1
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
2
|
Tan H, Yu T, Liu C, Wang Y, Jing F, Ding Z, Liu J, Shi H. Identifying tumor antigens and immuno-subtyping in colon adenocarcinoma to facilitate the development of mRNA vaccine. Cancer Med 2022; 11:4656-4672. [PMID: 35593226 PMCID: PMC9741973 DOI: 10.1002/cam4.4846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
The mRNA vaccine has provided a promising approach for cancer immunotherapies. However, only a few mRNA vaccines have been developed against colon adenocarcinoma (COAD). Screening potential targets for mRNA vaccines from numerous candidates is a substantial challenge. Considering the tumor heterogeneity, only a subset of patients might respond to vaccinations. This study was conducted to identify potential candidates for mRNA vaccines, and distinguish appropriate subgroups of COAD patients for vaccination. A total of five tumor antigens with prognostic values were identified, including IGF2BP3, DPCR1, HOXD10, TRIM7, and ZIC5. The COAD patients were stratified into five immune subtypes (IS1-IS5), according to consensus clustering analysis. Higher tumor mutation burden (TMB) was observed in IS1 and IS5 subtypes. The IS1 and IS5 subtypes have shown the baseline of immune-hot tumor microenvironment, while other subtypes displayed immune desert phenotype. Distinct expressions of immune checkpoints (ICPs)-related genes and immunogenic cell death (ICD) modulators were observed among five immune subtypes. Finally, the immune landscape was conducted to narrow the immune components for better personalized mRNA-based vaccination. The IFIT3, PARP9, TAP1, STAT1, and OAS2 were confirmed as hub genes, and COAD patients with higher expressions of these genes might be more appropriate for mRNA vaccination. In conclusion, the IGF2BP3, DPCR1, HOXD10, TRIM7, and ZIC5 were identified as potential candidates for developing mRNA vaccines against COAD, and patients in IS1 and IS5 subtypes might respond better to mRNA vaccination.
Collapse
Affiliation(s)
- Huaicheng Tan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Ting Yu
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan UniversityChengduChina
| | - Chunhua Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Yang Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Fangqi Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan UniversityChengduChina
- Department of RadiotherapyCancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Janjic BM, Kulkarni A, Ferris RL, Vujanovic L, Vujanovic NL. Human B Cells Mediate Innate Anti-Cancer Cytotoxicity Through Concurrent Engagement of Multiple TNF Superfamily Ligands. Front Immunol 2022; 13:837842. [PMID: 35392082 PMCID: PMC8983021 DOI: 10.3389/fimmu.2022.837842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 01/23/2023] Open
Abstract
The essential innate immunity effector cells, natural killer and dendritic cells, express multiple plasma membrane-associated tumor necrosis factor (TNF) superfamily (TNFSF) ligands that, through simultaneous and synergistic engagement, mediate anti-cancer cytotoxicity. Here, we report that circulating B cells, mediators of adaptive humoral immunity, also mediate this innate anti-cancer immune mechanism. We show that resting human B cells isolated from peripheral blood induce apoptosis of, and efficiently kill a large variety of leukemia and solid tumor cell types. Single-cell RNA sequencing analyses indicate, and flow cytometry data confirm that B cells from circulation express transmembrane TNF, Fas ligand (FasL), lymphotoxin (LT) α1β2 and TNF-related apoptosis-inducing ligand (TRAIL). The cytotoxic activity can be inhibited by individual and, especially, combined blockade of the four transmembrane TNFSF ligands. B cells from tumor-bearing head and neck squamous cell carcinoma patients express lower levels of TNFSF ligands and are less cytotoxic than those isolated from healthy individuals. In conclusion, we demonstrate that B cells have the innate capacity to mediate anti-cancer cytotoxicity through concurrent activity of multiple plasma membrane-associated TNFSF ligands, that this mechanism is deficient in cancer patients and that it may be part of a general cancer immunosurveillance mechanism.
Collapse
Affiliation(s)
- Bratislav M. Janjic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert L. Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lazar Vujanovic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nikola L. Vujanovic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Poly-guanidine shows high cytotoxicity in glioma cell cultures and glioma stem cells. Invest New Drugs 2022; 40:565-575. [PMID: 35312943 PMCID: PMC9098561 DOI: 10.1007/s10637-022-01233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
AbstractGlioblastoma multiforme (GBM) is a malignant CNS tumor with a poor prognosis. GBM shows aberrant glycosylation with hypersialylation. This property is a potential target for therapy. This study investigates the growth inhibitory efficacy of poly-guanidine (GuaDex), with an affinity for sialic acid (Sia). Glioma cell cultures and patient-derived glioma cell lines (PDGCLs) expressing Prominin-1 (CD133) were used. Human fibroblasts and astrocyte-derived cells were used as controls. Temozolomide (standard GBM drug, TMZ) and DMSO were used as a comparison. GuaDex at 1–10 µM concentrations, were incubated for 3.5–72 h and with PDGCLs cells for 6–24 h. The cytotoxicity was estimated with a fluorometric cytotoxicity assay (FMCA). Fluorescence-labelled GuaDex was used to study the cell interactions. Sia expression was confirmed with a fluorescence labelled Sia binding lectin. Expression of glial fibrillary acidic protein was determined. GuaDex induction of growth inhibition was fast, showing after less than 5 min incubation while the control cells were not affected even after 50 min incubation. The growth inhibitory effect on PDGCLs spheroids was persistent still showing after 4 weeks post-treatment. The growth inhibition of GuaDex was induced at low µM concentrations while TMZ induced only a slight inhibition at mM concentrations. GuaDex efficacy appears significant and warrants further studies.
