1
|
Shireman JM, Gonugunta N, Zhao L, Pattnaik A, Distler E, Her S, Wang X, Das R, Galipeau J, Dey M. GM-CSF and IL-7 fusion cytokine engineered tumor vaccine generates long-term Th-17 memory cells and increases overall survival in aged syngeneic mouse models of glioblastoma. Aging Cell 2023; 22:e13864. [PMID: 37165998 PMCID: PMC10352573 DOI: 10.1111/acel.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
Age-related immune dysfunctions, such as decreased T-cell output, are closely related to pathologies like cancers and lack of vaccine efficacy among the elderly. Engineered fusokine, GIFT-7, a fusion of interleukin 7 (IL-7) and GM-CSF, can reverse aging-related lymphoid organ atrophy. We generated a GIFT-7 fusokine tumor vaccine and employed it in aged syngeneic mouse models of glioblastoma and found that peripheral vaccination with GIFT-7TVax resulted in thymic regeneration and generated durable long-term antitumor immunity specifically in aged mice. Global cytokine analysis showed increased pro-inflammatory cytokines including IL-1β in the vaccinated group that resulted in hyperactivation of dendritic cells. In addition, GIFT-7 vaccination resulted in increased T-cell trafficking to the brain and robust Th-17 long-term effector memory T-cell formation. TCR-seq analysis showed increased productive frequency among detected rearrangements within the vaccinated group. Overall, our data demonstrate that aging immune system can be therapeutically augmented to generate lasting antitumor immunity.
Collapse
Affiliation(s)
- Jack M. Shireman
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Nikita Gonugunta
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Lei Zhao
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Akshita Pattnaik
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Emily Distler
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Skyler Her
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Xiaohu Wang
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Rahul Das
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Jaques Galipeau
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Mahua Dey
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| |
Collapse
|
2
|
Shafique QUA, Rehman HM, Zaheer T, Tahir RA, Bhinder MA, Gul R, Saleem M. A Computational Approach to Modeling an Antagonistic Angiogenic VEGFR1-IL2 Fusion Protein for Cancer Therapy. Bioinform Biol Insights 2021; 15:11779322211043297. [PMID: 34566410 PMCID: PMC8458685 DOI: 10.1177/11779322211043297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
In cancer treatment, immunotherapy has great potential for improving the prognosis of patients with hematologic and solid malignancies. In this study, various bioinformatics tools and servers were used to design an antiangiogenic fusion protein. After comprehensive evaluation, an antiangiogenic fusion protein was designed using a soluble extracellular domain of human vascular endothelial growth factor receptor 1 (sVEGFR-1) and human interleukin-2 (IL-2) joined by a flexible linker. The final construct was composed of 875 amino acids. The secondary structure of the fusion protein, obtained by CFSSP, PSIPRED, and SOPMA tools, consisted of 14.17% helices, 29.71% extended strands, 4.69% beta turns and 51.43% random coils. Tertiary structure prediction by Raptor X showed that the fusion protein comprises 3 domains with 875 modeled amino acids, out of which 26 positions (2%) were considered disordered. The Ramachandran plot revealed 89.3%, 7.1%, and 3.6% amino acid residues in favored, allowed, and outlier regions, respectively. Physical features of the Molecular Dynamic (MD) simulated system such as root mean square deviation, root mean square fluctuation, solvent-on hand surface region, and radius of gyration identified the fusion construct as a stable and compact protein with few fluctuations in its overall structure. Docking of the fusion protein showed that interaction between sVEGFR-1/VEGFA and IL-2/IL-2R still exists. In silico analysis revealed that the fusion protein comprising IL-2 and sVEGFR-1 has stable structure and the selected linker can efficiently separate the two domains. These observations may be helpful in determining protein stability prior to protein expression.
