1
|
Svozilova H, Vojtova L, Matulova J, Bruknerova J, Polakova V, Radova L, Doubek M, Plevova K, Pospisilova S. In vitro culture of leukemic cells in collagen scaffolds and carboxymethyl cellulose-polyethylene glycol gel. PeerJ 2024; 12:e18637. [PMID: 39655330 PMCID: PMC11627079 DOI: 10.7717/peerj.18637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is a common adult leukemia characterized by the accumulation of neoplastic mature B cells in blood, bone marrow, lymph nodes, and spleen. The disease biology remains unresolved in many aspects, including the processes underlying the disease progression and relapses. However, studying CLL in vitro poses a considerable challenge due to its complexity and dependency on the microenvironment. Several approaches are utilized to overcome this issue, such as co-culture of CLL cells with other cell types, supplementing culture media with growth factors, or setting up a three-dimensional (3D) culture. Previous studies have shown that 3D cultures, compared to conventional ones, can lead to enhanced cell survival and altered gene expression. 3D cultures can also give valuable information while testing treatment response in vitro since they mimic the cell spatial organization more accurately than conventional culture. Methods In our study, we investigated the behavior of CLL cells in two types of material: (i) solid porous collagen scaffolds and (ii) gel composed of carboxymethyl cellulose and polyethylene glycol (CMC-PEG). We studied CLL cells' distribution, morphology, and viability in these materials by a transmitted-light and confocal microscopy. We also measured the metabolic activity of cultured cells. Additionally, the expression levels of MYC, VCAM1, MCL1, CXCR4, and CCL4 genes in CLL cells were studied by qPCR to observe whether our novel culture approaches lead to increased adhesion, lower apoptotic rates, or activation of cell signaling in relation to the enhanced contact with co-cultured cells. Results Both materials were biocompatible, translucent, and permeable, as assessed by metabolic assays, cell staining, and microscopy. While collagen scaffolds featured easy manipulation, washability, transferability, and biodegradability, CMC-PEG was advantageous for its easy preparation process and low variability in the number of accommodated cells. Both materials promoted cell-to-cell and cell-to-matrix interactions due to the scaffold structure and generation of cell aggregates. The metabolic activity of CLL cells cultured in CMC-PEG gel was similar to or higher than in conventional culture. Compared to the conventional culture, there was (i) a lower expression of VCAM1 in both materials, (ii) a higher expression of CCL4 in collagen scaffolds, and (iii) a lower expression of CXCR4 and MCL1 (transcript variant 2) in collagen scaffolds, while it was higher in a CMC-PEG gel. Hence, culture in the material can suppress the expression of a pro-apoptotic gene (MCL1 in collagen scaffolds) or replicate certain gene expression patterns attributed to CLL cells in lymphoid organs (low CXCR4, high CCL4 in collagen scaffolds) or blood (high CXCR4 in CMC-PEG).
Collapse
Affiliation(s)
- Hana Svozilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucy Vojtova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Matulova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Bruknerova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Polakova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Zablonski KG, Skupa SA, Eiken AP, Sundaram S, Mavis C, Gu J(J, Torka P, Ghione P, El-Gamal D, Hernandez-Ilizaliturri FJ. Targeted BET inhibition with OPN-51107 synergizes with venetoclax in chronic lymphocytic leukemia. Leuk Lymphoma 2024; 65:2129-2137. [PMID: 39331474 PMCID: PMC12147947 DOI: 10.1080/10428194.2024.2398663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/21/2024] [Accepted: 08/24/2024] [Indexed: 09/29/2024]
Abstract
Chronic lymphocytic leukemia (CLL) remains incurable and its ability to acquire resistance to front-line therapeutics has proved challenging. Bromodomain and extra-terminal proteins, particularly bromodomain-containing protein 4 (BRD4), are integral to gene expression in CLL and offer a promising therapeutic target. In this study, we examined the activity of the BRD4 inhibitor OPN-51107 alone and in combination with the BCL-2 inhibitor, venetoclax, in CLL cell lines and patient-derived CLL samples. We demonstrate that OPN-51107 induces anti-tumor activity in both CLL cell lines and patient-derived samples, including relapsed/refractory (R/R) samples and those with high-risk features (i.e. ATM and/or TP53 deletions). Importantly, the combination of OPN-51107 and venetoclax exhibited synergistic cytotoxicity in ibrutinib-resistant CLL cells and patient-derived CLL samples regardless of R/R or deletion status. This study establishes the preclinical efficacy of using OPN-51107 and venetoclax in combination in therapy-resistant and/or high-risk CLL, lending support for its further development as a combination therapy.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Drug Synergism
- Cell Line, Tumor
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Bromodomain Containing Proteins
Collapse
Affiliation(s)
- Kevin G Zablonski
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sydney A Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alexandria P Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suchitra Sundaram
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Cory Mavis
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Juan (Jenny) Gu
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Pallawi Torka
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Paola Ghione
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | |
Collapse
|
3
|
McKeown JP, Byrne AJ, Bright SA, Charleton CE, Kandwal S, Čmelo I, Twamley B, McElligott AM, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Biochemical Evaluation of Ethanoanthracenes and Related Compounds: Antiproliferative and Pro-Apoptotic Effects in Chronic Lymphocytic Leukemia (CLL). Pharmaceuticals (Basel) 2024; 17:1034. [PMID: 39204139 PMCID: PMC11359702 DOI: 10.3390/ph17081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells, and it is the most frequent form of leukemia diagnosed in Western countries. It is characterized by the proliferation and accumulation of neoplastic B lymphocytes in the blood, lymph nodes, bone marrow and spleen. We report the synthesis and antiproliferative effects of a series of novel ethanoanthracene compounds in CLL cell lines. Structural modifications were achieved via the Diels-Alder reaction of 9-(2-nitrovinyl)anthracene and 3-(anthracen-9-yl)-1-arylprop-2-en-1-ones (anthracene chalcones) with dienophiles, including maleic anhydride and N-substituted maleimides, to afford a series of 9-(E)-(2-nitrovinyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones, 9-(E)-3-oxo-3-phenylprop-1-en-1-yl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones and related compounds. Single-crystal X-ray analysis confirmed the structures of the novel ethanoanthracenes 23f, 23h, 24a, 24g, 25f and 27. The products were evaluated in HG-3 and PGA-1 CLL cell lines (representative of poor and good patient prognosis, respectively). The most potent compounds were identified as 20a, 20f, 23a and 25n with IC50 values in the ranges of 0.17-2.69 µM (HG-3) and 0.35-1.97 µM (PGA-1). The pro-apoptotic effects of the potent compounds 20a, 20f, 23a and 25n were demonstrated in CLL cell lines HG-3 (82-95%) and PGA-1 (87-97%) at 10 µM, with low toxicity (12-16%) observed in healthy-donor peripheral blood mononuclear cells (PBMCs) at concentrations representative of the compounds IC50 values for both the HG-3 and PGA-1 CLL cell lines. The antiproliferative effect of the selected compounds, 20a, 20f, 23a and 25n, was mediated through ROS flux with a marked increase in cell viability upon pretreatment with the antioxidant NAC. 25n also demonstrated sub-micromolar activity in the NCI 60 cancer cell line panel, with a mean GI50 value of 0.245 µM. This ethanoanthracene series of compounds offers potential for the further development of lead structures as novel chemotherapeutics to target CLL.
Collapse
Affiliation(s)
- James P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Clara E. Charleton
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Ivan Čmelo
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 P3X2 Dublin, Ireland
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Darren Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
4
|
Edwards K, Manoussaka M, Sayed U, Tsertsvadze T, Deyn LD, Nathwani A, Gribben JG, Krysov S, Volpi EV, Lydyard PM, Porakishvili N. MD-1 downregulation is associated with reduced cell surface CD180 expression in CLL. Leuk Res 2024; 143:107540. [PMID: 38897026 DOI: 10.1016/j.leukres.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
CD180 is a toll-like receptor that is highly expressed in complex with the MD-1 satellite molecule on the surface of B cells. In chronic lymphocytic leukaemia (CLL) however, the expression of CD180 is highly variable and overall, significantly reduced when compared to normal B cells. We have recently shown that reduced CD180 expression in CLL lymph nodes is associated with inferior overall survival. It was therefore important to better understand the causes of this downregulation through investigation of CD180 at the transcriptional and protein expression levels. Unexpectedly, we found CD180 RNA levels in CLL cells (n = 26) were comparable to those of normal B cells (n = 13), despite heterogeneously low expression of CD180 on the cell surface. We confirmed that CD180 RNA is translated into CD180 protein since cell surface CD180-negative cases presented with high levels of intracellular CD180 expression. Levels of MD-1 RNA were, however, significantly downregulated in CLL compared to normal controls. Together, these data suggest that changes in CD180 cell surface expression in CLL are not due to transcriptional downregulation, but defective post-translational stabilisation of the receptor due to MD-1 downregulation.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Down-Regulation
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Cell Membrane/metabolism
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK.
| | | | - Uzma Sayed
- School of Life Sciences, University of Westminster, London, UK
| | | | - Lara De Deyn
- School of Life Sciences, University of Westminster, London, UK.
| | - Amit Nathwani
- UCL Cancer Institute, University College London, London, UK.
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University, London, UK.
| | - Sergey Krysov
- Barts Cancer Institute, Queen Mary University, London, UK.
| | | | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK; The University of Georgia, Tbilisi, GA, USA
| | | |
Collapse
|
5
|
Li Y, Ma A, Wang Y, Guo Q, Wang C, Fu H, Liu B, Ma Q. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data. Brief Bioinform 2024; 25:bbae369. [PMID: 39082647 PMCID: PMC11289686 DOI: 10.1093/bib/bbae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Deciphering the intricate relationships between transcription factors (TFs), enhancers, and genes through the inference of enhancer-driven gene regulatory networks (eGRNs) is crucial in understanding gene regulatory programs in a complex biological system. This study introduces STREAM, a novel method that leverages a Steiner forest problem model, a hybrid biclustering pipeline, and submodular optimization to infer eGRNs from jointly profiled single-cell transcriptome and chromatin accessibility data. Compared to existing methods, STREAM demonstrates enhanced performance in terms of TF recovery, TF-enhancer linkage prediction, and enhancer-gene relation discovery. Application of STREAM to an Alzheimer's disease dataset and a diffuse small lymphocytic lymphoma dataset reveals its ability to identify TF-enhancer-gene relations associated with pseudotime, as well as key TF-enhancer-gene relations and TF cooperation underlying tumor cells.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Yizhong Wang
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
6
|
Eiken AP, Smith AL, Skupa SA, Schmitz E, Rana S, Singh S, Kumar S, Mallareddy JR, de Cubas AA, Krishna A, Kalluchi A, Rowley MJ, D'Angelo CR, Lunning MA, Bociek RG, Vose JM, Natarajan A, El-Gamal D. Novel Spirocyclic Dimer, SpiD3, Targets Chronic Lymphocytic Leukemia Survival Pathways with Potent Preclinical Effects. CANCER RESEARCH COMMUNICATIONS 2024; 4:1328-1343. [PMID: 38687198 PMCID: PMC11110724 DOI: 10.1158/2767-9764.crc-24-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli. SIGNIFICANCE SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Humans
- Animals
- Mice
- Signal Transduction/drug effects
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Cell Line, Tumor
- Unfolded Protein Response/drug effects
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Drug Resistance, Neoplasm/drug effects
- NF-kappa B/metabolism
- Spiro Compounds/pharmacology
- Spiro Compounds/therapeutic use
- Cell Survival/drug effects
- Tumor Microenvironment/drug effects
- Receptors, Antigen, B-Cell/metabolism
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Elizabeth Schmitz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddhartha Kumar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aguirre A de Cubas
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Akshay Krishna
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - M. Jordan Rowley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christopher R. D'Angelo
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Matthew A. Lunning
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - R. Gregory Bociek
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Julie M. Vose
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
7
|
Bistué-Rovira À, Rico LG, Bardina J, Juncà J, Granada I, Bradford JA, Ward MD, Salvia R, Solé F, Petriz J. Persistence of Chronic Lymphocytic Leukemia Stem-like Populations under Simultaneous In Vitro Treatment with Curcumin, Fludarabine, and Ibrutinib: Implications for Therapy Resistance. Int J Mol Sci 2024; 25:1994. [PMID: 38396682 PMCID: PMC10888954 DOI: 10.3390/ijms25041994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.