Collapse
|
5
|
Ye L, Wang L, Yang J, Hu P, Zhang C, Tong S, Liu Z, Tian D. Identification of Tumor Antigens and Immune Landscape in Glioblastoma for mRNA Vaccine Development. Front Genet 2021; 12:701065. [PMID: 34527020 PMCID: PMC8435740 DOI: 10.3389/fgene.2021.701065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to the intrinsic radio- and chemo-resistance. As an essential part of tumor immunotherapy for adjunct, therapeutic tumor vaccines have been effective against multiple solid cancers, while their efficacy against GBM remains undefined. Therefore, this study aims to find the possible tumor antigens of GBM and identify the suitable population for cancer vaccination through immunophenotyping. Method: The genomic and responding clinical data of 169 GBM samples and five normal brain samples were obtained from The Cancer Genome Atlas (TCGA). The mRNA_seq data of 940 normal brain tissue were downloaded from Genotype-Tissue Expression (GTEx). Potential GBM mRNA antigens were screened out by differential expression, copy number variant (CNV), and mutation analysis. K-M survival and Cox analysis were carried out to investigate the prognostic association of potential tumor antigens. Tumor Immune Estimation Resource (TIMER) was used to explore the association between the antigens and tumor immune infiltrating cells (TIICs). Immunophenotyping of 169 samples was performed through consensus clustering based on the abundance of 22 kinds of immune cells. The characteristics of the tumor immune microenvironment (TIME) in each cluster were explored through single-sample gene set enrichment analysis based on 29 kinds of immune-related hallmarks and pathways. Weighted gene co-expression network analysis (WGCNA) was performed to cluster the genes related to immune subtypes. Finally, pathway enrichment analyses were performed to annotate the potential function of modules screened through WGCNA. Results: Two potential tumor antigens selected were significantly positively associated with the antigen-presenting immune cells (APCs) in GBM. Furthermore, the expression of antigens was verified at the protein level by Immunohistochemistry. Two robust immune subtypes, immune subtype 1 (IS1) and immune subtype 2 (IS2), representing immune status "immune inhibition" and "immune inflamed", respectively, had distinct clinical outcomes in GBM. Conclusion: ARPC1B and HK3 were potential mRNA antigens for developing GBM mRNA vaccination, and the patients in IS2 were considered the most suitable population for vaccination in GBM.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunyu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi'ao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhennan Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Jay A, Reitz D, Namekawa SH, Heyer WD. Cancer testis antigens and genomic instability: More than immunology. DNA Repair (Amst) 2021; 108:103214. [PMID: 34481156 PMCID: PMC9196322 DOI: 10.1016/j.dnarep.2021.103214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Cancer testis antigens or genes (CTA, CTG) are predominantly expressed in adult testes while silenced in most or all somatic tissues with sporadic expression in many human cancers. Concerted misexpression of numerous CTA/CTGs is rarely observed. This finding argues against the germ cell theory of cancer. A surprising number of CTA/CTGs are involved in meiotic chromosome metabolism and specifically in meiotic recombination. Recent discoveries with a group of CTGs established that their misexpression in somatic cells results in genomic instability by interfering with homologous recombination (HR), a DNA repair pathway for complex DNA damage such as DNA double-stranded breaks, interstrand crosslinks, and single-stranded DNA gaps. HR-deficient tumors have specific vulnerabilities and show synthetic lethality with inhibition of polyADP-ribose polymerase, opening the possibility that expression of CTA/CTGs that result in an HR-defect could be used as an additional biomarker for HR status. Here, we review the repertoire of CTA/CTGs focusing on a cohort that functions in meiotic chromosome metabolism by interrogating relevant cancer databases and discussing recent discoveries.
Collapse
Affiliation(s)
- Ash Jay
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616-8665, USA.
| |
Collapse
|
7
|
Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers (Basel) 2020; 12:cancers12123773. [PMID: 33333816 PMCID: PMC7765190 DOI: 10.3390/cancers12123773] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancer becomes one of the major public health problems globally and the burden is expected to be increasing. Currently, both the medical and research communities have attempted an approach to nonconventional cancer therapies that can limit damage or loss of healthy tissues and be able to fully eradicate the cancer cells. In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. Immunotherapy of cancer must activate the host’s anti-tumor response by enhancing the innate immune system and the effector cell number, while, minimizing the host’s suppressor mechanisms. However, many immunotherapies are still limited by poor therapeutic targeting and unwanted side effects. Hence, a deeper understanding of tumor immunology and antitumor immune responses is essential for further improvement of cancer immunotherapy. In addition, effective delivery systems are required to deliver immunotherapeutic agents to the site of interest (such as: to Tumor microenvironments, to Antigen-Presenting Cells, and to the other immune systems) to enhance their efficacy by minimizing off-targeted and unwanted cytotoxicity. Abstract In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. However, some immunotherapy shows certain limitations including poor therapeutic targeting and unwanted side effects that hinder its use in clinics. Recently, several researchers are exploring an alternative methodology to overcome the above limitations. One of the emerging tracks in this field area is nano-immunotherapy which has gone through rapid progress and revealed considerable potentials to solve limitations related to immunotherapy. Targeted and stimuli-sensitive biocompatible nanoparticles (NPs) can be synthesized to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity and to enhance the survival rate of cancer patients. In this review, we have discussed cancer immunotherapy and the application of NPs in cancer immunotherapy, as a carrier of immunotherapeutic agents and as a direct immunomodulator.
