disordered nature facilitates efficient nucleocytoplasmic transport but also poses significant challenges to its characterization, especially within the nano-confined environment of the NPC. Recent advances in experimental techniques, such as cryo-electron microscopy, atomic force microscopy, fluorescence microscopy, and nuclear magnetic resonance, along with computational modeling, have illuminated the conformational flexibility of FG-Nups, which underpins their functional versatility. This review synthesizes these advancements, emphasizing how disruptions in FG-Nup behavior-caused by mutations or pathological interactions-contribute to diseases such as neurodegenerative disorders, aging-related decline, and viral infections. Despite progress, challenges persist in deciphering FG-Nup dynamics within the crowded and complex cellular environment, especially under pathological conditions. Addressing these gaps is critical for advancing therapeutic strategies targeting NPC dysfunction in disease progression.
Collapse
Affiliation(s)
- Yu Chen
- College of Life Sciences, Wuhan University, China
| | - Guoli Zhou
- College of Life Sciences, Wuhan University, China
| | - Miao Yu
- College of Life Sciences, Wuhan University, China
- Taikang Center for Life and Medical Sciences, Wuhan University, China
| |
Collapse
|
3
|
Riaz Z, Richardson GS, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Kanthasamy AG. Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson's and other related neurodegenerative diseases. Mol Neurodegener 2024; 19:87. [PMID: 39578912 PMCID: PMC11585115 DOI: 10.1186/s13024-024-00774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson's disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.
Collapse
Affiliation(s)
- Zainab Riaz
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gabriel S Richardson
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Anumantha G Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Malik SC, Lin JD, Ziegler-Waldkirch S, Tholen S, Deshpande SS, Schwabenland M, Schilling O, Vlachos A, Meyer-Luehmann M, Schachtrup C. Tpr Misregulation in Hippocampal Neural Stem Cells in Mouse Models of Alzheimer's Disease. Cells 2023; 12:2757. [PMID: 38067185 PMCID: PMC10706632 DOI: 10.3390/cells12232757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-β plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.
Collapse
Affiliation(s)
- Subash C. Malik
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Sachin S. Deshpande
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Donnaloja F, Raimondi MT, Messa L, Barzaghini B, Carnevali F, Colombo E, Mazza D, Martinelli C, Boeri L, Rey F, Cereda C, Osellame R, Cerullo G, Carelli S, Soncini M, Jacchetti E. 3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells. APL Bioeng 2023; 7:036112. [PMID: 37692376 PMCID: PMC10491463 DOI: 10.1063/5.0153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Carnevali
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milan, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases, “V. Buzzi” Children's Hospital, 20154 Milan, Italy
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
6
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
7
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
8
|
Dargemont C. Analysis of Ubiquitylation and SUMOylation of Yeast Nuclear Pore Complex Proteins. Methods Mol Biol 2022; 2502:259-269. [PMID: 35412244 DOI: 10.1007/978-1-0716-2337-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications and in particular ubiquitylation and SUMOylation of the nuclear pore complex (NPC), have been shown to regulate some of its functions, particularly in response to diverse stress signals.Although proteomic approaches are extremely powerful to identify substrates and modification sites, dissecting specific mechanisms and regulation functions of ubiquitylation and SUMOylation of the diverse NPC proteins, in different genetic backgrounds or cell environmental conditions, requires specific biochemical assays based on purification and precise analysis of 6His-tagged ubiquitylated or SUMOylated protein of interest. Here we describe an approach that can be easily employed without specific equipment. It allowed to successfully analyze yeast NPC proteins but can easily be adapted to the study of the mammalian NPC.