Collapse
Affiliation(s)
| | - Hafiz Muzzammel Rehman
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Tahreem Zaheer
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rana Adnan Tahir
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Roquyya Gul
- Faculty of Life Sciences, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Mahjabeen Saleem
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Salah A, Wang H, Li Y, Ji M, Ou WB, Qi N, Wu Y. Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Front Cell Dev Biol 2021; 9:686544. [PMID: 34262904 PMCID: PMC8273339 DOI: 10.3389/fcell.2021.686544] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yanqin Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Ji
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nianmin Qi
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Van der Jeught K, Joe PT, Bialkowski L, Heirman C, Daszkiewicz L, Liechtenstein T, Escors D, Thielemans K, Breckpot K. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 2015; 5:10100-13. [PMID: 25338019 PMCID: PMC4259408 DOI: 10.18632/oncotarget.2463] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/06/2014] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that the success of immunotherapy depends on the presence of tumor-specific CD8⁺ cytotoxic T cells and the modulation of the tumor environment. In this study, we validated mRNA encoding soluble factors as a tool to modulate the tumor microenvironment to potentiate infiltration of tumor-specific T cells. Intratumoral delivery of mRNA encoding a fusion protein consisting of interferon-β and the ectodomain of the transforming growth factor-β receptor II, referred to as Fβ², showed therapeutic potential. The treatment efficacy was dependent on CD8⁺ T cells and could be improved through blockade of PD-1/PD-L1 interactions. In vitro studies revealed that administration of Fβ² to tumor cells resulted in a reduced proliferation and increased expression of MHC I but also PD-L1. Importantly, Fβ² enhanced the antigen presenting capacity of dendritic cells, whilst reducing the suppressive activity of myeloid-derived suppressor cells. In conclusion, these data suggest that intratumoral delivery of mRNA encoding soluble proteins, such as Fβ², can modulate the tumor microenvironment, leading to effective antitumor T cell responses, which can be further potentiated through combination therapy.
Collapse
Affiliation(s)
- Kevin Van der Jeught
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick Tjok Joe
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Bialkowski
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lidia Daszkiewicz
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - David Escors
- Rayne Institute, University College London, London, UK. Biomedical Research Centre NavarraBiomed-Fundacion Miguel Servet, National Health Service of Navarre, Pamplona, Navarre, Spain
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Ng S, Galipeau J. Concise review: engineering the fusion of cytokines for the modulation of immune cellular responses in cancer and autoimmune disorders. Stem Cells Transl Med 2015; 4:66-73. [PMID: 25391644 PMCID: PMC4275010 DOI: 10.5966/sctm.2014-0145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/13/2014] [Indexed: 01/04/2023] Open
Abstract
As our understanding of the basic precepts of immunobiology continue to advance at a rapid pace, translating such discoveries into meaningful therapies for patients has proved challenging. This is especially apparent in the use of cytokine-based immunotherapies for cancer. Unanticipated and serious side effects, as well as low objective response rates seen in clinical trials, have dealt setbacks to the field. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and common γ-chain (γ-c) interleukins are cytokines that have been used as stand-alone immunotherapies with moderate success. Our group has found that the fusion of GM-CSF to members of γ-c interleukins results in the generation of novel proteins with unique signaling properties and unheralded biological effects. These fusion proteins, termed GIFT (GM-CSF interleukin fusion transgenes) fusokines, are the result of combining GM-CSF and a γ-c interleukin into a single, bifunctional polypeptide. In our experience, GIFT fusokines often confer immune cells with a gain of function that cannot be explained by the mere sum of their constituent moieties. They act as bispecific ligands, coupling activated GM-CSF and interleukin receptors together to drive unique downstream signaling events. The synergy that arises from these fusions has shown great promise in its ability to modulate the immune response and overcome maladaptive biological processes that underlie diseases such as cancer and autoimmune conditions. In this review, we discuss the ways in which the GIFT fusokines are able to alter the immune response, particularly in disease states, with a special emphasis on how these novel molecules may be translated into effective therapies in the clinical setting.
Collapse
Affiliation(s)
- Spencer Ng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, and Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, and Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Maltose-binding protein fusion allows for high level bacterial expression and purification of bioactive mammalian cytokine derivatives. PLoS One 2014; 9:e106724. [PMID: 25198691 PMCID: PMC4157803 DOI: 10.1371/journal.pone.0106724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/05/2014] [Indexed: 01/25/2023] Open
Abstract
Fusokines are chimeric proteins generated by the physical coupling of cytokines in a single polypeptide, resulting in proteins with highly pleiotropic activity and the potential to treat cancer and autoimmune ailments. For instance, the fusokine GIFT15 (GM-CSF and Interleukin 15 Fusion Transgene) has been shown to be a powerful immunosuppressive protein able to convert naïve B cells into IL-10-producing B cells. To date, the mammalian cell systems used for the expression of GIFT15 allow for secretion of the protein in the culturing media, an inefficient system for producing GMP-compliant fusokines. In this study we report the bacterial expression of bioactive recombinant GIFT15 (rGIFT15). Indeed, there is a constant demand to improve the expression systems for therapeutic proteins. Expression of a maltose-binding protein (MBP) fusion protein efficiently allowed the accumulation of soluble protein in the intracellular milieu. Optimizing the bacterial culture significantly increased the yield of recombinant protein. The biological activity of rGIFT15 was comparable to that of fusokine derived from a mammalian source. This approach led to the production of soluble, endotoxin-free functional protein, averaging 5 mg of rGIFT15 per liter of culture. This process is amenable to scale up for the development of Food and Drug Administration (FDA)-compliant immune-modulatory rGIFT15.
Collapse
|