Collapse
|
8
|
Patient-derived tumour models for personalized therapeutics in urological cancers. Nat Rev Urol 2020; 18:33-45. [PMID: 33173206 DOI: 10.1038/s41585-020-00389-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Preclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models. Technological innovations have enabled major improvements in the capacity of these tumour models to reproduce the clinical complexity of urological cancers. Each type of patient-derived model has inherent advantages and limitations that can be exploited, either alone or in combination, to gather specific knowledge on clinical challenges and address unmet clinical needs. Nevertheless, few opportunities exist for patients with urological cancers to benefit from personalized therapeutic approaches. Clinical validation of experimental data is needed to facilitate the translation and implementation of preclinical knowledge into treatment decision making.
Collapse
|
9
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
10
|
Mao Y, Fan W, Hu H, Zhang L, Michel J, Wu Y, Wang J, Jia L, Tang X, Xu L, Chen Y, Zhu J, Feng Z, Xu L, Yin R, Tang Q. MAGE-A1 in lung adenocarcinoma as a promising target of chimeric antigen receptor T cells. J Hematol Oncol 2019; 12:106. [PMID: 31640756 PMCID: PMC6805483 DOI: 10.1186/s13045-019-0793-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer/testis antigens (CTAs) are a special type of tumor antigen and are believed to act as potential targets for cancer immunotherapy. METHODS In this study, we first screened a rational CTA MAGE-A1 for lung adenocarcinoma (LUAD) and explored the detailed characteristics of MAGE-A1 in LUAD development through a series of phenotypic experiments. Then, we developed a novel MAGE-A1-CAR-T cell (mCART) using lentiviral vector based on our previous MAGE-A1-scFv. The anti-tumor effects of this mCART were finally investigated in vitro and in vivo. RESULTS The results showed striking malignant behaviors of MAGE-A1 in LUAD development, which further validated the rationality of MAGE-A1 as an appropriate target for LUAD treatment. Then, the innovative mCART was successfully constructed, and mCART displayed encouraging tumor-inhibitory efficacy in LUAD cells and xenografts. CONCLUSIONS Taken together, our data suggest that MAGE-A1 is a promising candidate marker for LUAD therapy and the MAGE-A1-specific CAR-T cell immunotherapy may be an effective strategy for the treatment of MAGE-A1-positive LUAD.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Hao Hu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jerod Michel
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Lizhou Jia
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojun Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Zhenqing Feng
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Qi Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Novel IFN-γ ELISpot reveals robust T cell responses elicited after influenza nucleoprotein DNA vaccination in New Zealand White rabbits. Vaccine 2019; 37:903-909. [PMID: 30661837 DOI: 10.1016/j.vaccine.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
Abstract
The New Zealand White rabbit is a highly accessible animal model which is regularly employed in biomedical research. However, the paucity of rabbit-specific reagents available limits its use in certain fields. Specifically, the lack of a reliable T cell assay has limited its employment in immune prophylactic and therapeutic studies. To address this inadequacy, we have developed an ELISpot assay to detect cellular immune responses (IFN-γ production) after antigenic stimulation. We have applied this assay to model the T cell responses elicited by a DNA vaccine. Immunization with an influenza nucleoprotein (NP) DNA vaccine revealed strong antigen-specific T cell responses in the peripheral blood mononuclear cell population. We believe this is the first report of such an assay in rabbit species, and it will become a useful tool to monitor in vivo responses to vaccines and permit the wider adoption of this model to measure immunological responses.
Collapse
|
12
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
13
|
Urbanavicius D, Alvarez T, Such GK, Johnston APR, Mintern JD. The potential of nanoparticle vaccines as a treatment for cancer. Mol Immunol 2019; 98:2-7. [PMID: 29395251 DOI: 10.1016/j.molimm.2017.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/19/2017] [Accepted: 12/25/2017] [Indexed: 01/15/2023]
Abstract
A complex and multifaceted relationship exists between cancer and the immune system. Advances in our understanding of this relationship have resulted in significant clinical attention in the possibilities of cancer immunotherapy. Harnessing the immune system's potent and selective destructive capability is a major focus of attempts to treat cancer. Despite significant progress in the field, cancer therapy still remains significantly deficient, with cancer being one of the largest contributors to morbidity and mortality in the developed world. It is evident that the design of new treatment regimes is required to exploit cancer immunotherapy. Herein we review the potential for nanotechnology to overcome the challenges that have limited the more widespread implementation of immunotherapy to cancer treatment.