Collapse
Affiliation(s)
- Catherine Dargemont
- Institut de Génétique Humaine, Université de Montpellier, Laboratoire de Virologie Moléculaire CNRS-UMR9002, Montpellier, France.
| |
Collapse
|
9
|
In-depth proteomic profiling of the Singapore grouper iridovirus virion. Arch Virol 2019; 164:1889-1895. [DOI: 10.1007/s00705-019-04264-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 11/30/2022]
|
10
|
The Effect of FG-Nup Phosphorylation on NPC Selectivity: A One-Bead-Per-Amino-Acid Molecular Dynamics Study. Int J Mol Sci 2019; 20:ijms20030596. [PMID: 30704069 PMCID: PMC6387328 DOI: 10.3390/ijms20030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/16/2023] Open
Abstract
Nuclear pore complexes (NPCs) are large protein complexes embedded in the nuclear envelope separating the cytoplasm from the nucleoplasm in eukaryotic cells. They function as selective gates for the transport of molecules in and out of the nucleus. The inner wall of the NPC is coated with intrinsically disordered proteins rich in phenylalanine-glycine repeats (FG-repeats), which are responsible for the intriguing selectivity of NPCs. The phosphorylation state of the FG-Nups is controlled by kinases and phosphatases. In the current study, we extended our one-bead-per-amino-acid (1BPA) model for intrinsically disordered proteins to account for phosphorylation. With this, we performed molecular dynamics simulations to probe the effect of phosphorylation on the Stokes radius of isolated FG-Nups, and on the structure and transport properties of the NPC. Our results indicate that phosphorylation causes a reduced attraction between the residues, leading to an extension of the FG-Nups and the formation of a significantly less dense FG-network inside the NPC. Furthermore, our simulations show that upon phosphorylation, the transport rate of inert molecules increases, while that of nuclear transport receptors decreases, which can be rationalized in terms of modified hydrophobic, electrostatic, and steric interactions. Altogether, our models provide a molecular framework to explain how extensive phosphorylation of FG-Nups decreases the selectivity of the NPC.
Collapse
|
11
|
Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:57-61. [DOI: 10.1016/j.bbapap.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
12
|
Sales Gil R, de Castro IJ, Berihun J, Vagnarelli P. Protein phosphatases at the nuclear envelope. Biochem Soc Trans 2018; 46:173-182. [PMID: 29432143 PMCID: PMC5818667 DOI: 10.1042/bst20170139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
The nuclear envelope (NE) is a unique topological structure formed by lipid membranes (Inner and Outer Membrane: IM and OM) interrupted by open channels (Nuclear Pore complexes). Besides its well-established structural role in providing a physical separation between the genome and the cytoplasm and regulating the exchanges between the two cellular compartments, it has become quite evident in recent years that the NE also represents a hub for localized signal transduction. Mechanical, stress, or mitogen signals reach the nucleus and trigger the activation of several pathways, many effectors of which are processed at the NE. Therefore, the concept of the NE acting just as a barrier needs to be expanded to embrace all the dynamic processes that are indeed associated with it. In this context, dynamic protein association and turnover coupled to reversible post-translational modifications of NE components can provide important clues on how this integrated cellular machinery functions as a whole. Reversible protein phosphorylation is the most used mechanism to control protein dynamics and association in cells. Keys to the reversibility of the system are protein phosphatases and the regulation of their activity in space and time. As the NE is clearly becoming an interesting compartment for the control and transduction of several signalling pathways, in this review we will focus on the role of Protein Phosphatases at the NE since the significance of this class of proteins in this context has been little explored.
Collapse
Affiliation(s)
- Raquel Sales Gil
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K
| | - Ines J de Castro
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Heidelberg 69120, Germany
| | - Jerusalem Berihun
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K.
| |
Collapse
|
13
|
Pérez-Garrastachu M, Arluzea J, Andrade R, Díez-Torre A, Urtizberea M, Silió M, Aréchaga J. Nucleoporins redistribute inside the nucleus after cell cycle arrest induced by histone deacetylases inhibition. Nucleus 2017; 8:515-533. [PMID: 28696859 DOI: 10.1080/19491034.2017.1320001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nucleoporins are the main components of the nuclear-pore complex (NPC) and were initially considered as mere structural elements embedded in the nuclear envelope, being responsible for nucleocytoplasmic transport. Nevertheless, several recent scientific reports have revealed that some nucleoporins participate in nuclear processes such as transcription, replication, DNA repair and chromosome segregation. Thus, the interaction of NPCs with chromatin could modulate the distribution of chromosome territories relying on the epigenetic state of DNA. In particular, the nuclear basket proteins Tpr and Nup153, and the FG-nucleoporin Nup98 seem to play key roles in all these novel functions. In this work, histone deacetylase inhibitors (HDACi) were used to induce a hyperacetylated state of chromatin and the behavior of the mentioned nucleoporins was studied. Our results show that, after HDACi treatment, Tpr, Nup153 and Nup98 are translocated from the nuclear pore toward the interior of the cell nucleus, accumulating as intranuclear nucleoporin clusters. These transitory structures are highly dynamic, and are mainly present in the population of cells arrested at the G0/G1 phase of the cell cycle. Our results indicate that the redistribution of these nucleoporins from the nuclear envelope to the nuclear interior may be implicated in the early events of cell cycle initialization, particularly during the G1 phase transition.