Collapse
Affiliation(s)
- Àngel Bistué-Rovira
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain;
| | - Laura G. Rico
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Jorge Bardina
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordi Juncà
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Isabel Granada
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jolene A. Bradford
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Michael D. Ward
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Roser Salvia
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jordi Petriz
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| |
Collapse
|
8
|
Byrne AJ, Bright SA, McKeown JP, Bergin A, Twamley B, McElligott AM, Noorani S, Kandwal S, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Pro-Apoptotic Effects of Nitrovinylanthracenes and Related Compounds in Chronic Lymphocytic Leukaemia (CLL) and Burkitt's Lymphoma (BL). Molecules 2023; 28:8095. [PMID: 38138584 PMCID: PMC10746112 DOI: 10.3390/molecules28248095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a malignancy of the immune B lymphocyte cells and is the most common leukaemia diagnosed in developed countries. In this paper, we report the synthesis and antiproliferative effects of a series of (E)-9-(2-nitrovinyl)anthracenes and related nitrostyrene compounds in CLL cell lines and also in Burkitt's lymphoma (BL) cell lines, a rare form of non-Hodgkin's immune B-cell lymphoma. The nitrostyrene scaffold was identified as a lead structure for the development of effective compounds targeting BL and CLL. The series of structurally diverse nitrostyrenes was synthesised via Henry-Knoevenagel condensation reactions. Single-crystal X-ray analysis confirmed the structure of (E)-9-chloro-10-(2-nitrobut-1-en-1-yl)anthracene (19f) and the related 4-(anthracen-9-yl)-1H-1,2,3-triazole (30a). The (E)-9-(2-nitrovinyl)anthracenes 19a, 19g and 19i-19m were found to elicit potent antiproliferative effects in both BL cell lines EBV-MUTU-1 (chemosensitive) and EBV+ DG-75 (chemoresistant) with >90% inhibition at 10 μM. Selected (E)-9-(2-nitrovinyl)anthracenes demonstrated potent antiproliferative activity in CLL cell lines, with IC50 values of 0.17 μM (HG-3) and 1.3 μM (PGA-1) for compound 19g. The pro-apoptotic effects of the most potent compounds 19a, 19g, 19i, 19l and 19m were demonstrated in both CLL cell lines HG-3 and PGA-1. The (E)-nitrostyrene and (E)-9-(2-nitrovinyl)anthracene series of compounds offer potential for further development as novel chemotherapeutics for CLL.
Collapse
Affiliation(s)
- Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - James. P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Adam Bergin
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Brendan Twamley
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland;
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - Shubhangi Kandwal
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (S.K.); (D.F.); (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (J.P.M.); (M.J.M.)
| |
Collapse
|
9
|
Čada Š, Vondálová Blanářová O, Gömoryová K, Mikulová A, Bačovská P, Zezula N, Kumari Jadaun A, Janovská P, Plešingerová H, Bryja V. Role of casein kinase 1 in the amoeboid migration of B-cell leukemic and lymphoma cells: A quantitative live imaging in the confined environment. Front Cell Dev Biol 2022; 10:911966. [PMID: 36561363 PMCID: PMC9763939 DOI: 10.3389/fcell.2022.911966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
The migratory properties of leukemic cells are commonly associated with their pathological potential and can significantly affect the disease progression. While the research in immunopathology mostly employed powerful indirect methods such as flow cytometry, these cells were rarely observed directly using live imaging microscopy. This is especially true for the malignant cells of the B-cell lineage, such as those originating from chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). In this study, we employed open-source image analysis tools to automatically and quantitatively describe the amoeboid migration of four B-cell leukemic and lymphoma cell lines and primary CLL cells. To avoid the effect of the shear stress of the medium on these usually non-adherent cells, we have confined the cells using a modified under-agarose assay. Surprisingly, the behavior of tested cell lines differed substantially in terms of basal motility or response to chemokines and VCAM1 stimulation. Since casein kinase 1 (CK1) was reported as a regulator of B-cell migration and a promoter of CLL, we looked at the effects of CK1 inhibition in more detail. Migration analysis revealed that CK1 inhibition induced rapid negative effects on the migratory polarity of these cells, which was quantitatively and morphologically distinct from the effect of ROCK inhibition. We have set up an assay that visualizes endocytic vesicles in the uropod and facilitates morphological analysis. This assay hints that the effect of CK1 inhibition might be connected to defects in polarized intracellular transport. In summary, 1) we introduce and validate a pipeline for the imaging and quantitative assessment of the amoeboid migration of CLL/MCL cells, 2) we provide evidence that the assay is sensitive enough to mechanistically study migration defects identified by the transwell assay, and 3) we describe the polarity defects induced by inhibition or deletion of CK1ε.
Collapse
Affiliation(s)
- Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Kristína Gömoryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Antónia Mikulová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Bačovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Alka Kumari Jadaun
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hana Plešingerová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia,Department of Internal Medicine—Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia,*Correspondence: Vítězslav Bryja,
| |
Collapse
|
10
|
Mancikova V, Pesova M, Pavlova S, Helma R, Zavacka K, Hejret V, Taus P, Hynst J, Plevova K, Malcikova J, Pospisilova S. Distinct p53 phosphorylation patterns in chronic lymphocytic leukemia patients are reflected in the activation of circumjacent pathways upon DNA damage. Mol Oncol 2022; 17:82-97. [PMID: 36334078 PMCID: PMC9812841 DOI: 10.1002/1878-0261.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022] Open
Abstract
TP53 gene abnormalities represent the most important biomarker in chronic lymphocytic leukemia (CLL). Altered protein modifications could also influence p53 function, even in the wild-type protein. We assessed the impact of p53 protein phosphorylations on p53 functions as an alternative inactivation mechanism. We studied p53 phospho-profiles induced by DNA-damaging agents (fludarabine, doxorubicin) in 71 TP53-intact primary CLL samples. Doxorubicin induced two distinct phospho-profiles: profile I (heavily phosphorylated) and profile II (hypophosphorylated). Profile II samples were less capable of activating p53 target genes upon doxorubicin exposure, resembling TP53-mutant samples at the transcriptomic level, whereas standard p53 signaling was triggered in profile I. ATM locus defects were more common in profile II. The samples also differed in the basal activity of the hypoxia pathway: the highest level was detected in TP53-mutant samples, followed by profile II and profile I. Our study suggests that wild-type TP53 CLL cells with less phosphorylated p53 show TP53-mutant-like behavior after DNA damage. p53 hypophosphorylation and the related lower ability to respond to DNA damage are linked to ATM locus defects and the higher basal activity of the hypoxia pathway.
Collapse
Affiliation(s)
- Veronika Mancikova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Michaela Pesova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pavlova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Robert Helma
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Kristyna Zavacka
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Vaclav Hejret
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Petr Taus
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jakub Hynst
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Karla Plevova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic,Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Jitka Malcikova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic,Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| |
Collapse
|
11
|
Mangolini M, Maiques-Diaz A, Charalampopoulou S, Gerhard-Hartmann E, Bloehdorn J, Moore A, Giachetti G, Lu J, Roamio Franklin VN, Chilamakuri CSR, Moutsopoulos I, Rosenwald A, Stilgenbauer S, Zenz T, Mohorianu I, D'Santos C, Deaglio S, Hodson DJ, Martin-Subero JI, Ringshausen I. Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape. Nat Commun 2022; 13:6220. [PMID: 36266281 PMCID: PMC9585083 DOI: 10.1038/s41467-022-33739-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Johannes Bloehdorn
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Andrew Moore
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Giorgia Giachetti
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | | | | | - Ilias Moutsopoulos
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Andreas Rosenwald
- Pathologisches Institut Universität Würzburg, 97080, Würzburg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer, Research Centre, Heidelberg, Germany
| | - Irina Mohorianu
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Daniel J Hodson
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ingo Ringshausen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
12
|
Smith AL, Eiken AP, Skupa SA, Moore DY, Umeta LT, Smith LM, Lyden ER, D’Angelo CR, Kallam A, Vose JM, Kutateladze TG, El-Gamal D. A Novel Triple-Action Inhibitor Targeting B-Cell Receptor Signaling and BRD4 Demonstrates Preclinical Activity in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:6712. [PMID: 35743155 PMCID: PMC9224275 DOI: 10.3390/ijms23126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) results from intrinsic genetic defects and complex microenvironment stimuli that fuel CLL cell growth through an array of survival signaling pathways. Novel small-molecule agents targeting the B-cell receptor pathway and anti-apoptotic proteins alone or in combination have revolutionized the management of CLL, yet combination therapy carries significant toxicity and CLL remains incurable due to residual disease and relapse. Single-molecule inhibitors that can target multiple disease-driving factors are thus an attractive approach to combat both drug resistance and combination-therapy-related toxicities. We demonstrate that SRX3305, a novel small-molecule BTK/PI3K/BRD4 inhibitor that targets three distinctive facets of CLL biology, attenuates CLL cell proliferation and promotes apoptosis in a dose-dependent fashion. SRX3305 also inhibits the activation-induced proliferation of primary CLL cells in vitro and effectively blocks microenvironment-mediated survival signals, including stromal cell contact. Furthermore, SRX3305 blocks CLL cell migration toward CXCL-12 and CXCL-13, which are major chemokines involved in CLL cell homing and retention in microenvironment niches. Importantly, SRX3305 maintains its anti-tumor effects in ibrutinib-resistant CLL cells. Collectively, this study establishes the preclinical efficacy of SRX3305 in CLL, providing significant rationale for its development as a therapeutic agent for CLL and related disorders.
Collapse
Affiliation(s)
- Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Dalia Y. Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lelisse T. Umeta
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Elizabeth R. Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.M.S.); (E.R.L.)
| | - Christopher R. D’Angelo
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Avyakta Kallam
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Julie M. Vose
- Division of Hematology and Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.D.); (A.K.); (J.M.V.)
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.L.S.); (A.P.E.); (S.A.S.); (D.Y.M.); (L.T.U.)
| |
Collapse
|
13
|
Cesaro E, Falanga AP, Catapano R, Greco F, Romano S, Borbone N, Pastore A, Marzano M, Chiurazzi F, D’Errico S, Piccialli G, Oliviero G, Costanzo P, Grosso M. Exploring a peptide nucleic acid-based antisense approach for CD5 targeting in chronic lymphocytic leukemia. PLoS One 2022; 17:e0266090. [PMID: 35358273 PMCID: PMC8970396 DOI: 10.1371/journal.pone.0266090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
We herein report an innovative antisense approach based on Peptide Nucleic Acids (PNAs) to down-modulate CD5 expression levels in chronic lymphocytic leukemia (CLL). Using bioinformatics tools, we selected a 12-mer tract of the CD5 mRNA as the molecular target and synthesized the complementary and control PNA strands bearing a serine phosphate dipeptide tail to enhance their water solubility and bioavailability. The specific recognition of the 12-mer DNA strand, corresponding to the target mRNA sequence by the complementary PNA strand, was confirmed by non-denaturing polyacrylamide gel electrophoresis, thermal difference spectroscopy, circular dichroism (CD), and CD melting studies. Cytofluorimetric assays and real-time PCR analysis demonstrated the downregulation of CD5 expression due to incubation with the anti-CD5 PNA at RNA and protein levels in Jurkat cell line and peripheral blood mononuclear cells from B-CLL patients. Interestingly, we also observed that transfection with the anti-CD5 PNA increases apoptotic response induced by fludarabine in B-CLL cells. The herein reported results suggest that PNAs could represent a potential candidate for the development of antisense therapeutic agents in CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukocytes, Mononuclear
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Peptide Nucleic Acids/chemistry
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | | | - Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
- ISBE-IT, University of Naples Federico II, Napoli, Italy
| | - Arianna Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Maria Marzano
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Federico Chiurazzi
- Department of Clinical and Experimental Medicine, Division of Hematology, University of Naples Federico II, Napoli, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
- ISBE-IT, University of Naples Federico II, Napoli, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
- ISBE-IT, University of Naples Federico II, Napoli, Italy
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
14
|
Melvold K, Giliberto M, Karlsen L, Ayuda‐Durán P, Hanes R, Holien T, Enserink J, Brown JR, Tjønnfjord GE, Taskén K, Skånland SS. Mcl-1 and Bcl-xL levels predict responsiveness to dual MEK/Bcl-2 inhibition in B-cell malignancies. Mol Oncol 2022; 16:1153-1170. [PMID: 34861096 PMCID: PMC8895453 DOI: 10.1002/1878-0261.13153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022] Open
Abstract
Most patients with chronic lymphocytic leukemia (CLL) initially respond to targeted therapies, but eventually relapse and develop resistance. Novel treatment strategies are therefore needed to improve patient outcomes. Here, we performed direct drug testing on primary CLL cells and identified synergy between eight different mitogen-activated protein kinase kinase (MEK) inhibitors and the B-cell lymphoma 2 (Bcl-2) antagonist venetoclax. Drug sensitivity was independent of immunoglobulin heavy-chain gene variable region (IGVH) and tumor protein p53 (TP53) mutational status, and CLL cells from idelalisib-resistant patients remained sensitive to the treatment. This suggests that combined MEK/Bcl-2 inhibition may be an option for high-risk CLL. To test whether sensitivity could be detected in other B-cell malignancies, we performed drug testing on cell line models of CLL (n = 4), multiple myeloma (MM; n = 8), and mantle cell lymphoma (MCL; n = 7). Like CLL, MM cells were sensitive to the MEK inhibitor trametinib, and synergy was observed with venetoclax. In contrast, MCL cells were unresponsive to MEK inhibition. To investigate the underlying mechanisms of the disease-specific drug sensitivities, we performed flow cytometry-based high-throughput profiling of 31 signaling proteins and regulators of apoptosis in the 19 cell lines. We found that high expression of the antiapoptotic proteins myeloid cell leukemia-1 (Mcl-1) or B-cell lymphoma-extra large (Bcl-xL) predicted low sensitivity to trametinib + venetoclax. The low sensitivity could be overcome by combined treatment with an Mcl-1 or Bcl-xL inhibitor. Our findings suggest that MEK/Bcl-2 inhibition has therapeutic potential in leukemia and myeloma, and demonstrate that protein expression levels can serve as predictive biomarkers for treatment sensitivities.