Collapse
Affiliation(s)
- David Urbanavicius
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Tara Alvarez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Georgina K Such
- Department of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Sun Q, Barz M, De Geest BG, Diken M, Hennink WE, Kiessling F, Lammers T, Shi Y. Nanomedicine and macroscale materials in immuno-oncology. Chem Soc Rev 2019; 48:351-381. [PMID: 30465669 PMCID: PMC7115880 DOI: 10.1039/c8cs00473k] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunotherapy is revolutionizing the treatment of cancer. It can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. However, immunotherapy also has limitations, such as its relatively low response rates and the development of severe side effects. These drawbacks are gradually being overcome by improving our understanding of the immune system, as well as by establishing combination regimens in which immunotherapy is combined with other treatment modalities. In addition to this, in recent years, progress made in chemistry, nanotechnology and materials science has started to impact immuno-oncology, resulting in more effective and less toxic immunotherapy interventions. In this context, multiple different nanomedicine formulations and macroscale materials have been shown to be able to boost anti-cancer immunity and the efficacy of immunomodulatory drugs. We here review nanotechnological and materials chemistry efforts related to endogenous and exogenous vaccination, to the engineering of antigen-presenting cells and T cells, and to the modulation of the tumor microenvironment. We also discuss limitations, current trends and future directions. Together, the insights provided and the evidence obtained indicate that there is a bright future ahead for engineering nanomedicines and macroscale materials for immuno-oncology applications.
Collapse
Affiliation(s)
- Qingxue Sun
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Bruno G. De Geest
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, 55131, Mainz, Germany
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- Fraunhofer MEVIS, Institute for Medical Image Computing, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yang Shi
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
15
|
Malik SS, Masood N, Fatima I, Kazmi Z. Microbial-Based Cancer Therapy: Diagnostic Tools and Therapeutic Strategies. MICROORGANISMS FOR SUSTAINABILITY 2019:53-82. [DOI: 10.1007/978-981-13-8844-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev 2018; 127:208-221. [PMID: 28939379 DOI: 10.1016/j.addr.2017.09.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
Melanoma derived from melanocytes is the most aggressive genre of skin cancer. Although the considerable advancement in the study of human cancer biology and drug discovery, most advanced melanoma patients are inevitably unable to be cured. With the emergence of nanotechnology, the use of nano-carriers is widely expected to alter the landscape of melanoma treatment. In this review, we will discuss melanoma biology, current treatment options, mechanisms behind drug resistance, and nano-based solutions for effective anti-cancer therapy, followed by challenges and perspectives in both pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Volz B, Schmidt M, Heinrich K, Kapp K, Schroff M, Wittig B. Design and characterization of the tumor vaccine MGN1601, allogeneic fourfold gene-modified vaccine cells combined with a TLR-9 agonist. Mol Ther Oncolytics 2016; 3:15023. [PMID: 27119114 PMCID: PMC4824560 DOI: 10.1038/mto.2015.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
The tumor vaccine MGN1601 was designed and developed for treatment of metastatic renal cell carcinoma (mRCC). MGN1601 consists of a combination of fourfold gene-modified cells with the toll-like receptor 9 agonist dSLIM, a powerful connector of innate and adaptive immunity. Vaccine cells originate from a renal cell carcinoma cell line (grown from renal cell carcinoma tissue), express a variety of known tumor-associated antigens (TAA), and are gene modified to transiently express two co-stimulatory molecules, CD80 and CD154, and two cytokines, GM-CSF and IL-7, aimed to support immune response. Proof of concept of the designed vaccine was shown in mice: The murine homologue of the vaccine efficiently (100%) prevented tumor growth when used as prophylactic vaccine in a syngeneic setting. Use of the vaccine in a therapeutic setting showed complete response in 92% of mice as well as synergistic action and necessity of the components. In addition, specific cellular and humoral immune responses in mice were found when used in an allogeneic setting. Immune response to the vaccine was also shown in mRCC patients treated with MGN1601: Peptide array analysis revealed humoral CD4-based immune response to TAA expressed on vaccine cells, including survivin, cyclin D1, and stromelysin.