Collapse
Affiliation(s)
- Miguel Pérez-Garrastachu
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Jon Arluzea
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain.,b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Ricardo Andrade
- b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Alejandro Díez-Torre
- b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Marta Urtizberea
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Margarita Silió
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| | - Juan Aréchaga
- a Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology and Histology, Faculty of Medicine and Nursing , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain.,b High Resolution and Analytical Biomedical Microscopy Core Facility, SGIKer , University of the Basque Country (UPV/EHU) , Leioa , Biscay , Spain
| |
Collapse
|
14
|
Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway. PLoS Comput Biol 2016; 12:e1005222. [PMID: 27902699 PMCID: PMC5130170 DOI: 10.1371/journal.pcbi.1005222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/25/2016] [Indexed: 12/03/2022] Open
Abstract
Cellular heterogeneity, which plays an essential role in biological phenomena, such as drug resistance and migration, is considered to arise from intrinsic (i.e., reaction kinetics) and extrinsic (i.e., protein variability) noise in the cell. However, the mechanistic effects of these types of noise to determine the heterogeneity of signal responses have not been elucidated. Here, we report that the output of epidermal growth factor (EGF) signaling activity is modulated by cellular noise, particularly by extrinsic noise of particular signaling components in the pathway. We developed a mathematical model of the EGF signaling pathway incorporating regulation between extracellular signal-regulated kinase (ERK) and nuclear pore complex (NPC), which is necessary for switch-like activation of the nuclear ERK response. As the threshold of switch-like behavior is more sensitive to perturbations than the graded response, the effect of biological noise is potentially critical for cell fate decision. Our simulation analysis indicated that extrinsic noise, but not intrinsic noise, contributes to cell-to-cell heterogeneity of nuclear ERK. In addition, we accurately estimated variations in abundance of the signal proteins between individual cells by direct comparison of experimental data with simulation results using Apparent Measurement Error (AME). AME was constant regardless of whether the protein levels varied in a correlated manner, while covariation among proteins influenced cell-to-cell heterogeneity of nuclear ERK, suppressing the variation. Simulations using the estimated protein abundances showed that each protein species has different effects on cell-to-cell variation in the nuclear ERK response. In particular, variability of EGF receptor, Ras, Raf, and MEK strongly influenced cellular heterogeneity, while others did not. Overall, our results indicated that cellular heterogeneity in response to EGF is strongly driven by extrinsic noise, and that such heterogeneity results from variability of particular protein species that function as sensitive nodes, which may contribute to the pathogenesis of human diseases. Individual cell behaviors are controlled by a variety of noise, such as fluctuations in biochemical reactions, protein variability, molecular diffusion, transcriptional noise, cell-to-cell contact, temperature, and pH. Such cellular noise often interferes with signal responses from external stimuli, and such heterogeneity functions in induction of drug resistance, survival, and migration of cells. Thus, heterogeneous cellular responses have positive and negative roles. However, the regulatory mechanisms that produce cellular heterogeneity are unclear. By mathematical modeling and simulations, we investigated how heterogeneous signaling responses are evoked in the EGF signaling pathway and influence the switch-like activation of nuclear ERK. This study demonstrated that cellular heterogeneity of the EGF signaling response is evoked by cell-to-cell variation of particular signaling proteins, such as EGFR, Ras, Raf, and MEK, which act as sensitive nodes in the pathway. These results suggest that signaling responses in individual cells can be predicted from the levels of proteins of sensitive nodes. This study also suggested that proteins of sensitive nodes may serve as cell survival mechanisms.