Collapse
Affiliation(s)
- Katrine Melvold
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
| | - Mariaserena Giliberto
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Linda Karlsen
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Pilar Ayuda‐Durán
- Faculty of MedicineCentre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalNorway
| | - Robert Hanes
- Faculty of MedicineCentre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalNorway
| | - Toril Holien
- Department of Clinical and Molecular MedicineNTNU – Norwegian University of Science and TechnologyTrondheimNorway
- Department of Immunology and Transfusion MedicineSt. Olav’s University HospitalTrondheimNorway
- Department of HematologySt. Olav’s University HospitalTrondheimNorway
| | - Jorrit Enserink
- Faculty of MedicineCentre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalNorway
- Faculty of Mathematics and Natural SciencesDepartment of BiosciencesUniversity of OsloNorway
| | - Jennifer R. Brown
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Geir E. Tjønnfjord
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
- Department of HaematologyOslo University HospitalNorway
| | - Kjetil Taskén
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Sigrid S. Skånland
- Department of Cancer ImmunologyInstitute for Cancer ResearchOslo University HospitalNorway
- K. G. Jebsen Centre for B Cell MalignanciesInstitute of Clinical MedicineUniversity of OsloNorway
| |
Collapse
|
15
|
Cervellera C, Russo M, Dotolo S, Facchiano A, Russo GL. STL1, a New AKT Inhibitor, Synergizes with Flavonoid Quercetin in Enhancing Cell Death in A Chronic Lymphocytic Leukemia Cell Line. Molecules 2021; 26:molecules26195810. [PMID: 34641354 PMCID: PMC8510450 DOI: 10.3390/molecules26195810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Using a pharmacophore model based on the experimental structure of AKT-1, we recently identified the compound STL1 (ZINC2429155) as an allosteric inhibitor of AKT-1. STL1, was able to reduce Ser473 phosphorylation, thus inhibiting the PI3K/AKT pathway. Moreover, we demonstrated that the flavonoid quercetin downregulated the phosphorylated and active form of AKT. However, in this case, quercetin inhibited the PI3K/AKT pathway by directly binding the kinases CK2 and PI3K. In the present work, we investigated the antiproliferative effects of the co-treatment quercetin plus STL1 in HG-3 cells, derived from a patient affected by chronic lymphocytic leukemia. Quercetin and STL1 in the mono-treatment maintained the capacity to inhibit AKT phosphorylation on Ser473, but did not significantly reduce cell viability. On the contrary, they activated a protective form of autophagy. When the HG-3 cells were co-treated with quercetin and STL1, their association synergistically (combination index < 1) inhibited cell growth and induced apoptosis. The combined treatment caused the switch from protective to non-protective autophagy. This work demonstrated that cytotoxicity could be enhanced in a drug-resistant cell line by combining the effects of different inhibitors acting in concert on PI3K and AKT kinases.
Collapse
MESH Headings
- Antioxidants/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Drug Synergism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Quercetin/pharmacology
- Tumor Cells, Cultured
Collapse
|
16
|
Mancikova V, Peschelova H, Kozlova V, Ledererova A, Ladungova A, Verner J, Loja T, Folber F, Mayer J, Pospisilova S, Smida M. Performance of anti-CD19 chimeric antigen receptor T cells in genetically defined classes of chronic lymphocytic leukemia. J Immunother Cancer 2021; 8:jitc-2019-000471. [PMID: 32217767 PMCID: PMC7206910 DOI: 10.1136/jitc-2019-000471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 01/25/2023] Open
Abstract
Background While achieving prolonged remissions in other B cell-derived malignancies, chimeric antigen receptor (CAR) T cells still underperform when injected into patients with chronic lymphocytic leukemia (CLL). We studied the influence of genetics on CLL response to anti-CD19 CAR T-cell therapy. Methods First, we studied 32 primary CLL samples composed of 26 immunoglobulin heavy-chain gene variable (IGHV)-unmutated (9 ATM-mutated, 8 TP53-mutated, and 9 without mutations in ATM, TP53, NOTCH1 or SF3B1) and 6 IGHV-mutated samples without mutations in the above-mentioned genes. Then, we mimicked the leukemic microenvironment in the primary cells by ‘2S stimulation’ through interleukin-2 and nuclear factor kappa B. Finally, CRISPR/Cas9-generated ATM-knockout and TP53-knockout clones (four and seven, respectively) from CLL-derived cell lines MEC1 and HG3 were used. All these samples were exposed to CAR T cells. In vivo survival study in NSG mice using HG3 wild-type (WT), ATM-knockout or TP53-knockout cells was also performed. Results Primary unstimulated CLL cells were specifically eliminated after >24 hours of coculture with CAR T cells. ‘2S’ stimulated cells showed increased survival when exposed to CAR T cells compared with unstimulated ones, confirming the positive effect of this stimulation on CLL cells’ in vitro fitness. After 96 hours of coculture, there was no difference in survival among the genetic classes. Finally, CAR T cells were specifically activated in vitro in the presence of target knockout cell lines as shown by the production of interferon-γ when compared with control (CTRL) T cells (p=0.0020), but there was no difference in knockout cells’ survival. In vivo, CAR T cells prolonged the survival of mice injected with WT, TP53-knockout and ATM-knockout HG3 tumor cells as compared with CTRL T cells (p=0.0485, 0.0204 and <0.0001, respectively). When compared with ATM-knockout, TP53-knockout disease was associated with an earlier time of onset (p<0.0001), higher tumor burden (p=0.0002) and inefficient T-cell engraftment (p=0.0012). Conclusions While in vitro no differences in survival of CLL cells of various genetic backgrounds were observed, CAR T cells showed a different effectiveness at eradicating tumor cells in vivo depending on the driver mutation. Early disease onset, high-tumor burden and inefficient T-cell engraftment, associated with TP53-knockout tumors in our experimental setting, ultimately led to inferior performance of CAR T cells.
Collapse
Affiliation(s)
- Veronika Mancikova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic .,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Helena Peschelova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Veronika Kozlova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aneta Ledererova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Adriana Ladungova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Verner
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Frantisek Folber
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Smida
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic .,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Ni J, Hong J, Li Q, Zeng Q, Xia R. Long non-coding RNA CRNDE suppressing cell proliferation is regulated by DNA methylation in chronic lymphocytic leukemia. Leuk Res 2021; 105:106564. [PMID: 33857783 DOI: 10.1016/j.leukres.2021.106564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
Long non-coding RNA CRNDE and DNA methylation play a vital role in the occurrence and development of chronic lymphocytic leukemia (CLL). This study attempted to investigate the biological role of CRNDE methylation in CLL. The expression and methylation levels of CRNDE in CLL cell lines (MEC-1 and HG3) before or after methylation inhibitor (5-Aza-2'-deoxycytidine, 5-Aza-CdR) treatment was detected by quantitative real-time PCR or methylation-Specific PCR. The relationship among CRNDE, miR-28 and NDRG2 was verified by luciferase reporter assay. The effect of CRNDE overexpression and 5-Aza-CdR treatment on cell proliferation and apoptosis of MEC-1 and HG3 cells were assessed by CCK8 and flow cytomery. Compared with normal B lymphocytes, CRNDE was down-regulated and the methylation level of CRNDE was increased in MEC-1 and HG3 cells. Then, 5-Aza-CdR treatment caused an increase of CRNDE expression in MEC-1 and HG3 cells by demethylation. The overexpression or demethylation of CRNDE inhibited cell proliferation and promoted apoptosis in MEC-1 and HG3 cells by up-regulating CRNDE expression. Moreover, CRNDE functioned as a competing endogenous RNA to repress miR-28, which controlled its down-stream target NDRG2. CRNDE overexpression inhibited cell proliferation and promoted apoptosis via miR-28/NDRG2 axis in CLL. In conclusion, our data elaborated that CRNDE expression was regulated by DNA methylation, and the protective effect of CRNDE on CLL was attributed to the inhibition of proliferation in CLL via miR-28/NDRG2 axis. Thus, this work highlights a novel competing endogenous RNA circuitry involving key regulators of CLL.
Collapse
Affiliation(s)
- Jing Ni
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jian Hong
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qingsheng Li
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qingshu Zeng
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ruixiang Xia
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
18
|
Svozilová H, Plichta Z, Proks V, Studená R, Baloun J, Doubek M, Pospíšilová Š, Horák D. RGDS-Modified Superporous Poly(2-Hydroxyethyl Methacrylate)-Based Scaffolds as 3D In Vitro Leukemia Model. Int J Mol Sci 2021; 22:ijms22052376. [PMID: 33673496 PMCID: PMC7956824 DOI: 10.3390/ijms22052376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023] Open
Abstract
Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.
Collapse
Affiliation(s)
- Hana Svozilová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Zdeněk Plichta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (Z.P.); (V.P.)
| | - Vladimír Proks
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (Z.P.); (V.P.)
| | - Radana Studená
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
| | - Jiří Baloun
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
| | - Michael Doubek
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Šárka Pospíšilová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (Z.P.); (V.P.)
- Correspondence: ; Tel.: +420-296-809-260
| |
Collapse
|
19
|
Virtual Screening of Natural Compounds as Potential PI 3K-AKT1 Signaling Pathway Inhibitors and Experimental Validation. Molecules 2021; 26:molecules26020492. [PMID: 33477701 PMCID: PMC7831918 DOI: 10.3390/molecules26020492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/13/2023] Open
Abstract
A computational screening for natural compounds suitable to bind the AKT protein has been performed after the generation of a pharmacophore model based on the experimental structure of AKT1 complexed with IQO, a well-known inhibitor. The compounds resulted as being most suitable from the screening have been further investigated by molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis and toxicity profiles. Two compounds selected at the end of the computational analysis, i.e., ZINC2429155 (also named STL1) and ZINC1447881 (also named AC1), have been tested in an experimental assay, together with IQO as a positive control and quercetin as a negative control. Only STL1 clearly inhibited AKT activation negatively modulating the PI3K/AKT pathway.
Collapse
|
20
|
A carotenoid-enriched extract from pumpkin delays cell proliferation in a human chronic lymphocytic leukemia cell line through the modulation of autophagic flux. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Werner A, Pieh D, Echchannaoui H, Rupp J, Rajalingam K, Theobald M, Closs EI, Munder M. Cationic Amino Acid Transporter-1-Mediated Arginine Uptake Is Essential for Chronic Lymphocytic Leukemia Cell Proliferation and Viability. Front Oncol 2019; 9:1268. [PMID: 31824848 PMCID: PMC6879669 DOI: 10.3389/fonc.2019.01268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
Interfering with tumor metabolism by specifically restricting the availability of extracellular nutrients is a rapidly emerging field of cancer research. A variety of tumor entities depend on the uptake of the amino acid arginine since they have lost the ability to synthesize it endogenously, that is they do not express the rate limiting enzyme for arginine synthesis, argininosuccinate synthase (ASS). Arginine transport through the plasma membrane of mammalian cells is mediated by eight different transporters that belong to two solute carrier (SLC) families. In the present study we found that the proliferation of primary as well as immortalized chronic lymphocytic leukemia (CLL) cells depends on the availability of extracellular arginine and that primary CLL cells do not express ASS and are therefore arginine-auxotrophic. The cationic amino acid transporter-1 (CAT-1) was the only arginine importer expressed in CLL cells. Lentiviral-mediated downregulation of the CAT-1 transporter in HG3 CLL cells significantly reduced arginine uptake, abolished cell proliferation and impaired cell viability. In a murine CLL xenograft model, tumor growth was significantly suppressed upon induced downregulation of CAT-1 in the CLL cells. Our results suggest that inhibition of CAT-1 is a promising new therapeutic approach for CLL.