Collapse
Affiliation(s)
- Barbara Volz
- Foundation Institute for Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany
- Mologen AG, Berlin, Germany
| | | | - Kerstin Heinrich
- Foundation Institute for Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany
- Mologen AG, Berlin, Germany
| | | | | | - Burghardt Wittig
- Foundation Institute for Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
18
|
Wang C, Gu Y, Zhang K, Xie K, Zhu M, Dai N, Jiang Y, Guo X, Liu M, Dai J, Wu L, Jin G, Ma H, Jiang T, Yin R, Xia Y, Liu L, Wang S, Shen B, Huo R, Wang Q, Xu L, Yang L, Huang X, Shen H, Sha J, Hu Z. Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types. Nat Commun 2016; 7:10499. [PMID: 26813108 PMCID: PMC4737856 DOI: 10.1038/ncomms10499] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cancer-testis (CT) genes represent the similarity between the processes of spermatogenesis and tumorigenesis. It is possible that their selective expression pattern can help identify driver genes in cancer. In this study, we integrate transcriptomics data from multiple databases and systematically identify 876 new CT genes in 19 cancer types. We explore their relationship with testis-specific regulatory elements. We propose that extremely highly expressed CT genes (EECTGs) are potential drivers activated through epigenetic mechanisms. We find mutually exclusive associations between EECTGs and somatic mutations in mutated genes, such as PIK3CA in breast cancer. We also provide evidence that promoter demethylation and close non-coding RNAs (namely, CT-ncRNAs) may be two mechanisms to reactivate EECTG gene expression. We show that the meiosis-related EECTG (MEIOB) and its nearby CT-ncRNA have a role in tumorigenesis in lung adenocarcinoma. Our findings provide methods for identifying epigenetic-driver genes of cancer, which could serve as targets of future cancer therapies.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Kai Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Kaipeng Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Meng Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ningbin Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Juncheng Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Linxiang Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Yankai Xia
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Digestive Endoscopy Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qianghu Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, Cancer Biology Program, Center for RNA Interference and Non-Coding RNAs, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Finn OJ, Khleif SN, Herberman RB. The FDA guidance on therapeutic cancer vaccines: the need for revision to include preventive cancer vaccines or for a new guidance dedicated to them. Cancer Prev Res (Phila) 2015; 8:1011-6. [PMID: 26353948 DOI: 10.1158/1940-6207.capr-15-0234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Cancer vaccines based on antigens derived from self molecules rather than pathogens have been under basic and clinical investigations for many years. Up until very recently, they had been tested primarily in the setting of metastatic disease with the goal to engage the immune system in slowing down disease progression. Many therapeutic vaccine trials, either investigator initiated or led by pharmaceutical companies, have been completed and many are currently ongoing, following the FDA Guidance on therapeutic cancer vaccines published in 2011. In recent years, the target of cancer vaccines is being shifted to early cancer and even premalignant disease with the goal of preventing cancer. Although some issues addressed in the FDA Guidance on therapeutic vaccines apply to preventive vaccines, many do not. Here, we discuss a set of recommendations for revising the current Guidance to also cover preventive vaccines, or to include in a new Guidance dedicated specifically to vaccines for cancer prevention.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Samir N Khleif
- GRU Cancer Center, Georgia Regent University, Augusta, Georgia
| | | |
Collapse
|
20
|
Pottier C, Wheatherspoon A, Roncarati P, Longuespée R, Herfs M, Duray A, Delvenne P, Quatresooz P. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther 2015; 15:943-54. [PMID: 26098949 DOI: 10.1586/14737140.2015.1059279] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor prognosis is generally defined by various tumor parameters. However, it is well known that paracrine, endocrine and cell-cell interactions between the tumor and its microenvironment contribute to its growth. The tumor microenvironment (TME) can also influence disease prognosis and is likely to be considered as an important prognostic factor. In addition, conventional therapies can influence the microenvironment and antitumor immunity. Similarly, the TME will influence the effectiveness of therapy. The purpose of this review is to demonstrate how TME is important in therapeutic management. Key interactions between TME and different cancer therapies as well as their current clinical consequences have been described. More research is needed to establish the important network between tumor cells and their environment to highlight their relationships with conventional therapies and develop global therapeutic strategies.
Collapse
Affiliation(s)
- Charles Pottier
- Department of Pathology, University Hospital of Liège, Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zumwalt TJ, Goel A. Immunotherapy of Metastatic Colorectal Cancer: Prevailing Challenges and New Perspectives. CURRENT COLORECTAL CANCER REPORTS 2015; 11:125-140. [PMID: 26441489 PMCID: PMC4591512 DOI: 10.1007/s11888-015-0269-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients with recurring or metastatic colorectal cancer (mCRC) have strikingly low long-term survival, while conventional treatments such as chemotherapeutic intervention and radiation therapy marginally improve longevity. Although, many factors involving immunosurveillance and immunosuppression were recently validated as important for patient prognosis and care, a multitude of experimental immunotherapies designed to combat unresectable mCRC have, in few cases, successfully mobilized antitumor immune cells against malignancies, nor conclusively or consistently granted protection, complete remission, and/or stable disease from immunotherapy - of which benefit less than 10% of those receiving therapy. After decades of progress, however, new insights into the mechanisms of immunosuppression, tolerance, and mutation profiling established novel therapies that circumvent these immunological barriers. This review underlines the most exciting methods to date that manipulate immune cells to curb mCRC, including adoptive cell therapy, dendritic cell vaccines, and checkpoint inhibitor antibodies - of which hint at effective and enduring protection against disease progression and undetected micrometastases.