Collapse
|
15
|
Malli T, Buxhofer-Ausch V, Rammer M, Erdel M, Kranewitter W, Rumpold H, Marschon R, Deutschbauer S, Simonitsch-Klupp I, Valent P, Muellner-Ammer K, Sebesta C, Birkner T, Webersinke G. Functional characterization, localization, and inhibitor sensitivity of the TPR-FGFR1 fusion in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2015; 55:60-8. [DOI: 10.1002/gcc.22311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/26/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- Theodora Malli
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | | | - Melanie Rammer
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Martin Erdel
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Wolfgang Kranewitter
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Holger Rumpold
- Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Renate Marschon
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Sabine Deutschbauer
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | | | - Peter Valent
- Clinical Departments of Hematology and Hemostaseology; Medical University of Vienna; Vienna Austria
| | | | - Christian Sebesta
- Department of Internal Medicine 2; Donauspital - SMZO; Vienna Austria
| | - Thomas Birkner
- Institute for Pathology and Bacteriology; Donauspital - SMZO; Vienna Austria
| | - Gerald Webersinke
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| |
Collapse
|
16
|
Wang L, Huang J, Jiang M, Chen Q, Jiang Z, Feng H. CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) by biocomputation. Cell Biochem Biophys 2015; 70:1011-6. [PMID: 24825433 DOI: 10.1007/s12013-014-0011-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We data-analyzed and constructed the high-expression CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) compared with low-expression (fold change ≥ 2) no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) in GEO data set, using integration of gene regulatory network inference method with gene ontology (GO). Our result showed that CAMK1 transport subnetwork upstream KCNQ3, LCN2, NKX2_5, NUP62, SORT1, STX1A activated CAMK1, and downstream CAMK1-activated AFP, ENAH, KPNA2, SLC4A3; CAMK1 signal subnetwork upstream BRCA1, DKK1, GPSM2, LEF1, NR5A1, NUP62, SORT1, SSTR5, TBL3 activated CAMK1, and downstream CAMK1-activated MAP2K6, SFRP4, SSTR5, TSHB, UBE2C in HCC. We proposed that CAMK1 activated network enhanced endosome to lysosome transport, endosome transport via multivesicular body sorting pathway, Golgi to endosome transport, intracellular protein transmembrane transport, intracellular protein transport, ion transport, mRNA transport, plasma membrane to endosome transport, potassium ion transport, protein transport, vesicle-mediated transport, anion transport, intracellular transport, androgen receptor signaling pathway, cell surface receptor-linked signal transduction, hormone-mediated signaling, induction of apoptosis by extracellular signals, signal transduction by p53 class mediator resulting in transcription of p21 class mediator, signal transduction resulting in induction of apoptosis, phosphoinositide-mediated signaling, Wnt receptor signaling pathway, as a result of inducing phosphoinositide signal-mediated protein sorting, and transport in HCC. Our hypothesis was verified by CAMK1 functional regulation subnetwork containing positive regulation of calcium ion transport via voltage gated calcium channel, cell proliferation, DNA repair, exocytosis, I-kappaB kinase/NF-kappaB cascade, immunoglobulin-mediated immune response, mast cell activation, natural killer cell-mediated cytotoxicity directed against tumor cell target, protein ubiquitination, sodium ion transport, survival gene product activity, T cell-mediated cytotoxicity, transcription, transcription from RNA polymerase II promoter, transcription initiation from RNA polymerase II promoter, transcription via serum response element binding, exit from mitosis, ubiquitin ligase activity during mitotic cell cycle, regulation of angiogenesis, apoptosis, cell growth, cell proliferation, cyclin-dependent protein kinase activity, gene expression, insulin secretion, steroid biosynthesis, transcription from RNA polymerase II promoter, transcription from RNA polymerase III promoter, cell cycle, cell migration, DNA recombination, and protein metabolism; also by CAMK1 negative functional regulation subnetwork including negative regulation of apoptosis, cell proliferation, centriole replication, fatty acid biosynthesis, lipoprotein lipase activity, MAPK activity, progression through cell cycle, transcription, transcription from RNA polymerase II promoter, cell growth, phosphorylation, and ubiquitin ligase activity during mitotic cell cycle in HCC.
