1
|
Martínez CI, Iriarte LS, Salas N, Alonso AM, Pruzzo CI, dos Santos Melo T, Pereira-Neves A, de Miguel N, Coceres VM. Prolonged survival of venereal Tritrichomonas foetus parasite in the gastrointestinal tract, bovine fecal extract, and water. Microbiol Spectr 2023; 11:e0042923. [PMID: 37800972 PMCID: PMC10714773 DOI: 10.1128/spectrum.00429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Nowadays, the routine herd diagnosis is usually performed exclusively on bulls, as they remain permanently infected, and prevention and control of Tritrichomonas foetus transmission are based on identifying infected animals and culling practices. The existence of other forms of transmission and the possible role of pseudocysts or cyst-like structures as resistant forms requires rethinking the current management and control of this parasitic disease in the future in some livestock regions of the world.
Collapse
Affiliation(s)
- Cristian I. Martínez
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Nehuen Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Andrés M. Alonso
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Cesar I. Pruzzo
- Centro de Diagnóstico e Investigaciones Veterinarias, FCV-UNLP, Chascomús, Argentina
| | - Tuanne dos Santos Melo
- Departamento de Microbiologia, Fiocruz, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Fiocruz, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| |
Collapse
|
2
|
Santos EV, Damasceno JD, Obonaga R, Rosales R, Black JA, McCulloch R, Tosi LRO. The dynamic subcellular localisation of Rad1 is cell cycle dependent in Leishmania major. Exp Parasitol 2023; 255:108639. [PMID: 37918502 DOI: 10.1016/j.exppara.2023.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
The subcellular localisation of Rad1, a subunit of the Leishmania major 9-1-1 complex, remains unexplored. Herein, we reveal that Rad1 localises predominantly to the nucleus. Upon hydroxyurea treatment, the diffuse nuclear localisation of Rad1 becomes more punctate, suggesting that Rad1 is responsive to replication stress. Moreover, Rad1 localisation correlates with cell cycle progression. In the majority of G1 to early S-phase cells, Rad1 localises predominantly to the nucleus. As cells progress from late-S phase to mitosis, Rad1 relocalizes to both the nucleus and the cytoplasm in ∼90 % of cells. This pattern of distribution is different from Rad9 and Hus1, which remain nuclear throughout the cell cycle, suggesting Leishmania Rad1 may regulate 9-1-1 activities and/or perform relevant functions outside the 9-1-1 complex.
Collapse
Affiliation(s)
- Elaine V Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jeziel D Damasceno
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Ricardo Obonaga
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - Roberta Rosales
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jennifer A Black
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Luiz R O Tosi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Iriarte LS, Martinez CI, de Miguel N, Coceres VM. Tritrichomonas foetus Cell Division Involves DNA Endoreplication and Multiple Fissions. Microbiol Spectr 2023; 11:e0325122. [PMID: 36728437 PMCID: PMC10100903 DOI: 10.1128/spectrum.03251-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Tritrichomonas foetus and Trichomonas vaginalis are extracellular flagellated parasites that inhabit animals and humans, respectively. Cell division is a crucial process in most living organisms that leads to the formation of 2 daughter cells from a single mother cell. It has been assumed that T. vaginalis and T. foetus modes of reproduction are exclusively by binary fission. However, here, we showed that multinuclearity is a phenomenon regularly observed in different T. foetus and T. vaginalis strains in standard culture conditions. Additionally, we revealed that nutritional depletion or nutritional deprivation led to different dormant phenotypes. Although multinucleated T. foetus are mostly observed during nutritional depletion, numerous cells with 1 larger nucleus have been observed under nutritional deprivation conditions. In both cases, when the standard culture media conditions are restored, the cytoplasm of these multinucleated cells separates, and numerous parasites are generated in a short period of time by the fission multiple. We also revealed that DNA endoreplication occurs both in large and multiple nuclei of parasites under nutritional deprivation and depletion conditions, suggesting an important function in stress nutritional situations. These results provide valuable data about the cell division process of these extracellular parasites. IMPORTANCE Nowadays, it's known that T. foetus and T. vaginalis generate daughter cells by binary fission. Here, we report that both parasites are also capable of dividing by multiple fission under stress conditions. We also demonstrated, for the first time, that T. foetus can increase its DNA content per parasite without concluding the cytokinesis process (endoreplication) under stress conditions, which represents an efficient strategy for subsequent fast multiplication when the context becomes favorable. Additionally, we revealed the existence of novel dormant forms of resistance (multinucleated or mononucleated polyploid parasites), different than the previously described pseudocysts, that are formed under stress conditions. Thus, it is necessary to evaluate the role of these structures in the parasites' transmission in the future.