Collapse
Affiliation(s)
- Anke Werner
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel Pieh
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hakim Echchannaoui
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Rupp
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Theobald
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Kosalai ST, Morsy MHA, Papakonstantinou N, Mansouri L, Stavroyianni N, Kanduri C, Stamatopoulos K, Rosenquist R, Kanduri M. EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia. Epigenetics 2019; 14:1125-1140. [PMID: 31216925 PMCID: PMC6773411 DOI: 10.1080/15592294.2019.1633867] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
EZH2 is overexpressed in poor-prognostic chronic lymphocytic leukaemia (CLL) cases, acting as an oncogene; however, thus far, the EZH2 target genes in CLL have not been disclosed. In this study, using ChIP-sequencing, we identified EZH2 and H3K27me3 target genes in two prognostic subgroups of CLL with distinct prognosis and outcome, i.e., cases with unmutated (U-CLL, n = 6) or mutated IGHV genes (M-CLL, n = 6). While the majority of oncogenic pathways were equally enriched for EZH2 target genes in both prognostic subgroups, PI3K pathway genes were differentially bound by EZH2 in U-CLL versus M-CLL. The occupancy of EZH2 for selected PI3K pathway target genes was validated in additional CLL samples (n = 16) and CLL cell lines using siRNA-mediated EZH2 downregulation and ChIP assays. Intriguingly, we found that EZH2 directly binds to the IGF1R promoter along with MYC and upregulates IGF1R expression in U-CLL, leading to downstream PI3K activation. By investigating an independent CLL cohort (n = 96), a positive correlation was observed between EZH2 and IGF1R expression with higher levels in U-CLL compared to M-CLL. Accordingly, siRNA-mediated downregulation of either EZH2, MYC or IGF1R and treatment with EZH2 and MYC pharmacological inhibitors in the HG3 CLL cell line induced a significant reduction in PI3K pathway activation. In conclusion, we characterize for the first time EZH2 target genes in CLL revealing a hitherto unknown implication of EZH2 in modulating the PI3K pathway in a non-canonical, PRC2-independent way, with potential therapeutic implications considering that PI3K inhibitors are effective therapeutic agents for CLL.
Collapse
Affiliation(s)
- Subazini Thankaswamy Kosalai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | | | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Center for Research and Technology Hellas , Thessaloniki , Greece
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Niki Stavroyianni
- Hematology Department and HCT Unit, G. Papanicolaou Hospital , Thessaloniki , Greece
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas , Thessaloniki , Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Meena Kanduri
- Department of Clinical chemistry and Transfusion medicine, Sahlgrenska University Hospital , Gothenburg , Sweden
| |
Collapse
|
23
|
Wernig-Zorc S, Yadav MP, Kopparapu PK, Bemark M, Kristjansdottir HL, Andersson PO, Kanduri C, Kanduri M. Global distribution of DNA hydroxymethylation and DNA methylation in chronic lymphocytic leukemia. Epigenetics Chromatin 2019; 12:4. [PMID: 30616658 PMCID: PMC6322269 DOI: 10.1186/s13072-018-0252-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/23/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) has been a good model system to understand the functional role of 5-methylcytosine (5-mC) in cancer progression. More recently, an oxidized form of 5-mC, 5-hydroxymethylcytosine (5-hmC) has gained lot of attention as a regulatory epigenetic modification with prognostic and diagnostic implications for several cancers. However, there is no global study exploring the role of 5-hydroxymethylcytosine (5-hmC) levels in CLL. Herein, using mass spectrometry and hMeDIP-sequencing, we analysed the dynamics of 5-hmC during B cell maturation and CLL pathogenesis. RESULTS We show that naïve B-cells had higher levels of 5-hmC and 5-mC compared to non-class switched and class-switched memory B-cells. We found a significant decrease in global 5-mC levels in CLL patients (n = 15) compared to naïve and memory B cells, with no changes detected between the CLL prognostic groups. On the other hand, global 5-hmC levels of CLL patients were similar to memory B cells and reduced compared to naïve B cells. Interestingly, 5-hmC levels were increased at regulatory regions such as gene-body, CpG island shores and shelves and 5-hmC distribution over the gene-body positively correlated with degree of transcriptional activity. Importantly, CLL samples showed aberrant 5-hmC and 5-mC pattern over gene-body compared to well-defined patterns in normal B-cells. Integrated analysis of 5-hmC and RNA-sequencing from CLL datasets identified three novel oncogenic drivers that could have potential roles in CLL development and progression. CONCLUSIONS Thus, our study suggests that the global loss of 5-hmC, accompanied by its significant increase at the gene regulatory regions, constitute a novel hallmark of CLL pathogenesis. Our combined analysis of 5-mC and 5-hmC sequencing provided insights into the potential role of 5-hmC in modulating gene expression changes during CLL pathogenesis.
Collapse
Affiliation(s)
- Sara Wernig-Zorc
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mukesh Pratap Yadav
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hallgerdur Lind Kristjansdottir
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg University, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg University, Gothenburg, Sweden.,Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
24
|
Ott CJ, Federation AJ, Schwartz LS, Kasar S, Klitgaard JL, Lenci R, Li Q, Lawlor M, Fernandes SM, Souza A, Polaski D, Gadi D, Freedman ML, Brown JR, Bradner JE. Enhancer Architecture and Essential Core Regulatory Circuitry of Chronic Lymphocytic Leukemia. Cancer Cell 2018; 34:982-995.e7. [PMID: 30503705 PMCID: PMC6298230 DOI: 10.1016/j.ccell.2018.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/16/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
Abstract
Enhancer profiling is a powerful approach for discovering cis-regulatory elements that define the core transcriptional regulatory circuits of normal and malignant cells. Gene control through enhancer activity is often dominated by a subset of lineage-specific transcription factors. By integrating measures of chromatin accessibility and enrichment for H3K27 acetylation, we have generated regulatory landscapes of chronic lymphocytic leukemia (CLL) samples and representative cell lines. With super enhancer-based modeling of regulatory circuits and assessments of transcription factor dependencies, we discover that the essential super enhancer factor PAX5 dominates CLL regulatory nodes and is essential for CLL cell survival. Targeting enhancer signaling via BET bromodomain inhibition disrupts super enhancer-dependent gene expression with selective effects on CLL core regulatory circuitry, conferring potent anti-tumor activity.
Collapse
MESH Headings
- Acetylation
- Animals
- Azepines/pharmacology
- Cell Line, Tumor
- Chromatin/drug effects
- Chromatin/genetics
- Chromatin/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Histones/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice, Knockout
- PAX5 Transcription Factor/genetics
- PAX5 Transcription Factor/metabolism
- Protein Binding
- Proteins/antagonists & inhibitors
- Proteins/genetics
- Proteins/metabolism
- Triazoles/pharmacology
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th St. Charlestown, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA.
| | - Alexander J Federation
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Logan S Schwartz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th St. Charlestown, Boston, MA 02129, USA
| | - Siddha Kasar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Josephine L Klitgaard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Romina Lenci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Qiyuan Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA; Medical School, Xiamen University, Xiamen 361102, China
| | - Matthew Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th St. Charlestown, Boston, MA 02129, USA
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Amanda Souza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Donald Polaski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Deepti Gadi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA; Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Zhang Y, Wang X, Liu Y, Sun C, Shi W, Huang H. Lenalidomide combined with R-GDP in a patient with refractory CD5-positive diffuse large B-cell lymphoma: A promising response and review. Cancer Biol Ther 2018; 19:549-553. [PMID: 29611764 DOI: 10.1080/15384047.2018.1449609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
CD5-positive (CD5+) diffuse large B-cell lymphoma (DLBCL) is associated with poor survival compared with CD5-negative DLBCL. The clinical characteristics of CD5+ DLBCL are different from both CD5-negative DLBCL and other CD5+ B cell lymphomas. There is currently no promising chemotherapy for CD5+ DLBCL. Herein, we report a 49-year-old Asian male with refractory CD5+ DLBCL. He complained of aggravated abdominal pain and weight loss. Computed tomography scan revealed abdominal masses, widespread lymphadenopathy, splenomegaly, and intussusception of the ileocecal junction with bowel wall thickening. Core needle aspiration biopsy of an abdominal mass was performed and immunohistochemistry revealed DLBCL of nongerminal center type. In this report, the dose-intensified R-Hyper CVAD (A) regimen as salvage therapy was introduced but failed to result in substantial improvement over the initially standard R-CHOP regimen. Next, the R-GDP regimen was administered as second-line treatment, but only resulted in a partial response. However, the addition of lenalidomide to R-GDP (R2-GDP) resulted in complete remission. The clinical features, pathogenesis, and possible mechanism of action of lenalidomide in CD5+ DLBCL have been described in the literature. The results of the present case report and literature searches indicate that CD5+ DLBCL may share a common pathway with activated B-cell like (ABC) DLBCL as determined by gene expression profiling. Lenalidomide is expected to induce favorable responses in patients with CD5+ DLBCL.
Collapse
Affiliation(s)
- Yaping Zhang
- a Department of Hematology , Affiliated Hospital of Nantong University , Nantong , Jiangsu , China
| | - Xinfeng Wang
- a Department of Hematology , Affiliated Hospital of Nantong University , Nantong , Jiangsu , China
| | - Yifei Liu
- b Department of Pathology , Affiliated Hospital of Nantong University , Nantong , Jiangsu , China
| | - Chunfeng Sun
- c Department of Nuclear Medicine , Affiliated Hospital of Nantong University , Nantong , Jiangsu , China
| | - Wenyu Shi
- a Department of Hematology , Affiliated Hospital of Nantong University , Nantong , Jiangsu , China
| | - Hongming Huang
- a Department of Hematology , Affiliated Hospital of Nantong University , Nantong , Jiangsu , China
| |
Collapse
|
26
|
Russo M, Milito A, Spagnuolo C, Carbone V, Rosén A, Minasi P, Lauria F, Russo GL. CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia. Oncotarget 2018; 8:42571-42587. [PMID: 28489572 PMCID: PMC5522089 DOI: 10.18632/oncotarget.17246] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the encouraging results of the innovative therapeutic treatments, complete remission is uncommon in patients affected by chronic lymphocytic leukaemia, which remains an essentially incurable disease. Recently, clinical trials based on BH3-mimetic drugs showed positive outcomes in subjects with poor prognostic features. However, resistance to treatments occurs in a significant number of patients. We previously reported that the multi-kinase inhibitor quercetin, a natural flavonol, restores sensitivity to ABT-737, a BH3-mimetic compound, in both leukemic cell lines and B-cells isolated from patients. To identify the molecular target of quercetin, we employed a new cell line, HG3, obtained by immortalization of B-cells from a chronic lymphocytic leukaemia patient at the later stage of disease. We confirmed that quercetin in association with ABT-737 synergistically enhances apoptosis in HG3 (combination index < 1 for all fractions affected). We also reported that the cellular uptake of quercetin is extremely rapid, with an intracellular concentration of about 38.5 ng/106 cells, after treatment with 25 μM for 5 min. We demonstrated that the activity of protein kinase CK2, which positively triggers PI3K/Akt pathway by inactivating PTEN phosphatase, is inhibited by quercetin immediately after its addition to HG3 cells (0–2 min). PI3K activity was also inhibited by quercetin within 60 min from the treatment. The combined inhibition of CK2 and PI3K kinase activities by quercetin restored ABT-737 sensitivity and increased lethality in human leukemia cells.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Alfonsina Milito
- Institute of Food Sciences, National Research Council, Avellino, Italy.,Current address: Stazione Zoologica "Anton Dohrn", Villa Comunale, Napoli, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Paola Minasi
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| |
Collapse
|
27
|
Quentmeier H, Pommerenke C, Ammerpohl O, Geffers R, Hauer V, MacLeod RAF, Nagel S, Romani J, Rosati E, Rosén A, Uphoff CC, Zaborski M, Drexler HG. Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation. Oncotarget 2018; 7:63456-63465. [PMID: 27566572 PMCID: PMC5325377 DOI: 10.18632/oncotarget.11524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
Genetic heterogeneity though common in tumors has been rarely documented in cell lines. To examine how often B-lymphoma cell lines are comprised of subclones, we performed immunoglobulin (IG) heavy chain hypermutation analysis. Revealing that subclones are not rare in B-cell lymphoma cell lines, 6/49 IG hypermutated cell lines (12%) consisted of subclones with individual IG mutations. Subclones were also identified in 2/284 leukemia/lymphoma cell lines exhibiting bimodal CD marker expression. We successfully isolated 10 subclones from four cell lines (HG3, SU-DHL-5, TMD-8, U-2932). Whole exome sequencing was performed to molecularly characterize these subclones. We describe in detail the clonal structure of cell line HG3, derived from chronic lymphocytic leukemia. HG3 consists of three subclones each bearing clone-specific aberrations, gene expression and DNA methylation patterns. While donor patient leukemic cells were CD5+, two of three HG3 subclones had independently lost this marker. CD5 on HG3 cells was regulated by epigenetic/transcriptional mechanisms rather than by alternative splicing as reported hitherto. In conclusion, we show that the presence of subclones in cell lines carrying individual mutations and characterized by sets of differentially expressed genes is not uncommon. We show also that these subclones can be useful isogenic models for regulatory and functional studies.
