1
|
Milette S, Hashimoto M, Perrino S, Qi S, Chen M, Ham B, Wang N, Istomine R, Lowy AM, Piccirillo CA, Brodt P. Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases. Nat Commun 2019; 10:5745. [PMID: 31848339 PMCID: PMC6917725 DOI: 10.1038/s41467-019-13571-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Liver metastases (LM) remain a major cause of cancer-associated death and a clinical challenge. Here we explore a sexual dimorphism observed in the regulation of the tumor immune microenvironment (TIME) of LM, wherein the accumulation of myeloid-derived suppressor cells (MDSC) and regulatory T cells in colon and lung carcinoma LM is TNFR2-dependent in female, but not in male mice. In ovariectomized mice, a marked reduction is observed in colorectal, lung and pancreatic carcinoma LM that is reversible by estradiol reconstitution. This is associated with reduced liver MDSC accumulation, increased interferon-gamma (IFN-γ) and granzyme B production in CD8+ T cells and reduced TNFR2, IDO2, TDO and Serpin B9 expression levels. Treatment with tamoxifen increases liver cytotoxic T cell accumulation and reduces colon cancer LM. The results identify estrogen as a regulator of a pro-metastatic immune microenvironment in the liver and a potential target in the management of liver metastatic disease.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor/transplantation
- Colonic Neoplasms/pathology
- Disease Models, Animal
- Estradiol/administration & dosage
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogens/immunology
- Estrogens/metabolism
- Female
- Humans
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/secondary
- Lung Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Ovariectomy
- Pancreatic Neoplasms/pathology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sex Factors
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Simon Milette
- Department of Medicine, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Masakazu Hashimoto
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Stephanie Perrino
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Shu Qi
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Michely Chen
- Department of Medicine, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Boram Ham
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Ni Wang
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Montréal, Québec, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Montréal, Québec, H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, H4A 3J1, Canada
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Centre at UC San Diego Health, 3855Health Sciences Dr., La Jolla, CA, 92037, USA
| | - Ciriaco A Piccirillo
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Montréal, Québec, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Montréal, Québec, H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, H4A 3J1, Canada
- Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada
| | - Pnina Brodt
- Department of Medicine, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Centre, Glen Site, 1001 Décarie Blvd, Montréal, QC, H4A 3J1, Canada.
- Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, H4A 3J1, Canada.
- Department of Surgery, McGill University, Montreal, QC, Canada.
- Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Li F, Cao Y, Li J, Gao C, Dong X, Ren P, Meng C, Chen C. The clinical significance of serum adipocytokines level in patients with lung cancer. J Thorac Dis 2019; 11:3547-3555. [PMID: 31559061 DOI: 10.21037/jtd.2019.07.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Adipocytokines were known to play a relevant role in metabolism, inflammation responses and carcinogenesis of several malignancies. Our aims were to detect the expression of serum adipocytokines, explore their potential diagnostic ability and relationship with clinicopathological characteristics of lung cancer. Methods Adipocytokines, insulin-like growth factor binding protein 1 (IGFBP-1), resistin, tumor necrosis factors (TNFα), TNF RI and TNF RII, vascular endothelial growth factor (VEGF), leptin, interleukin (IL)-6 and IL-10, chemerin, brain-derived neurotrophic factor (BDNF), plasminogen activator inhibitor-1 (PAI-1) were assessed in 49 untreated lung cancer patients and 20 healthy controls. The protein chip was used to detect the serum levels of adipocytokines. Results Lung cancer patients exhibited significantly elevated serum IGFBP-1, TNF RI, VEGF, TNF RII, PAI-1 and IL-6 levels compared to controls (P<0.05) and most of these adipocytokines revealed a modest discriminative ability for the diagnosis of lung cancer, while BDNF were lower in patients (P<0.05). TNF RI was associated with distant metastasis of lung cancer, while there was no relation between other adipocytokines and the patient clinicopathological features. Conclusions These results suggest that cytokines IGFBP-1, TNF RI, VEGF, TNF RII, PAI-1 and IL-6 may be involved in the development and progression of lung cancer, and TNF RI may be involved in distant metastasis of lung cancer. Additionally, IGFBP-1, TNF RI, VEGF and TNF RII probably represent potentially useful biomarkers for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Fanfan Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yanan Cao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jingjing Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Cong Gao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiang Dong
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Pengfei Ren
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Chenxu Meng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Chanjuan Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
3
|
Ham B, Fernandez MC, D’Costa Z, Brodt P. The diverse roles of the TNF axis in cancer progression and metastasis. TRENDS IN CANCER RESEARCH 2016; 11:1-27. [PMID: 27928197 PMCID: PMC5138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metastasis is a multi-step process that ultimately depends on the ability of disseminating cancer cells to establish favorable communications with their microenvironment. The tumor microenvironment consists of multiple and continuously changing cellular and molecular components. One of the factors regulating the tumor microenvironment is TNF-α, a pleiotropic cytokine that plays key roles in apoptosis, angiogenesis, inflammation and immunity. TNF-α can have both pro- and anti-tumoral effects and these are transmitted via two major receptors, the 55 kDa TNFR1 and the 75 kDa TNFR2 that have distinct, as well as overlapping functions. TNFR1 is ubiquitously expressed while the expression of TNFR2 is more restricted, mainly to immune cells. While TNFR1 can transmit pro-apoptotic or pro-survival signals through a complex network of downstream mediators, the role of TNFR2 is less well understood. One of its main functions is to act as a survival factor and moderate the pro-apoptotic effects of TNFR1, particularly in immune cells. In this review, we summarize the evidence for the involvement of the TNF system in the progression of the metastatic process from its contribution to the early steps of tumor cell invasion to its role in the colonization of distant sites, particularly the liver. We show how the TNF receptors each contribute to these processes by regulating and shaping the tumor microenvironment. Current evidence and concepts on the potential use of TNF targeting agents for cancer prevention and therapy are discussed.
Collapse
Affiliation(s)
- Boram Ham
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Zarina D’Costa
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Pnina Brodt
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Oncology, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|