Collapse
Affiliation(s)
- Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Cristian I. Martinez
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| |
Collapse
|
4
|
Rose E, Carvalho JL, Hecht M. Mechanisms of DNA repair in Trypanosoma cruzi: What do we know so far? DNA Repair (Amst) 2020; 91-92:102873. [PMID: 32505694 DOI: 10.1016/j.dnarep.2020.102873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Trypanosoma cruzi is the etiological agent of Chagas Disease, which affects 6-7 million people worldwide. Since the early stages of infection and throughout its life cycle, the parasite is exposed to several genotoxic agents. Furthermore, DNA damage is also part of the mechanism of action of at least a few trypanocidal drugs, including Benznidazole. Thus, it is paramount for the parasite to count on an efficient DNA repair machinery to guarantee genome integrity and survival. The present work provides an up-to-date review of both the conserved and peculiar DNA repair mechanisms described in T. cruzi against oxidative stress, ultraviolet and ionizing radiation, DNA adduct-inducing agents, and Benznidazole. The comprehension of the DNA repair mechanisms of the parasite may shed light on the parasite evolution and possibly pave the way for the development of novel and more effective trypanocidal drugs.
Collapse
Affiliation(s)
- Ester Rose
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil.
| | - Juliana Lott Carvalho
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
5
|
Chávez S, Eastman G, Smircich P, Becco LL, Oliveira-Rizzo C, Fort R, Potenza M, Garat B, Sotelo-Silveira JR, Duhagon MA. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control. PLoS One 2017; 12:e0188441. [PMID: 29182646 PMCID: PMC5705152 DOI: 10.1371/journal.pone.0188441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01), coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of their gene expression control.
Collapse
Affiliation(s)
- Santiago Chávez
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Eastman
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lorena Lourdes Becco
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Rafael Fort
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Potenza
- Institute for Research in Genetic Engineering and Molecular Biology 'Dr. N.H. Torres', Buenos Aires, Argentina
| | - Beatriz Garat
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Department of Cell and Molecular Biology, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
6
|
Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for Solving Difficult Problems. Trends Parasitol 2017; 33:858-874. [PMID: 28844718 PMCID: PMC5662062 DOI: 10.1016/j.pt.2017.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens. In trypanosomatids, DNA replication is tightly controlled by protein complexes that diverge from those of model eukaryotes. There is no consensus for the number of replication origins used by trypanosomatids; how their replication dynamics compares with that of model organisms is the subject of debate. The DNA replication rate in trypanosomatids is similar to, but slightly higher than, that of model eukaryotes, which may be related to chromatin structure and function. Recent data suggest that the origin recognition complex in trypanosomatids closely resembles the multisubunit eukaryotic model. The absence of fundamental replication-associated proteins in trypanosomatids suggests that new signaling pathways may be present in these parasites to direct DNA replication and the replicative stress response.