Collapse
Affiliation(s)
- Hilmar Quentmeier
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vivien Hauer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A F MacLeod
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Nagel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Romani
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Emanuela Rosati
- Department of Experimental Medicine, Bioscience and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Margarete Zaborski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G Drexler
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
28
|
Epigenetic silencing of tumor suppressor long non-coding RNA BM742401 in chronic lymphocytic leukemia. Oncotarget 2018; 7:82400-82410. [PMID: 27689399 PMCID: PMC5347700 DOI: 10.18632/oncotarget.12252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022] Open
Abstract
BM742401 is a tumor suppressor lncRNA downregulated in gastric cancer. As the promoter region and the entire transcript are embedded in a CpG island, we postulated that BM742401 is a tumor suppressor lncRNA inactivated by DNA methylation in chronic lymphocytic leukemia (CLL). The promoter of BM742401 was unmethylated in normal controls including three each of normal bone marrow, peripheral blood buffy coats, and CD19-sorted peripheral B-cells, but methylated in four (57.1%) CLL cell lines. Methylation of BM742401 correlated inversely with expression. In the completely methylated WAC3CD5+ CLL cells, 5-Aza-2′-deoxycytidine treatment led to promoter demethylation and re-expression of BM742401 transcript. Functionally, stable overexpression of BM742401 resulted in inhibition of cellular proliferation and enhanced apoptosis through caspase-9-dependent intrinsic but not caspase-8-dependent extrinsic apoptosis pathway, suggesting a tumor suppressor role of BM742401 in CLL. In primary CLL samples, methylation of BM742401 was detected in 43/98 (43.9%) of patients. Moreover, among CLL patients with standard-risk cytogenetic aberrations, methylation of BM742401 correlated with advanced Rai stage (≥ stage 2)(P = 0.002). Furthermore, BM742401 methylation was associated with miR-129-2 methylation (P = 0.05). BM742401 is a tumor suppressor lncRNA frequently methylated in CLL. The mechanism of BM742401 as a tumor suppressor warrants further studies.
Collapse
|
29
|
Haverland NA, Waas M, Ntai I, Keppel T, Gundry RL, Kelleher NL. Cell Surface Proteomics of N-Linked Glycoproteins for Typing of Human Lymphocytes. Proteomics 2018; 17. [PMID: 28834292 DOI: 10.1002/pmic.201700156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/27/2017] [Indexed: 11/12/2022]
Abstract
Lymphocytes are immune cells that are critical for the maintenance of adaptive immunity. Differentiation of lymphoid progenitors yields B-, T-, and NK-cell subtypes that individually correlate with specific forms of leukemia or lymphoma. Therefore, it is imperative a precise method of cell categorization is utilized to detect differences in distinct disease states present in patients. One viable means of classification involves evaluation of the cell surface proteome of lymphoid malignancies. Specifically, this manuscript details the use of an antibody independent approach known as Cell Surface Capture Technology, to assess the N-glycoproteome of four human lymphocyte cell lines. Altogether, 404 cell surface N-glycoproteins were identified as markers for specific cell types involved in lymphocytic malignancies, including 82 N-glycoproteins that had not been previously been described for B or T cells within the Cell Surface Protein Atlas. Comparative analysis, hierarchical clustering techniques, and label-free quantitation were used to reveal proteins most informative for each cell type. Undoubtedly, the characterization of the cell surface proteome of lymphoid malignancies is a first step toward improving personalized diagnosis and treatment of leukemia and lymphoma.
Collapse
Affiliation(s)
- Nicole A Haverland
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Matthew Waas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ioanna Ntai
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Theodore Keppel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| |
Collapse
|
30
|
Kopparapu PK, Abdelrazak Morsy MH, Kanduri C, Kanduri M. Gene-body hypermethylation controlled cryptic promoter and miR26A1-dependent EZH2 regulation of TET1 gene activity in chronic lymphocytic leukemia. Oncotarget 2017; 8:77595-77608. [PMID: 29100411 PMCID: PMC5652802 DOI: 10.18632/oncotarget.20668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
Abstract
The Ten-eleven-translocation 1 (TET1) protein is a member of dioxygenase protein family that catalyzes the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. TET1 is differentially expressed in many cancers, including leukemia. However, very little is known about mechanism behind TET1 deregulation. Previously, by characterizing global methylation patterns in CLL patients using MBD-seq, we found TET1 as one of the differentially methylated regions with gene-body hypermethylation. Herein, we characterize mechanisms that control TET1 gene activity at the transcriptional level. We show that treatment of CLL cell lines with 5-aza 2´-deoxycytidine (DAC) results in the activation of miR26A1, which causes decrease in both mRNA and protein levels of EZH2, which in turn results in the decreased occupancy of EZH2 over the TET1 promoter and consequently the loss of TET1 expression. In addition, DAC treatment also leads to the activation of antisense transcription overlapping the TET1 gene from a cryptic promoter, located in the hypermethylated intronic region. Increased expression of intronic transcripts correlates with decreased TET1 promoter activity through the loss of RNA Pol II occupancy. Thus, our data demonstrate that TET1 gene activation in CLL depends on miR26A1 regulated EZH2 binding at the TET1 promoter and silencing of novel cryptic promoter by gene-body hypermethylation.
Collapse
Affiliation(s)
- Pradeep Kumar Kopparapu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Mohammad Hamdy Abdelrazak Morsy
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
31
|
Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W, van 't Hof P, Mei H, van Dijk F, Westra HJ, Bonder MJ, van Rooij J, Verkerk M, Jhamai PM, Moed M, Kielbasa SM, Bot J, Nooren I, Pool R, van Dongen J, Hottenga JJ, Stehouwer CDA, van der Kallen CJH, Schalkwijk CG, Zhernakova A, Li Y, Tigchelaar EF, de Klein N, Beekman M, Deelen J, van Heemst D, van den Berg LH, Hofman A, Uitterlinden AG, van Greevenbroek MMJ, Veldink JH, Boomsma DI, van Duijn CM, Wijmenga C, Slagboom PE, Swertz MA, Isaacs A, van Meurs JBJ, Jansen R, Heijmans BT, 't Hoen PAC, Franke L. Identification of context-dependent expression quantitative trait loci in whole blood. Nat Genet 2016; 49:139-145. [PMID: 27918533 DOI: 10.1038/ng.3737] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
Abstract
Genetic risk factors often localize to noncoding regions of the genome with unknown effects on disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory mechanisms underlying these genetic associations. Knowledge of the context that determines the nature and strength of eQTLs may help identify cell types relevant to pathophysiology and the regulatory networks underlying disease. Here we generated peripheral blood RNA-seq data from 2,116 unrelated individuals and systematically identified context-dependent eQTLs using a hypothesis-free strategy that does not require previous knowledge of the identity of the modifiers. Of the 23,060 significant cis-regulated genes (false discovery rate (FDR) ≤ 0.05), 2,743 (12%) showed context-dependent eQTL effects. The majority of these effects were influenced by cell type composition. A set of 145 cis-eQTLs depended on type I interferon signaling. Others were modulated by specific transcription factors binding to the eQTL SNPs.
Collapse
Affiliation(s)
- Daria V Zhernakova
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Patrick Deelen
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Martijn Vermaat
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten van Iterson
- Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michiel van Galen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wibowo Arindrarto
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter van 't Hof
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Freerk van Dijk
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Harm-Jan Westra
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Marc Jan Bonder
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Marijn Verkerk
- Department of Internal Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - P Mila Jhamai
- Department of Internal Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Matthijs Moed
- Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Szymon M Kielbasa
- Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Bot
- SURFsara, Amsterdam, the Netherlands
| | | | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Jouke J Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Yang Li
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Ettje F Tigchelaar
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Niek de Klein
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - Marian Beekman
- Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris Deelen
- Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, ErasmusMC, Rotterdam, the Netherlands
| | | | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, ErasmusMC, Rotterdam, the Netherlands
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Aaron Isaacs
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands.,Genetic Epidemiology Unit, Department of Epidemiology, ErasmusMC, Rotterdam, the Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | | | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
| |
Collapse
|
32
|
Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways. Oncotarget 2016; 6:44422-36. [PMID: 26517243 PMCID: PMC4792566 DOI: 10.18632/oncotarget.6251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
We hypothesize that miR-3151, localized to a GWAS-identified chronic lymphocytic leukemia (CLL) risk locus (8q22.3), is a tumor suppressor miRNA silenced by promoter DNA methylation in CLL. The promoter of miR-3151 was methylated in 5/7 (71%) CLL cell lines, 30/98 (31%) diagnostic primary samples, but not normal controls. Methylation of miR-3151 correlated inversely with expression. Treatment with 5-Aza-2′-deoxycytidine led to promoter demethylation and miR-3151 re-expression. Luciferase assay confirmed MAP-kinase activating death domain (MADD) and phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2) as direct targets of miR-3151. Moreover, restoration of miR-3151 resulted in inhibition of cellular proliferation and enhanced apoptosis, repression of MADD and PIK3R2, downregulation of MEK/ERK and PI3K/AKT signaling, and repression of MCL1. Lastly, miR-3151 methylation was significantly associated with methylation of miR-203 and miR-34b/c in primary CLL samples. Therefore, this study showed that miR-3151 is a tumor suppressive miRNA frequently hypermethylated and hence silenced in CLL. miR-3151 silencing by DNA methylation protected CLL cells from apoptosis through over-expression of its direct targets MADD and PIK3R2, hence constitutive activation of MEK/ERK and PI3K/AKT signaling respectively, and consequently over-expression of MCL1.
Collapse
|
33
|
Subhash S, Andersson PO, Kosalai ST, Kanduri C, Kanduri M. Global DNA methylation profiling reveals new insights into epigenetically deregulated protein coding and long noncoding RNAs in CLL. Clin Epigenetics 2016; 8:106. [PMID: 27777635 PMCID: PMC5062931 DOI: 10.1186/s13148-016-0274-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Background Methyl-CpG-binding domain protein enriched genome-wide sequencing (MBD-Seq) is a robust and powerful method for analyzing methylated CpG-rich regions with complete genome-wide coverage. In chronic lymphocytic leukemia (CLL), the role of CpG methylated regions associated with transcribed long noncoding RNAs (lncRNA) and repetitive genomic elements are poorly understood. Based on MBD-Seq, we characterized the global methylation profile of high CpG-rich regions in different CLL prognostic subgroups based on IGHV mutational status. Results Our study identified 5800 hypermethylated and 12,570 hypomethylated CLL-specific differentially methylated genes (cllDMGs) compared to normal controls. From cllDMGs, 40 % of hypermethylated and 60 % of hypomethylated genes were mapped to noncoding RNAs. In addition, we found that the major repetitive elements such as short interspersed elements (SINE) and long interspersed elements (LINE) have a high percentage of cllDMRs (differentially methylated regions) in IGHV subgroups compared to normal controls. Finally, two novel lncRNAs (hypermethylated CRNDE and hypomethylated AC012065.7) were validated in an independent CLL sample cohort (48 samples) compared with 6 normal sorted B cell samples using quantitative pyrosequencing analysis. The methylation levels showed an inverse correlation to gene expression levels analyzed by real-time quantitative PCR. Notably, survival analysis revealed that hypermethylation of CRNDE and hypomethylation of AC012065.7 correlated with an inferior outcome. Conclusions Thus, our comprehensive methylation analysis by MBD-Seq provided novel hyper and hypomethylated long noncoding RNAs, repetitive elements, along with protein coding genes as potential epigenetic-based CLL-signature genes involved in disease pathogenesis and prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0274-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santhilal Subhash
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden ; Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Subazini Thankaswamy Kosalai
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, S-413 45 Gothenburg, Sweden
| |
Collapse
|
34
|
Kopparapu PK, Bhoi S, Mansouri L, Arabanian LS, Plevova K, Pospisilova S, Wasik AM, Croci GA, Sander B, Paulli M, Rosenquist R, Kanduri M. Epigenetic silencing of miR-26A1 in chronic lymphocytic leukemia and mantle cell lymphoma: Impact on EZH2 expression. Epigenetics 2016; 11:335-43. [PMID: 27052808 DOI: 10.1080/15592294.2016.1164375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Downregulation of miR26A1 has been reported in various B-cell malignancies; however, the mechanism behind its deregulation remains largely unknown. We investigated miR26A1 methylation and expression levels in a well-characterized series of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). From 450K methylation arrays, we first observed miR26A1 (cg26054057) as uniformly hypermethylated in MCL (n = 24) (all >75%), while CLL (n = 18) showed differential methylation between prognostic subgroups. Extended analysis using pyrosequencing confirmed our findings and real-time quantitative PCR verified low miR26A1 expression in both CLL (n = 70) and MCL (n = 38) compared to normal B-cells. Notably, the level of miR26A1 methylation predicted outcome in CLL, with higher levels seen in poor-prognostic, IGHV-unmutated CLL. Since EZH2 was recently reported as a target for miR26A1, we analyzed the expression levels of both miR26A1 and EZH2 in primary CLL samples and observed an inverse correlation. By overexpression of miR26A1 in CLL and MCL cell lines, reduced EZH2 protein levels were observed using both Western blot and flow cytometry. In contrast, methyl-inhibitor treatment led to upregulated miR26A1 expression with a parallel decrease of EZH2 expression. Finally, increased levels of apoptosis were observed in miR26A1-overexpressing cell lines, further underscoring the functional relevance of miR26A1. In summary, we propose that epigenetic silencing of miR26A1 is required for the maintenance of increased levels of EZH2, which in turn translate into a worse outcome, as shown in CLL, highlighting miR26A1 as a tumor suppressor miRNA.