Collapse
Affiliation(s)
- Lin Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China,
| | | | | | | | | | | |
Collapse
|
17
|
Rajanala K, Sarkar A, Jhingan GD, Priyadarshini R, Jalan M, Sengupta S, Nandicoori VK. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. J Cell Sci 2014; 127:3505-20. [PMID: 24938596 DOI: 10.1242/jcs.149112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.
Collapse
Affiliation(s)
- Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Anshuk Sarkar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Gagan Deep Jhingan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Raina Priyadarshini
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Manisha Jalan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
18
|
Wang H, Lai D, Yuan M, Xu H. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae. Electrophoresis 2014; 35:1122-9. [PMID: 24458307 DOI: 10.1002/elps.201300318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/16/2013] [Accepted: 01/12/2014] [Indexed: 11/06/2022]
Abstract
Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
| | | | | | | |
Collapse
|
19
|
Willadsen K, Mohamad N, Bodén M. NSort/DB: an intranuclear compartment protein database. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:226-9. [PMID: 23084778 PMCID: PMC5054713 DOI: 10.1016/j.gpb.2012.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
Distinct substructures within the nucleus are associated with a wide variety of important nuclear processes. Structures such as chromatin and nuclear pores have specific roles, while others such as Cajal bodies are more functionally varied. Understanding the roles of these membraneless intra-nuclear compartments requires extensive data sets covering nuclear and compartment-associated proteins. NSort/DB is a database providing access to intra- or sub-nuclear compartment associations for the mouse nuclear proteome. Based on resources ranging from large-scale curated data sets to detailed experiments, this data set provides a high-quality set of annotations of non-exclusive association of nuclear proteins with structures such as promyelocytic leukaemia bodies and chromatin. The database is searchable by protein identifier or compartment, and has a documented web service API. The search interface, web service and data download are all freely available online at http://www.nsort.org/db/. Availability of this data set will enable systematic analyses of the protein complements of nuclear compartments, improving our understanding of the diverse functional repertoire of these structures.
Collapse
Affiliation(s)
- Kai Willadsen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia.
| | | | | |
Collapse
|
20
|
Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins. J Virol 2012; 86:8072-85. [PMID: 22623767 DOI: 10.1128/jvi.01058-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BGLF4 of Epstein-Barr virus (EBV) encodes a serine/threonine protein kinase that phosphorylates multiple viral and cellular substrates to optimize the cellular environment for viral DNA replication and the nuclear egress of viral nucleocapsids. BGLF4 is expressed predominantly in the nucleus at early and late stages of virus replication, while a small portion of BGLF4 is distributed in the cytoplasm at the late stage of virus replication and packaged into the virion. Here, we analyzed systematically the functional domains crucial for nuclear localization of BGLF4 and found that both the N and C termini play important modulating roles. Analysis of amino acid substitution mutants revealed that the C terminus of BGLF4 does not contain a conventional nuclear localization signal (NLS). Additionally, deletion of the C-terminal putative helical regions at amino acids 386 to 393 and 410 to 419 diminished the nuclear translocation of BGLF4, indicating that the secondary structure of the C terminus is important for the localization of BGLF4. The green fluorescent protein-fused wild-type or C-terminal helical regions of BGLF4 associate with phenylalanine/glycine repeat-containing nucleoporins (Nups) in nuclear envelope fractionation. Both coimmunoprecipitation and in vitro pull-down assays further demonstrated that BGLF4 binds to Nup62 and Nup153. Remarkably, nuclear import assay with permeabilized HeLa cells demonstrated that BGLF4 translocated into nucleus independent of cytosolic factors. Data presented here suggest that BGLF4 employs a novel mechanism through direct interactions with nucleoporins for its nuclear targeting.
Collapse
|
21
|
Kosako H, Nagano K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 2011; 8:81-94. [PMID: 21329429 DOI: 10.1586/epr.10.104] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.
Collapse
Affiliation(s)
- Hidetaka Kosako
- Division of Disease Proteomics, Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | |
Collapse
|