Collapse
|
7
|
da Silva MS, Muñoz PAM, Armelin HA, Elias MC. Differences in the Detection of BrdU/EdU Incorporation Assays Alter the Calculation for G1, S, and G2 Phases of the Cell Cycle in Trypanosomatids. J Eukaryot Microbiol 2017; 64:756-770. [PMID: 28258618 DOI: 10.1111/jeu.12408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/22/2023]
Abstract
Trypanosomatids are the etiologic agents of various infectious diseases in humans. They diverged early during eukaryotic evolution and have attracted attention as peculiar models for evolutionary and comparative studies. Here, we show a meticulous study comparing the incorporation and detection of the thymidine analogs BrdU and EdU in Leishmania amazonensis, Trypanosoma brucei, and Trypanosoma cruzi to monitor their DNA replication. We used BrdU- and EdU-incorporated parasites with the respective standard detection approaches: indirect immunofluorescence to detect BrdU after standard denaturation (2 M HCl) and "click" chemistry to detect EdU. We found a discrepancy between these two thymidine analogs due to the poor detection of BrdU, which is reflected on the estimative of the duration of the cell cycle phases G1, S, and G2. To solve this discrepancy, we increase the exposure of incorporated BrdU using different concentrations of HCl. Using a new value for HCl concentration, we re-estimated the phases G1, S, G2 + M, and cytokinesis durations, confirming the values found by this approach using EdU. In conclusion, we suggest that the studies using BrdU with standard detection approach, not only in trypanosomatids but also in others cell types, should be reviewed to ensure an accurate estimation of DNA replication monitoring.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Paula Andrea Marin Muñoz
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Hugo Aguirre Armelin
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| |
Collapse
|
8
|
Ponce I, Aldunate C, Valenzuela L, Sepúlveda S, Garrido G, Kemmerling U, Cabrera G, Galanti N. A Flap Endonuclease (TcFEN1) Is Involved in Trypanosoma cruzi
Cell Proliferation, DNA Repair, and Parasite Survival. J Cell Biochem 2016; 118:1722-1732. [DOI: 10.1002/jcb.25830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ivan Ponce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| | - Carmen Aldunate
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| | - Lucia Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| | - Sofia Sepúlveda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| | - Gilda Garrido
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina; Universidad de Chile; Santiago 8380453 Chile
| |
Collapse
|
9
|
Pavani RS, da Silva MS, Fernandes CAH, Morini FS, Araujo CB, Fontes MRDM, Sant’Anna OA, Machado CR, Cano MI, Fragoso SP, Elias MC. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0005181. [PMID: 27984589 PMCID: PMC5161316 DOI: 10.1371/journal.pntd.0005181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/10/2016] [Indexed: 02/03/2023] Open
Abstract
Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi.
Collapse
Affiliation(s)
- Raphael Souza Pavani
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Carlos Alexandre Henrique Fernandes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho -UNESP, Botucatu, São Paulo, Brazil
| | | | - Christiane Bezerra Araujo
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Marcos Roberto de Mattos Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho -UNESP, Botucatu, São Paulo, Brazil
| | - Osvaldo Augusto Sant’Anna
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Isabel Cano
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Julio Mesquita Filho—UNESP, Botucatu, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling—CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Uzcanga G, Lara E, Gutiérrez F, Beaty D, Beske T, Teran R, Navarro JC, Pasero P, Benítez W, Poveda A. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches. Crit Rev Microbiol 2016; 43:156-177. [PMID: 27960617 DOI: 10.1080/1040841x.2016.1188758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a common tropical disease that affects mainly poor people in underdeveloped and developing countries. This largely neglected infection is caused by Leishmania spp, a parasite from the Trypanosomatidae family. This parasitic disease has different clinical manifestations, ranging from localized cutaneous to more harmful visceral forms. The main limitations of the current treatments are their high cost, toxicity, lack of specificity, and long duration. Efforts to improve treatments are necessary to deal with this infectious disease. Many approved drugs to combat diseases as diverse as cancer, bacterial, or viral infections take advantage of specific features of the causing agent or of the disease. Recent evidence indicates that the specific characteristics of the Trypanosomatidae replication and repair machineries could be used as possible targets for the development of new treatments. Here, we review in detail the molecular mechanisms of DNA replication and repair regulation in trypanosomatids of the genus Leishmania and the drugs that could be useful against this disease.