Collapse
Affiliation(s)
- Pradeep Kumar Kopparapu
- a Department of Clinical Chemistry and Transfusion Medicine , Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University , Sweden
| | - Sujata Bhoi
- b Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala , Sweden
| | - Larry Mansouri
- b Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala , Sweden
| | - Laleh S Arabanian
- a Department of Clinical Chemistry and Transfusion Medicine , Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University , Sweden
| | - Karla Plevova
- c Central European Institute of Technology, Masaryk University and University Hospital Brno , Czech Republic
| | - Sarka Pospisilova
- c Central European Institute of Technology, Masaryk University and University Hospital Brno , Czech Republic
| | - Agata M Wasik
- d Department of Laboratory Medicine , Division of Pathology, Karolinska University Hospital , Sweden
| | | | - Birgitta Sander
- d Department of Laboratory Medicine , Division of Pathology, Karolinska University Hospital , Sweden
| | - Marco Paulli
- e Department of Molecular Medicine , University of Pavia , Italy
| | - Richard Rosenquist
- b Department of Immunology , Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala , Sweden
| | - Meena Kanduri
- a Department of Clinical Chemistry and Transfusion Medicine , Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University , Sweden
| |
Collapse
|
35
|
Fu C, Wan Y, Shi H, Gong Y, Wu Q, Yao Y, Niu M, Li Z, Xu K. Expression and regulation of CacyBP/SIP in chronic lymphocytic leukemia cell balances of cell proliferation with apoptosis. J Cancer Res Clin Oncol 2016; 142:741-8. [PMID: 26603518 DOI: 10.1007/s00432-015-2077-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, with incidence in Chinese populations also increasing. CLL involves an accumulation of abnormal B cells which result in dysregulation of cell proliferation and apoptosis rates. The calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) plays a pivotal role in tumorigenicity and cell apoptosis. Here, we investigated the function of CacyBP/SIP in CLL cell proliferation and apoptosis. METHODS CacyBP/SIP expression levels were measured in peripheral blood mononuclear cells from 23 Chinese CLL patients and three healthy donors by western blotting. Correlation analysis was performed to assess associations between CacyBP/SIP expression and clinical stage, chromosome abnormalities and zeta-chain-associated protein kinase 70 (ZAP-70) expression. We silenced CacyBP/SIP expression in MEC-1 cells using a lentivirus system and analyzed cell vitality, cell cycle and tumorigenicity. Apoptosis was also analyzed following the upregulation of CacyBP/SIP expression in MEC-1 cells. RESULTS Downregulation of CacyBP/SIP expression in CLL patients was negatively correlated with CLL clinical stage, but not with patient sex, age, del(13q14) or del(17q-) presence, or ZAP-70 expression. CacyBP/SIP silencing significantly enhanced cell proliferation and tumorigenicity. CacyBP/SIP silencing promoted accumulation of cells in S phase by upregulation of β-catenin, cyclin D1 and cyclin E, and downregulation of p21. Moreover, CacyBP/SIP overexpression facilitated CLL apoptosis through the activation of pro-caspase-3. CONCLUSION CacyBP/SIP is a useful indicator of CLL disease processes and plays an important role in sustaining the balance of cell proliferation and apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Asian People/genetics
- Blotting, Western
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Caspase 3/metabolism
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin E/metabolism
- Down-Regulation
- Enzyme Activation
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Staging
- S Phase
- Signal Transduction
- Up-Regulation
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Chunling Fu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yan Wan
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Hengliang Shi
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yanqing Gong
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
- Blood Diseases Institute or Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
36
|
Pandzic T, Larsson J, He L, Kundu S, Ban K, Akhtar-Ali M, Hellström AR, Schuh A, Clifford R, Blakemore SJ, Strefford JC, Baumann T, Lopez-Guillermo A, Campo E, Ljungström V, Mansouri L, Rosenquist R, Sjöblom T, Hellström M. Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia. Clin Cancer Res 2016; 22:6217-6227. [PMID: 26957556 DOI: 10.1158/1078-0432.ccr-15-2903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify resistance mechanisms for the chemotherapeutic drug fludarabine in chronic lymphocytic leukemia (CLL), as innate and acquired resistance to fludarabine-based chemotherapy represents a major challenge for long-term disease control. EXPERIMENTAL DESIGN We used piggyBac transposon-mediated mutagenesis, combined with next-generation sequencing, to identify genes that confer resistance to fludarabine in a human CLL cell line. RESULTS In total, this screen identified 782 genes with transposon integrations in fludarabine-resistant pools of cells. One of the identified genes is a known resistance mediator DCK (deoxycytidine kinase), which encodes an enzyme that is essential for the phosphorylation of the prodrug to the active metabolite. BMP2K, a gene not previously linked to CLL, was also identified as a modulator of response to fludarabine. In addition, 10 of 782 transposon-targeted genes had previously been implicated in treatment resistance based on somatic mutations seen in patients refractory to fludarabine-based therapy. Functional characterization of these genes supported a significant role for ARID5B and BRAF in fludarabine sensitivity. Finally, pathway analysis of transposon-targeted genes and RNA-seq profiling of fludarabine-resistant cells suggested deregulated MAPK signaling as involved in mediating drug resistance in CLL. CONCLUSIONS To our knowledge, this is the first forward genetic screen for chemotherapy resistance in CLL. The screen pinpointed novel genes and pathways involved in fludarabine resistance along with previously known resistance mechanisms. Transposon screens can therefore aid interpretation of cancer genome sequencing data in the identification of genes modifying sensitivity to chemotherapy. Clin Cancer Res; 22(24); 6217-27. ©2016 AACR.
Collapse
Affiliation(s)
- Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Snehangshu Kundu
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Kenneth Ban
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.,Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Muhammad Akhtar-Ali
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anders R Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Schuh
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Ruth Clifford
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Stuart J Blakemore
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tycho Baumann
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Elias Campo
- Unitat de Hematología, Hospital Clíınic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
FU CHUNLING, GONG YANQING, SHI XUANXUAN, SHI HENGLIANG, WAN YAN, WU QINGYUN, XU KAILIN. Expression and regulation of COP1 in chronic lymphocytic leukemia cells for promotion of cell proliferation and tumorigenicity. Oncol Rep 2015; 35:1493-500. [DOI: 10.3892/or.2015.4526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
|
38
|
Agathangelidis A, Scarfò L, Barbaglio F, Apollonio B, Bertilaccio MTS, Ranghetti P, Ponzoni M, Leone G, De Pascali V, Pecciarini L, Ghia P, Caligaris-Cappio F, Scielzo C. Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS One 2015; 10:e0130195. [PMID: 26110819 PMCID: PMC4481539 DOI: 10.1371/journal.pone.0130195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Immortalized cell lines representative of chronic lymphocytic leukemia (CLL) can assist in understanding disease pathogenesis and testing new therapeutic agents. At present, very few representative cell lines are available. We here describe the characterization of a new cell line (PCL12) that grew spontaneously from the peripheral blood (PB) of a CLL patient with progressive disease and EBV infection. The CLL cell origin of PCL12 was confirmed after the alignment of its IGH sequence against the “original” clonotypic sequence. The IGH gene rearrangement was truly unmutated and no CLL-related cytogenetic or genetic lesions were detected. PCL12 cells express CD19, CD20, CD5, CD23, low levels of IgM and IgD and the poor-outcome-associated prognostic markers CD38, ZAP70 and TCL1. In accordance with its aggressive phenotype the cell line is inactive in terms of LYN and HS1 phosphorylation. BcR signalling pathway is constitutively active and anergic in terms of p-ERK and Calcium flux response to α-IgM stimulation. PCL12 cells strongly migrate in vitro in response to SDF-1 and form clusters. Finally, they grow rapidly and localize in all lymphoid organs when xenotrasplanted in Rag2-/-γc-/- mice. PCL12 represents a suitable preclinical model for testing pharmacological agents.
Collapse
MESH Headings
- Animals
- CD5 Antigens/metabolism
- Cell Line, Tumor
- Gene Rearrangement
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Neoplasm Transplantation
- Phenotype
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Andreas Agathangelidis
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
| | - Lydia Scarfò
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federica Barbaglio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Benedetta Apollonio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maria Teresa Sabrina Bertilaccio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maurilio Ponzoni
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | - Gabriella Leone
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | | | | | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federico Caligaris-Cappio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Cristina Scielzo
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- * E-mail:
| |
Collapse
|
39
|
Koos B, Cane G, Grannas K, Löf L, Arngården L, Heldin J, Clausson CM, Klaesson A, Hirvonen MK, de Oliveira FMS, Talibov VO, Pham NT, Auer M, Danielson UH, Haybaeck J, Kamali-Moghaddam M, Söderberg O. Proximity-dependent initiation of hybridization chain reaction. Nat Commun 2015; 6:7294. [PMID: 26065580 PMCID: PMC4490387 DOI: 10.1038/ncomms8294] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/24/2015] [Indexed: 11/09/2022] Open
Abstract
Sensitive detection of protein interactions and post-translational modifications of native proteins is a challenge for research and diagnostic purposes. A method for this, which could be used in point-of-care devices and high-throughput screening, should be reliable, cost effective and robust. To achieve this, here we design a method (proxHCR) that combines the need for proximal binding with hybridization chain reaction (HCR) for signal amplification. When two oligonucleotide hairpins conjugated to antibodies bind in close proximity, they can be activated to reveal an initiator sequence. This starts a chain reaction of hybridization events between a pair of fluorophore-labelled oligonucleotide hairpins, generating a fluorescent product. In conclusion, we show the applicability of the proxHCR method for the detection of protein interactions and posttranslational modifications in microscopy and flow cytometry. As no enzymes are needed, proxHCR may be an inexpensive and robust alternative to proximity ligation assays. Proximity ligation assays are a sensitive method for detecting protein interactions, but require the addition of enzymes. Here the authors introduce proxHCR, an enzyme-free method of detecting interactions in close proximity by inducing a hybribization chain reaction (HCR) of fluorescently labelled oligonucleotides.