Collapse
Affiliation(s)
- Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
23
|
Ogi C, Aruga A. Approaches to improve development methods for therapeutic cancer vaccines. Immunol Lett 2015; 164:100-8. [PMID: 25746315 DOI: 10.1016/j.imlet.2015.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/22/2015] [Accepted: 02/19/2015] [Indexed: 01/13/2023]
Abstract
Therapeutic cancer vaccines are an immunotherapy that amplify or induce an active immune response against tumors. Notably, limitations in the methodology for existing anti-cancer drugs may subsist while applying them to cancer vaccine therapy. A retrospective analysis was performed using information obtained from ClinicalTrials.gov, PubMed, and published articles. Our research evaluated the optimal methodologies for therapeutic cancer vaccines based on (1) patient populations, (2) immune monitoring, (3) tumor response evaluation, and (4) supplementary therapies. Failure to optimize these methodologies at an early phase may impact development at later stages; thus, we have proposed some points to be considered during the early phase. Moreover, we compared our proposal with the guidance for industry issued by the US Food and Drug Administration in October 2011 entitled "Clinical Considerations for Therapeutic Cancer Vaccines". Consequently, while our research was aligned with the guidance, we hope it provides further insights in order to predict the risks and benefits and facilitate decisions for a new technology. We identified the following points for consideration: (1) include in the selection criteria the immunological stage with a prognostic value, which is as important as the tumor stage; (2) select immunological assays such as phenotype analysis of lymphocytes, based on their features and standardize assay methods; (3) utilize optimal response criteria for immunotherapy in therapeutic cancer vaccine trials; and (4) consider supplementary therapies, including immune checkpoint inhibitors, for future therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Chizuru Ogi
- Cooperative Major in Advanced Biomedical Sciences, Joint Graduate School of Tokyo Women's Medical University and Waseda University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Atsushi Aruga
- Cooperative Major in Advanced Biomedical Sciences, Joint Graduate School of Tokyo Women's Medical University and Waseda University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
24
|
Johansen PT, Zucker D, Parhamifar L, Pourhassan H, Madsen DV, Henriksen JR, Gad M, Barberis A, Maj R, Andresen TL, Jensen SS. Monocyte targeting and activation by cationic liposomes formulated with a TLR7 agonist. Expert Opin Drug Deliv 2015; 12:1045-58. [PMID: 25682882 DOI: 10.1517/17425247.2015.1009444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Monocytes are one of the major phagocytic cells that patrol for invading pathogens, and upon activation, differentiate into macrophages or antigen-presenting dendritic cells (DCs) capable of migrating to lymph nodes eliciting an adaptive immune response. The key role in regulating adaptive immune responses has drawn attention to modulate monocyte responses therapeutically within cancer, inflammation and infectious diseases. We present a technology for targeting of monocytes and delivery of a toll-like receptor (TLR) agonist in fresh blood using liposomes with a positively charged surface chemistry. METHODS Liposomes were extruded at 100 nm, incubated with fresh blood, followed by leukocyte analyses by FACS. Liposomes with and without the TLR7 agonist TMX-202 were incubated with fresh blood, and monocyte activation measured by cytokine secretion by ELISA and CD14 and DC-SIGN expression. RESULTS The liposomes target monocytes specifically over lymphocytes and granulocytes in human whole blood, and show association with 75 - 95% of the monocytes after 1 h incubation. Formulations of TMX-202 in cationic liposomes were potent in targeting and activation of monocytes, with strong induction of IL-6 and IL-12p40, and differentiation into CD14(+) and DC-SIGN+ DCs. CONCLUSION Our present liposomes selectively target monocytes in fresh blood, enabling delivery of TLR7 agonists to the intracellular TLR7 receptor, with subsequent monocyte activation and boost in secretion of proinflammatory cytokines. We envision this technology as a promising tool in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pia T Johansen
- Bioneer A/S , Kogle álle 2, Hørsholm, DK-2970 , Denmark +45 51 186 306 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mariotti V, Greco SJ, Mohan RD, Nahas GR, Rameshwar P. Stem cell in alternative treatments for brain tumors: potential for gene delivery. MOLECULAR AND CELLULAR THERAPIES 2014; 2:24. [PMID: 26056591 PMCID: PMC4451968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2023]
Abstract
Despite ongoing research efforts and attempts to bring new drugs into trial, the prognosis for brain tumors remains poor. Patients with the most common and lethal intracranial neoplasia, glioblastoma multiforme (GBM), have an average survival of one year with combination of surgical resection, radiotherapy and temozolomide. One of the main problems in the treatment of GBM is getting drugs across the blood brain barrier (BBB) efficiently. In an attempt to solve this problem, there are ongoing experimental and clinical trials to deliver drugs within stem cells. The purpose for this method is the ease by which stem cells home to the brain. This review discusses the experimental and clinical applications of stem cells for GBM. We also discuss the different properties of stem cells. This information is important to understand why one stem cell would be advantageous over another in cell therapy. We provide an overview of the different drug delivery methods, gene-based treatments and cancer vaccines for GBM, including the stem cell subset.
Collapse
Affiliation(s)
- Veronica Mariotti
- />Department of Medicine – Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Steven J Greco
- />Department of Medicine – Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Ryan D Mohan
- />Stowers Institute for Medical Research, Kansas City, MO USA
| | - George R Nahas
- />Department of Medicine – Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Pranela Rameshwar
- />Department of Medicine – Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| |
Collapse
|
26
|
Mariotti V, Greco SJ, Mohan RD, Nahas GR, Rameshwar P. Stem cell in alternative treatments for brain tumors: potential for gene delivery. MOLECULAR AND CELLULAR THERAPIES 2014; 2:24. [PMID: 26056591 PMCID: PMC4451968 DOI: 10.1186/2052-8426-2-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/08/2014] [Indexed: 12/19/2022]
Abstract
Despite ongoing research efforts and attempts to bring new drugs into trial, the prognosis for brain tumors remains poor. Patients with the most common and lethal intracranial neoplasia, glioblastoma multiforme (GBM), have an average survival of one year with combination of surgical resection, radiotherapy and temozolomide. One of the main problems in the treatment of GBM is getting drugs across the blood brain barrier (BBB) efficiently. In an attempt to solve this problem, there are ongoing experimental and clinical trials to deliver drugs within stem cells. The purpose for this method is the ease by which stem cells home to the brain. This review discusses the experimental and clinical applications of stem cells for GBM. We also discuss the different properties of stem cells. This information is important to understand why one stem cell would be advantageous over another in cell therapy. We provide an overview of the different drug delivery methods, gene-based treatments and cancer vaccines for GBM, including the stem cell subset.