Collapse
Affiliation(s)
- Graciela Uzcanga
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,b Programa Prometeo , SENESCYT, Whymper E7-37 y Alpallana, Quito , Ecuador.,c Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador.,d Fundación Instituto de Estudios Avanzados-IDEA , Caracas , Venezuela
| | - Eliana Lara
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Fernanda Gutiérrez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Doyle Beaty
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Timo Beske
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Rommy Teran
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Juan-Carlos Navarro
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,f Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical , Caracas , Venezuela.,g Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK, Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador
| | - Philippe Pasero
- e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Washington Benítez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Ana Poveda
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| |
Collapse
|
11
|
McCulloch R, Navarro M. The protozoan nucleus. Mol Biochem Parasitol 2016; 209:76-87. [PMID: 27181562 DOI: 10.1016/j.molbiopara.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
The nucleus is arguably the defining characteristic of eukaryotes, distinguishing their cell organisation from both bacteria and archaea. Though the evolutionary history of the nucleus remains the subject of debate, its emergence differs from several other eukaryotic organelles in that it appears not to have evolved through symbiosis, but by cell membrane elaboration from an archaeal ancestor. Evolution of the nucleus has been accompanied by elaboration of nuclear structures that are intimately linked with most aspects of nuclear genome function, including chromosome organisation, DNA maintenance, replication and segregation, and gene expression controls. Here we discuss the complexity of the nucleus and its substructures in protozoan eukaryotes, with a particular emphasis on divergent aspects in eukaryotic parasites, which shed light on nuclear function throughout eukaryotes and reveal specialisations that underpin pathogen biology.
Collapse
Affiliation(s)
- Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
12
|
Marques CA, Tiengwe C, Lemgruber L, Damasceno JD, Scott A, Paape D, Marcello L, McCulloch R. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation. Nucleic Acids Res 2016; 44:4763-84. [PMID: 26951375 PMCID: PMC4889932 DOI: 10.1093/nar/gkw147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 01/14/2023] Open
Abstract
Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.
Collapse
Affiliation(s)
- Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Calvin Tiengwe
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jeziel D Damasceno
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Alan Scott
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Lucio Marcello
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
13
|
Calderano SG, Drosopoulos WC, Quaresma MM, Marques CA, Kosiyatrakul S, McCulloch R, Schildkraut CL, Elias MC. Single molecule analysis of Trypanosoma brucei DNA replication dynamics. Nucleic Acids Res 2015; 43:2655-65. [PMID: 25690894 PMCID: PMC4357695 DOI: 10.1093/nar/gku1389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.
Collapse
Affiliation(s)
- Simone Guedes Calderano
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP 05503-900, Brasil Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brasil
| | - William C Drosopoulos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marina Mônaco Quaresma
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP 05503-900, Brasil Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brasil
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G128TA, UK
| | | | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G128TA, UK
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP 05503-900, Brasil Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brasil
| |
Collapse
|
14
|
Calderano S, Godoy P, Soares D, Sant’Anna OA, Schenkman S, Elias MC. ORC1/CDC6 and MCM7 distinct associate with chromatin through Trypanosoma cruzi life cycle. Mol Biochem Parasitol 2014; 193:110-3. [DOI: 10.1016/j.molbiopara.2014.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/17/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
|
15
|
Pascoalino B, Dindar G, Vieira-da-Rocha JP, Machado CR, Janzen CJ, Schenkman S. Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei. Nucleic Acids Res 2013; 42:2906-18. [PMID: 24322299 PMCID: PMC3950673 DOI: 10.1093/nar/gkt1267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.