Collapse
Affiliation(s)
- Björn Koos
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Gaëlle Cane
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Karin Grannas
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Liza Löf
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Linda Arngården
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Johan Heldin
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Carl-Magnus Clausson
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Axel Klaesson
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - M Karoliina Hirvonen
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Felipe M S de Oliveira
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Vladimir O Talibov
- Department of Chemistry-BMC, Box 256, Uppsala University, SE-75123 Uppsala, Sweden
| | - Nhan T Pham
- School of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, C H Waddington Building, Max Born Cresent, Kings Buildings, Edinburgh EH9 3BF, UK
| | - Manfred Auer
- School of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, C H Waddington Building, Max Born Cresent, Kings Buildings, Edinburgh EH9 3BF, UK
| | - U Helena Danielson
- Department of Chemistry-BMC, Box 256, Uppsala University, SE-75123 Uppsala, Sweden
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria
| | - Masood Kamali-Moghaddam
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| | - Ola Söderberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Biomedical center, Husargatan 3, Box 815, SE-75108 Uppsala, Sweden
| |
Collapse
|
40
|
Mansouri L, Sutton LA, Ljungström V, Bondza S, Arngården L, Bhoi S, Larsson J, Cortese D, Kalushkova A, Plevova K, Young E, Gunnarsson R, Falk-Sörqvist E, Lönn P, Muggen AF, Yan XJ, Sander B, Enblad G, Smedby KE, Juliusson G, Belessi C, Rung J, Chiorazzi N, Strefford JC, Langerak AW, Pospisilova S, Davi F, Hellström M, Jernberg-Wiklund H, Ghia P, Söderberg O, Stamatopoulos K, Nilsson M, Rosenquist R. Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2015; 212:833-43. [PMID: 25987724 PMCID: PMC4451125 DOI: 10.1084/jem.20142009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022]
Abstract
Mansouri et al. applied targeted deep sequencing to identify mutations within NF-κB core complex genes in CLL. NFKBIE, the gene encoding the inhibitory IκBε molecule, was most frequently mutated, especially in poor-prognostic subgroups of CLL. The authors show that NFKBIE mutations were associated with significantly reduced IkBε expression and p65 inhibition, ultimately leading to NF-κB activation and a more aggressive disease. NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Sina Bondza
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Linda Arngården
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Sujata Bhoi
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Jimmy Larsson
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Diego Cortese
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Antonia Kalushkova
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Karla Plevova
- Central European Institute of Technology, Masaryk University and University Hospital Brno, 601 77 Brno, Czech Republic
| | - Emma Young
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Rebeqa Gunnarsson
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Peter Lönn
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Alice F Muggen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 CE Rotterdam, Netherlands
| | - Xiao-Jie Yan
- The Karches Center for Chronic Lymphocytic Leukemia Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, 141 86 Huddinge, Stockholm, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Karin E Smedby
- Clinical Epidemiology Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Gunnar Juliusson
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Chrysoula Belessi
- Hematology Department, General Hospital of Nikea, 18454 Piraeus, Greece
| | - Johan Rung
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Nicholas Chiorazzi
- The Karches Center for Chronic Lymphocytic Leukemia Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Jonathan C Strefford
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, England, UK
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 CE Rotterdam, Netherlands
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University and University Hospital Brno, 601 77 Brno, Czech Republic
| | - Frederic Davi
- Department of Hematology, Pitié-Salpêtrière Hospital, F-75013 Paris, France Cordeliers Research Center, UMR_S 1138, UPMC University of Paris 6, F-75005 Paris, France
| | - Mats Hellström
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Helena Jernberg-Wiklund
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Paolo Ghia
- Divisione di Oncologia Sperimentale, Dipartimento di Onco-Ematologia, IRCCS Istituto Scientifico San Raffaele and Fondazione Centro San Raffaele, 20132 Milano, Italy Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Ola Söderberg
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Kostas Stamatopoulos
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden Institute of Applied Biosciences, Center for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Mats Nilsson
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| |
Collapse
|
41
|
Kopparapu PK, Miranda C, Fogelstrand L, Mishra K, Andersson PO, Kanduri C, Kanduri M. MCPH1 maintains long-term epigenetic silencing of ANGPT2 in chronic lymphocytic leukemia. FEBS J 2015; 282:1939-52. [PMID: 25703238 DOI: 10.1111/febs.13245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/27/2015] [Accepted: 02/17/2015] [Indexed: 12/15/2022]
Abstract
The microcephalin gene (MCPH1) [also known as inhibitor of human telomerase reverse transcriptase (hTERT) expression] is a tumor suppressor gene that is functionally involved in the DNA damage response. Angiopoietin 2 (ANGPT2) is a crucial factor regulating tumor angiopoiesis. Deregulation of angiogenesis is one of the hallmarks of many cancers, including chronic lymphocytic leukemia (CLL). In CLL, ANGPT2 is a well-studied potential prognostic marker. As MCPH1 overlaps with the ANGPT2 transcription unit on the same chromosome but in the opposite orientation, we wanted to study the functional role of MCPH1 in regulation of ANGPT2 in CLL. The mRNA expression levels of MCPH1 and ANGPT2, including the MCPH1 target gene hTERT, showed significant differences between two prognostic groups, i.e. IGHV-mutated and IGHV-unmutated (P = 0.007 for MCPH1, P = 0.0002 for ANGPT2, and P = 0.00001 for hTERT), in which the expression level of MCPH1 was inversely correlated with the expression levels of hTERT and ANGPT2. Downregulation of MCPH1 resulted in upregulation of ANGPT2, accompanied by loss of its promoter methylation. Using chromatin immunoprecipitation and coimmunoprecipitation assays, we found that MCPH1 binds to the ANGPT2 promoter and recruits DNA methyltransferases, thereby silencing ANGPT2. Thus, our data suggest a novel function for MCPH1 in regulating and maintaining ANGPT2 silencing in CLL through regulation of promoter DNA methylation.
Collapse
Affiliation(s)
- Pradeep Kumar Kopparapu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Sweden
| | - Caroline Miranda
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Sweden
| | - Kankadeb Mishra
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Sweden
| | - Per-Ola Andersson
- Department of Internal Medicine and Oncology, Borås Hospital, Sweden.,Department of Medicine, Sahlgrenska Academy, Gothenburg University, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Sweden
| |
Collapse
|
42
|
Klein E, Nagy N, Rasul AE. EBV genome carrying B lymphocytes that express the nuclear protein EBNA-2 but not LMP-1: Type IIb latency. Oncoimmunology 2014; 2:e23035. [PMID: 23526738 PMCID: PMC3601171 DOI: 10.4161/onci.23035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The potentially oncogenic Epstein-Barr virus (EBV) is carried by almost all humans in a well equilibrated coexistence. The phenotype of the cells that carry EBV genomes is determined by virally-encoded and cellular proteins. B lymphocyte is the main target of the virus and latent infection of this cell induces proliferation. Nine virus-encoded genes participate in the “growth program” that is expressed in a narrow differentiation window of the B cell. Such cells have the potential to develop malignant proliferations. However, several control mechanism eliminate this danger and the general chronic virus carrier state is most often asymptomatic. One mechanism exploits the normal regulation in the immune system, the T cell mediated modulation of the B cell differentiation state. Another is based on cognate recognition and elimination of the infected cells. The expression of EBV encoded genes in B lymphocytes can be also “restricted,” they do not express all components of the viral growth program. Here, we discuss a rare viral expression in B cells that has not been connected with malignant transformation yet.
Collapse
Affiliation(s)
- Eva Klein
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | | | | |
Collapse
|
43
|
Yu Z, Chen D, Su Z, Li Y, Yu W, Zhang Q, Yang L, Li C, Yang S, Ni L, Gui Y, Mao Z, Lai Y. miR‑886‑3p upregulation in clear cell renal cell carcinoma regulates cell migration, proliferation and apoptosis by targeting PITX1. Int J Mol Med 2014; 34:1409-16. [PMID: 25190136 DOI: 10.3892/ijmm.2014.1923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/28/2014] [Indexed: 11/06/2022] Open
Abstract
miR‑886‑3p has been discovered to be involved in the oncogenesis, progression and metastasis of several types of human cancer. The aim of the present study was to identify the biological function of miR‑886‑3p in clear cell renal cell carcinoma (ccRCC) and to determine its possible molecular mechanisms. miR‑886‑3p was found to be significantly upregulated in ccRCC tissues (P<0.05), in accordance with a previous sequencing result. Functional experiments revealed that forced downregulation of miR‑886‑3p significantly inhibited cellular migration, suppressed cell proliferation and induced cell apoptosis of renal cancer cells. Paired‑like homeodomain 1 (PITX1), which has been identified as a tumor suppressor, was found to be downregulated in ccRCC tissues and identified as a target gene of miR‑886‑3p. Further experiments demonstrated that the protein level, and not the mRNA level, of PITX1 was significantly decreased or increased when miR‑886‑3p was upregulated or downregulated, respectively, indicating that miR‑886‑3p acted as an oncogene by directly regulating the protein expression of PITX1 at a post‑transcriptional level. In conclusion, this study revealed that miR‑886‑3p was upregulated in ccRCC and was involved in cellular migration, proliferation and apoptosis of renal cancer cells by directly targeting the tumor suppressor gene, PITX1.
Collapse
Affiliation(s)
- Zuhu Yu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Duqun Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Zhengming Su
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Wenshui Yu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Qiang Zhang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Lihua Yang
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Cailing Li
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Liangchao Ni
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100083, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU‑HKUST Medical Center, Shenzhen 518036, P.R. China
| |
Collapse
|
44
|
Rasul E, Salamon D, Nagy N, Leveau B, Banati F, Szenthe K, Koroknai A, Minarovits J, Klein G, Klein E. The MEC1 and MEC2 lines represent two CLL subclones in different stages of progression towards prolymphocytic leukemia. PLoS One 2014; 9:e106008. [PMID: 25162594 PMCID: PMC4146575 DOI: 10.1371/journal.pone.0106008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022] Open
Abstract
The EBV carrying lines MEC1 and MEC2 were established earlier from explants of blood derived cells of a chronic lymphocytic leukemia (CLL) patient at different stages of progression to prolymphocytoid transformation (PLL). This pair of lines is unique in several respects. Their common clonal origin was proven by the rearrangement of the immunoglobulin genes. The cells were driven to proliferation in vitro by the same indigenous EBV strain. They are phenotypically different and represent subsequent subclones emerging in the CLL population. Furthermore they reflect the clinical progression of the disease. We emphasize that the support for the expression of the EBV encoded growth program is an important differentiation marker of the CLL cells of origin that was shared by the two subclones. It can be surmised that proliferation of EBV carrying cells in vitro, but not in vivo, reflects the efficient surveillance that functions even in the severe leukemic condition. The MEC1 line arose before the aggressive clinical stage from an EBV carrying cell within the subclone that was in the early prolymphocytic transformation stage while the MEC2 line originated one year later, from the subsequent subclone with overt PLL characteristics. At this time the disease was disseminated and the blood lymphocyte count was considerably elevated. The EBV induced proliferation of the MEC cells belonging to the subclones with markers of PLL agrees with earlier reports in which cells of PLL disease were infected in vitro and immortalized to LCL. They prove also that the expression of EBV encoded set of proteins can be determined at the event of infection. This pair of lines is particularly important as they provide in vitro cells that represent the subclonal evolution of the CLL disease. Furthermore, the phenotype of the MEC1 cells shares several characteristics of ex vivo CLL cells.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Biomarkers/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Clonal Evolution/immunology
- Clone Cells/immunology
- Clone Cells/pathology
- Clone Cells/virology
- Disease Progression
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression
- Herpesvirus 4, Human/physiology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukemia, Prolymphocytic/immunology
- Leukemia, Prolymphocytic/pathology
- Leukemia, Prolymphocytic/virology
- Lymphocyte Count
- Time Factors
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Daniel Salamon
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Benjamin Leveau
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Ferenc Banati
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Kalman Szenthe
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Anita Koroknai
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| |
Collapse
|
45
|