Collapse
Affiliation(s)
- Veronica Mariotti
- Department of Medicine - Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Steven J Greco
- Department of Medicine - Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Ryan D Mohan
- Stowers Institute for Medical Research, Kansas City, MO USA
| | - George R Nahas
- Department of Medicine - Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Pranela Rameshwar
- Department of Medicine - Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Sciences, E-585, 185 South Orange Avenue, Newark, NJ 07103 USA
| |
Collapse
|
27
|
Abstract
The therapeutic potential of host-specific and tumour-specific immune responses is well recognized and, after many years, active immunotherapies directed at inducing or augmenting these responses are entering clinical practice. Antitumour immunization is a complex, multi-component task, and the optimal combinations of antigens, adjuvants, delivery vehicles and routes of administration are not yet identified. Active immunotherapy must also address the immunosuppressive and tolerogenic mechanisms deployed by tumours. This Review provides an overview of new results from clinical studies of therapeutic cancer vaccines directed against tumour-associated antigens and discusses their implications for the use of active immunotherapy.
Collapse
|
28
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
29
|
Baquero F, Coque TM, Cantón R. Counteracting antibiotic resistance: breaking barriers among antibacterial strategies. Expert Opin Ther Targets 2014; 18:851-61. [DOI: 10.1517/14728222.2014.925881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Everson RG, Jin RM, Wang X, Safaee M, Scharnweber R, Lisiero DN, Soto H, Liau LM, Prins RM. Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2014; 2:10. [PMID: 24883189 PMCID: PMC4039989 DOI: 10.1186/2051-1426-2-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022] Open
Abstract
Background Immunotherapeutic approaches, such as dendritic cell (DC) vaccination, have emerged as promising strategies in the treatment of glioblastoma. Despite their promise, however, the absence of objective biomarkers and/or immunological monitoring techniques to assess the clinical efficacy of immunotherapy still remains a primary limitation. To address this, we sought to identify a functional biomarker for anti-tumor immune responsiveness associated with extended survival in glioblastoma patients undergoing DC vaccination. Methods 28 patients were enrolled and treated in two different Phase 1 DC vaccination clinical trials at UCLA. To assess the anti-tumor immune response elicited by therapy, we studied the functional responsiveness of pre- and post-vaccination peripheral blood lymphocytes (PBLs) to the immunostimulatory cytokines interferon-gamma (IFN-γ) and interleukin-2 (IL-2) in 21 of these patients for whom we had adequate material. Immune responsiveness was quantified by measuring downstream phosphorylation events of the transcription factors, STAT-1 and STAT-5, via phospho-specific flow cytometry. Results DC vaccination induced a significant decrease in the half-maximal concentration (EC-50) of IL-2 required to upregulate pSTAT-5 specifically in CD3+CD8+ T lymphocytes (p < 0.045). Extended survival was also associated with an increased per cell phosphorylation of STAT-5 in cytotoxic T-cells following IL-2 stimulation when the median post/pre pSTAT-5 ratio was used to dichotomize the patients (p = 0.0015, log-rank survival; hazard ratio = 0.1834, p = 0.018). Patients whose survival was longer than two years had a significantly greater pSTAT-5 ratio (p = 0.015), but, contrary to our expectations, a significantly lower pSTAT-1 ratio (p = 0.038). Conclusions Our results suggest that monitoring the pSTAT signaling changes in PBL may provide a functional immune monitoring measure predictive of clinical efficacy in DC-vaccinated patients.
Collapse
Affiliation(s)
- Richard G Everson
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Richard M Jin
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Safaee
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rudi Scharnweber
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dominique N Lisiero
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Horacio Soto
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Linda M Liau
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robert M Prins
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K, Yamamoto M. Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer. J Transl Med 2014; 12:61. [PMID: 24606884 PMCID: PMC4015445 DOI: 10.1186/1479-5876-12-61] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
Background The prognosis of patients with advanced biliary tract cancer (BTC) is extremely poor and only a few standard treatments are available for this condition. We performed a phase I trial to investigate the safety, immune response and anti-tumor effect of vaccination with three peptides derived from cancer-testis antigens. Methods This study was conducted as a phase I trial. Nine patients with advanced BTC who had unresectable tumors and were refractory to standard chemotherapy were enrolled. Three HLA-A*2402 restricted epitope peptides-cell division cycle associated 1 (CDCA1), cadherin 3 (CDH3) and kinesin family member 20A (KIF20A)-were administered subcutaneously, and the adverse events and immune response were assessed. The clinical effects observed were the tumor response, progression-free survival (PFS) and overall survival (OS). Results The three-peptide vaccination was well-tolerated up to a dose of 3 mg per peptide (9 mg total). No grade 3 or 4 adverse events were observed after vaccination. Peptide-specific T cell immune responses were observed in all patients and stable disease was observed in 5 of 9 patients. The median PFS and OS were 3.4 and 9.7 months. The Grade 2 injection site reaction and continuous vaccination after PD judgment appeared to be prognostic of OS. Conclusions Multiple-peptide vaccination was well tolerated and induced peptide-specific T-cell responses. Trial registration This study was registered with the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR000003229).