Collapse
Affiliation(s)
- Bruno Pascoalino
- Depto. de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo 669 L6A, São Paulo, São Paulo 04039-032, Brazil, Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Biozentrum der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany and Depto. de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP 4861, 30161-970, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Tiengwe C, Marques CA, McCulloch R. Nuclear DNA replication initiation in kinetoplastid parasites: new insights into an ancient process. Trends Parasitol 2013; 30:27-36. [PMID: 24287149 DOI: 10.1016/j.pt.2013.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
Nuclear DNA replication is, arguably, the central cellular process in eukaryotes, because it drives propagation of life and intersects with many other genome reactions. Perhaps surprisingly, our understanding of nuclear DNA replication in kinetoplastids was limited until a clutch of studies emerged recently, revealing new insight into both the machinery and genome-wide coordination of the reaction. Here, we discuss how these studies suggest that the earliest acting components of the kinetoplastid nuclear DNA replication machinery - the factors that demarcate sites of the replication initiation, termed origins - are diverged from model eukaryotes. In addition, we discuss how origin usage and replication dynamics relate to the highly unusual organisation of transcription in the genome of Trypanosoma brucei.
Collapse
Affiliation(s)
- Calvin Tiengwe
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK; The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, USA
| | - Catarina A Marques
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow, Wellcome Trust Centre for Molecular Parasitology and Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
17
|
Damasceno JD, Nunes VS, Tosi LRO. LmHus1 is required for the DNA damage response inLeishmania majorand forms a complex with an unusual Rad9 homologue. Mol Microbiol 2013; 90:1074-87. [DOI: 10.1111/mmi.12418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Jeziel D. Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 14049-900 Ribeirão Preto SP Brasil
| | - Vinicius S. Nunes
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 14049-900 Ribeirão Preto SP Brasil
| | - Luiz R. O. Tosi
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 14049-900 Ribeirão Preto SP Brasil
| |
Collapse
|
18
|
Kaufmann D, Gassen A, Maiser A, Leonhardt H, Janzen CJ. Regulation and spatial organization of PCNA in Trypanosoma brucei. Biochem Biophys Res Commun 2012; 419:698-702. [PMID: 22387477 DOI: 10.1016/j.bbrc.2012.02.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022]
Abstract
As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.
Collapse
Affiliation(s)
- Doris Kaufmann
- University of Munich (LMU), Department Biology I, Genetics, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
19
|
Schenkman S, Pascoalino BDS, Nardelli SC. Nuclear structure of Trypanosoma cruzi. ADVANCES IN PARASITOLOGY 2011; 75:251-83. [PMID: 21820560 DOI: 10.1016/b978-0-12-385863-4.00012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The presence of nucleus in living organisms characterizes the Eukaryote domain. The nucleus compartmentalizes the genetic material surrounded by a double membrane called nuclear envelope. The nucleus has been observed since the advent of the light microscope, and sub-compartments such as nucleoli, diverse nuclear bodies and condensed chromosomes have been later recognized, being part of highly organized and dynamic structure. The significance and function of such organization has increased with the understanding of transcription, replication, DNA repair, recombination processes. It is now recognized as consequence of adding complexity and regulation in more complex eukaryotic cells. Here we provide a description of the actual stage of knowledge of the nuclear structure of Trypanosoma cruzi. As an early divergent eukaryote, it presents unique and/or reduced events of DNA replication, transcription and repair as well as RNA processing and transport to the cytosol. Nevertheless, it shows peculiar structure changes accordingly to the cell cycle and stage of differentiation. T. cruzi proliferates only as epimastigote and amastigote stages, and when these forms differentiate in trypomastigote forms, their cell cycle is arrested. This arrested stage is capable of invading mammalian cells and of surviving harsh conditions, such as the gut of the insect vector and mammalian macrophages. Transcription and replication decrease during transformation in trypomastigotes implicating large alterations in the nuclear structure. Recent evidences also suggest that T. cruzi nucleus respond to oxidative and nutritional stresses. Due to the phylogenetic proximity with other well-known trypanosomes, such as Trypanosoma brucei and Leishmania major, they are expected to have similar nuclear organization, although differences are noticed due to distinct life cycles, cellular organizations and the specific adaptations for surviving in different host environments. Therefore, the general features of T. cruzi nuclear structure regarding unique characteristics of this protozoan parasite will be described.
Collapse
Affiliation(s)
- Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|