Wang LQ, Kwong YL, Wong KF, Kho CSB, Jin DY, Tse E, Rosèn A, Chim CS. Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J Transl Med 2014; 12:52. [PMID: 24559316 PMCID: PMC3941938 DOI: 10.1186/1479-5876-12-52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND TP53 mutation/deletion is uncommon in chronic lymphocytic leukemia (CLL). We postulated that components of TP53-centered tumor suppressor network, miR-34b/c, in addition to DAPK1 and miR-34a might be inactivated by DNA hypermethylation. Moreover, we tested if miR-34b/c methylation might correlate with miR-203 or miR-124-1 methylation in CLL. METHODS miR-34b/c, miR-34a and DAPK1 methylation was studied in 11 normal controls, 7 CLL cell lines, and 78 diagnostic CLL samples by methylation-specific polymerase chain reaction. MEC-1 cells were treated with 5-Aza-2'-deoxycytidine for reversal of methylation-associated miRNA silencing. Tumor suppressor properties of miR-34b were demonstrated by over-expression of precursor miR-34b in MEC-1 cells. RESULTS miR-34b/c promoter was unmethylated in normal controls, but completely methylated in 4 CLL cell lines. miR-34b/c expression was inversely correlated with miR-34b/c methylation. Different MSP statuses of miR-34b/c, including complete methylation and complete unmethylation, were verified by quantitative bisulfite pyrosequencing. 5-Aza-2'-deoxycytidine treatment resulted in promoter demethylation and miR-34b re-expression in MEC1 cells. Moreover, over-expression of miR-34b resulted in inhibition of cellular proliferation and increased cell death. In primary CLL samples, miR-34a, miR-34b/c and DAPK1 methylation was detected in 2.6%, 17.9% and 34.6% of patients at diagnosis respectively. Furthermore, 39.7%, 3.8% and 2.6% patients had methylation of one, two or all three genes respectively. Overall, 46.2% patients had methylation of at least one of these three genes. Besides, miR-34b/c methylation was associated with methylation of miR-34a (P = 0.03) and miR-203 (P = 0.012) in CLL. CONCLUSIONS Taken together, miR-34b/c is a tumor suppressor miRNA frequently methylated, and hence silenced in CLL. Together with DAPK1 methylation, miR-34b/c methylation is implicated in the disruption of the TP53-centered tumor suppressor network. Moreover, the association of miRNA methylation warrants further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
46
|
Wang LQ, Kwong YL, Kho CSB, Wong KF, Wong KY, Ferracin M, Calin GA, Chim CS. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia--implications on constitutive activation of NFκB pathway. Mol Cancer 2013; 12:173. [PMID: 24373626 PMCID: PMC3877874 DOI: 10.1186/1476-4598-12-173] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/20/2013] [Indexed: 01/12/2023] Open
Abstract
Background The miR-9 family microRNAs have been identified as a tumor suppressor miRNA in cancers. We postulated that miR-9-1, miR-9-2 and miR-9-3 might be inactivated by DNA hypermethylation in chronic lymphocytic leukemia (CLL). Methods Methylation of miR-9-1, miR-9-2 and miR-9-3 was studied in eight normal controls including normal bone marrow, buffy coat, and CD19-sorted peripheral blood B-cells from healthy individuals, seven CLL cell lines, and seventy-eight diagnostic CLL samples by methylation-specific polymerase chain reaction. Results The promoters of miR-9-3 and miR-9-1 were both unmethylated in normal controls, but methylated in five (71.4%) and one of seven CLL cell lines respectively. However, miR-9-2 promoter was methylated in normal controls including CD19 + ve B-cells, hence suggestive of a tissue-specific but not tumor-specific methylation, and thus not further studied. Different MSP statuses of miR-9-3, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite methylation analysis. 5-Aza-2′-deoxycytidine treatment resulted in miR-9-3 promoter demethylation and re-expression of pri-miR-9-3 in I83-E95 and WAC3CD5+ cells, which were homozygously methylated for miR-9-3. Moreover, overexpression of miR-9 led to suppressed cell proliferation and enhanced apoptosis together with downregulation of NFκB1 in I83-E95 cells, supporting a tumor suppressor role of miR-9-3 in CLL. In primary CLL samples, miR-9-3 was detected in 17% and miR-9-1 methylation in none of the patients at diagnosis. Moreover, miR-9-3 methylation was associated with advanced Rai stage (≥ stage 2) (P = 0.04). Conclusions Of the miR-9 family, miR-9-3 is a tumor suppressor miRNA relatively frequently methylated, and hence silenced in CLL; whereas miR-9-1 methylation is rare in CLL. The role of miR-9-3 methylation in the constitutive activation of NFκB signaling pathway in CLL warrants further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Hertlein E, Beckwith KA, Lozanski G, Chen TL, Towns WH, Johnson AJ, Lehman A, Ruppert AS, Bolon B, Andritsos L, Lozanski A, Rassenti L, Zhao W, Jarvinen TM, Senter L, Croce CM, Symer DE, de la Chapelle A, Heerema NA, Byrd JC. Characterization of a new chronic lymphocytic leukemia cell line for mechanistic in vitro and in vivo studies relevant to disease. PLoS One 2013; 8:e76607. [PMID: 24130782 PMCID: PMC3793922 DOI: 10.1371/journal.pone.0076607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/26/2013] [Indexed: 12/30/2022] Open
Abstract
Studies of chronic lymphocytic leukemia (CLL) have yielded substantial progress, however a lack of immortalized cell lines representative of the primary disease has hampered a full understanding of disease pathogenesis and development of new treatments. Here we describe a novel CLL cell line (OSU-CLL) generated by EBV transformation, which displays a similar cytogenetic and immunophenotype observed in the patient’s CLL (CD5 positive with trisomy 12 and 19). A companion cell line was also generated from the same patient (OSU-NB). This cell line lacked typical CLL characteristics, and is likely derived from the patient’s normal B cells. In vitro migration assays demonstrated that OSU-CLL exhibits migratory properties similar to primary CLL cells whereas OSU-NB has significantly reduced ability to migrate spontaneously or towards chemokine. Microarray analysis demonstrated distinct gene expression patterns in the two cell lines, including genes on chromosomes 12 and 19, which is consistent with the cytogenetic profile in this cell line. Finally, OSU-CLL was readily transplantable into NOG mice, producing uniform engraftment by three weeks with leukemic cells detectable in the peripheral blood spleen and bone marrow. These studies describe a new CLL cell line that extends currently available models to study gene function in this disease.
Collapse
Affiliation(s)
- Erin Hertlein
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Kyle A. Beckwith
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Gerard Lozanski
- Department of Pathology, the Ohio State University, Columbus, Ohio, United States of America
| | - Timothy L. Chen
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - William H. Towns
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Amy J. Johnson
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Amy Lehman
- Center for Biostatistics, the Ohio State University, Columbus, Ohio, United States of America
| | - Amy S. Ruppert
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Brad Bolon
- Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared Resource, the Ohio State University, Columbus, Ohio, United States of America
| | - Leslie Andritsos
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Arletta Lozanski
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Laura Rassenti
- Moores University of California-San Diego Cancer Center, University of California San Diego, California, United States of America
| | - Weiqiang Zhao
- Department of Pathology, the Ohio State University, Columbus, Ohio, United States of America
| | - Tiina M. Jarvinen
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Leigha Senter
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - David E. Symer
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Albert de la Chapelle
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Nyla A. Heerema
- Department of Pathology, the Ohio State University, Columbus, Ohio, United States of America
| | - John C. Byrd
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
- *
| |
Collapse
|
48
|
Kanduri M, Sander B, Ntoufa S, Papakonstantinou N, Sutton LA, Stamatopoulos K, Kanduri C, Rosenquist R. A key role for EZH2 in epigenetic silencing of HOX genes in mantle cell lymphoma. Epigenetics 2013; 8:1280-8. [PMID: 24107828 DOI: 10.4161/epi.26546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The chromatin modifier EZH2 is overexpressed and associated with inferior outcome in mantle cell lymphoma (MCL). Recently, we demonstrated preferential DNA methylation of HOX genes in MCL compared with chronic lymphocytic leukemia (CLL), despite these genes not being expressed in either entity. Since EZH2 has been shown to regulate HOX gene expression, to gain further insight into its possible role in differential silencing of HOX genes in MCL vs. CLL, we performed detailed epigenetic characterization using representative cell lines and primary samples. We observed significant overexpression of EZH2 in MCL vs. CLL. Chromatin immune precipitation (ChIP) assays revealed that EZH2 catalyzed repressive H3 lysine 27 trimethylation (H3K27me3), which was sufficient to silence HOX genes in CLL, whereas in MCL H3K27me3 is accompanied by DNA methylation for a more stable repression. More importantly, hypermethylation of the HOX genes in MCL resulted from EZH2 overexpression and subsequent recruitment of the DNA methylation machinery onto HOX gene promoters. The importance of EZH2 upregulation in this process was further underscored by siRNA transfection and EZH2 inhibitor experiments. Altogether, these observations implicate EZH2 in the long-term silencing of HOX genes in MCL, and allude to its potential as a therapeutic target with clinical impact.
Collapse
Affiliation(s)
- Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; Gothenburg University; Gothenburg, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine; Division of Pathology; Karolinska Institutet and Karolinska University Hospital; Huddinge, Sweden
| | - Stavroula Ntoufa
- Hematology Department and HCT Unit G. Papanicolaou Hospital; Thessaloniki, Greece; Institute of Applied Biosciences; CERTH; Thessaloniki, Greece
| | - Nikos Papakonstantinou
- Hematology Department and HCT Unit G. Papanicolaou Hospital; Thessaloniki, Greece; Institute of Applied Biosciences; CERTH; Thessaloniki, Greece
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala, Sweden
| | - Kostas Stamatopoulos
- Hematology Department and HCT Unit G. Papanicolaou Hospital; Thessaloniki, Greece; Institute of Applied Biosciences; CERTH; Thessaloniki, Greece
| | - Chandrasekhar Kanduri
- Department of Medical and Clinical Genetics; Department of Biomedicine; The Sahlgrenska Academy; Gothenburg University; Gothenburg, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala, Sweden
| |
Collapse
|
49
|
Lanemo Myhrinder A, Hellqvist E, Bergh AC, Jansson M, Nilsson K, Hultman P, Jonasson J, Buhl AM, Bredo Pedersen L, Jurlander J, Klein E, Weit N, Herling M, Rosenquist R, Rosén A. Molecular characterization of neoplastic and normal "sister" lymphoblastoid B-cell lines from chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54:1769-79. [PMID: 23297799 DOI: 10.3109/10428194.2013.764418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chronic lymphocytic leukemia (CLL) B-cells resemble self-renewing CD5 + B-cells carrying auto/xeno-antigen-reactive B-cell receptors (BCRs) and multiple innate pattern-recognition receptors, such as Toll-like receptors and scavenger receptors. Integration of signals from BCRs with multiple surface membrane receptors determines whether the cells will be proliferating, anergic or apoptotic. To better understand the role of antigen in leukemogenesis, CLL cell lines producing monoclonal antibodies (mAbs) will facilitate structural analysis of antigens and supply DNA for genetic studies. We present here a comprehensive genotypic and phenotypic characterization of available CLL and normal B-cell-derived lymphoblastoid cell lines (LCLs) from the same individuals (n = 17). Authenticity and verification studies of CLL-patient origin were done by IGHV sequencing, fluorescence in situ hybridization (FISH) and DNA/short tandem repeat (STR) fingerprinting. Innate B-cell features, i.e. natural Ab production and CD5 receptors, were present in most CLL cell lines, but in none of the normal LCLs. This panel of immortalized CLL-derived cell lines is a valuable reference representing a renewable source of authentic Abs and DNA.
Collapse
Affiliation(s)
- Anna Lanemo Myhrinder
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Söderberg A, Hossain A, Rosén A. A protein disulfide isomerase/thioredoxin-1 complex is physically attached to exofacial membrane tumor necrosis factor receptors: overexpression in chronic lymphocytic leukemia cells. Antioxid Redox Signal 2013; 18:363-75. [PMID: 22775451 DOI: 10.1089/ars.2012.4789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS The 3D structures and functions of cysteine-rich receptors such as tumor necrosis factor receptors (TNFRs) are redox-modulated by dithiol-disulfide exchange. TNFR superfamily members participate in growth regulation in B-cell chronic lymphocytic leukemia (CLL), and tissue stromal cells interact with leukemia cells, profoundly affecting their viability via release of redox-active components, including cysteine, thioredoxin-1 (Trx1), and Trx reductase. Trx1 was previously shown to enhance release of TNF, which acts as an autocrine/paracrine growth factor in CLL. The nature of the mechanism is not known, however. Here, we investigated whether Trx1 and protein disulfide isomerase (PDI), a chaperone and Trx-family member, may interact with TNFRs. RESULTS We found direct physical association between PDI and TNFR1 or TNFR2 by coclustering and affinity isolation. PDI (57 kDa) formed covalent/reduction-sensitive 69-kDa complexes with Trx1 (12 kDa) in a majority of CLL cell samples, detected at low levels only in control B-cells. Functionally, the TNF/TNFR signaling via the nuclear factor kappa B-driven autocrine loop was disrupted in a dose-dependent fashion by PDI-inhibitors bacitracin, anti-PDI, or anti-Trx1 antibodies, resulting in reduced viability. PDI was significantly overexpressed in immunoglobulin heavy-chain variable (IGHV) unmutated versus mutated CLL (p=0.0102), and amplified TNF release was observed in the former group. INNOVATION This study points out a previously unrecognized physical and functional association of TNFRs with the redox-active proteins PDI and Trx1. CONCLUSION We describe here a new level of TNF regulation, in which membrane TNFRs are redox controlled at the exofacial surface by PDI/Trx1. These findings shed new light on the observed survival benefit in CLL B-cells exerted by TNFR-superfamily ligands and point at potential therapeutic strategies.
Collapse
Affiliation(s)
- Anita Söderberg
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|