Collapse
Affiliation(s)
- Atsushi Aruga
- Department of Gastroenterological Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chang S, Kohrt H, Maecker HT. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother 2014; 63:713-9. [PMID: 24487923 DOI: 10.1007/s00262-014-1521-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/15/2014] [Indexed: 12/22/2022]
Abstract
A new era of cancer immunotherapy has brought not only successful cancer vaccines but also immunomodulators, such as those that target checkpoint blockade in order to induce endogenous host immune responses. However, the immune system of cancer patients can be compromised through multiple means, including immune suppression by the tumor and by prior therapies such as chemotherapy and radiation. Therefore, a comprehensive means of assessing patient immunocompetence would seem helpful for determining whether patients are ready to benefit from immunotherapy, and perhaps even which immunotherapy might be most appropriate for them. Unfortunately, there are no standardized tests for immune competence, nor is there agreement on what to measure and what will be predictive of outcome. In this review, we will discuss the technologies and assays that might be most useful for this purpose. We argue for a comprehensive approach that should maximize the chances of developing predictive biomarkers for eventual clinical use.
Collapse
Affiliation(s)
- Serena Chang
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Fairchild Science Building, 299 Campus Drive, Stanford, CA, 94305-5124, USA
| | | | | |
Collapse
|
33
|
Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 2014; 8:1911-21. [PMID: 25342884 PMCID: PMC4206199 DOI: 10.2147/dddt.s49584] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients.
Collapse
Affiliation(s)
- Isabella Wy Mak
- Department of Surgery, McMaster University Hamilton, Ontario, Canada ; Juravinski Cancer Centre, Hamilton Health Sciences Hamilton, Ontario, Canada
| | - Nathan Evaniew
- Department of Surgery, McMaster University Hamilton, Ontario, Canada ; Juravinski Cancer Centre, Hamilton Health Sciences Hamilton, Ontario, Canada
| | - Michelle Ghert
- Department of Surgery, McMaster University Hamilton, Ontario, Canada ; Juravinski Cancer Centre, Hamilton Health Sciences Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Martucci VL, Pacak K. Pheochromocytoma and paraganglioma: diagnosis, genetics, management, and treatment. Curr Probl Cancer 2014; 38:7-41. [PMID: 24636754 DOI: 10.1016/j.currproblcancer.2014.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Mak IWY, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 2014; 6:114-118. [PMID: 24489990 PMCID: PMC3902221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Due to practical and ethical concerns associated with human experimentation, animal models have been essential in cancer research. However, the average rate of successful translation from animal models to clinical cancer trials is less than 8%. Animal models are limited in their ability to mimic the extremely complex process of human carcinogenesis, physiology and progression. Therefore the safety and efficacy identified in animal studies is generally not translated to human trials. Animal models can serve as an important source of in vivo information, but alternative translational approaches have emerged that may eventually replace the link between in vitro studies and clinical applications. This review summarizes the current state of animal model translation to clinical practice, and offers some explanations for the general lack of success in this process. In addition, some alternative strategies to the classic in vivo approach are discussed.
Collapse
Affiliation(s)
- Isabella WY Mak
- Department of Surgery, McMaster UniversityHamilton, Ontario, Canada
- Juravinski Cancer Centre, Hamilton Health SciencesHamilton, Ontario, Canada
| | - Nathan Evaniew
- Department of Surgery, McMaster UniversityHamilton, Ontario, Canada
- Juravinski Cancer Centre, Hamilton Health SciencesHamilton, Ontario, Canada
| | - Michelle Ghert
- Department of Surgery, McMaster UniversityHamilton, Ontario, Canada
- Juravinski Cancer Centre, Hamilton Health SciencesHamilton, Ontario, Canada
| |
Collapse
|
36
|
Shimizu K, Kotera Y, Aruga A, Takeshita N, Katagiri S, Ariizumi SI, Takahashi Y, Yoshitoshi K, Takasaki K, Yamamoto M. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum Vaccin Immunother 2014; 10:970-6. [PMID: 24419174 DOI: 10.4161/hv.27678] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recurrence rate after surgery in patients with hepatocellular carcinoma (HCC) is very high, while prognosis is quite poor. However, there is no standard treatment to prevent recurrence of HCC after a curative operation. In this study, we investigated the clinical utilization of an autologous tumor lysate-pulsed dendritic cell vaccine plus ex vivo activated T cell transfer (ATVAC) in an adjuvant setting for postoperative HCC as a non-randomized controlled trial. Ninety-four patients with invasive HCC received informed consent information regarding the study, and 42 opted to have the ATVAC after surgery. Their recurrence-free survival (RFS) and overall survival (OS) were measured after 5 years and compared with those of 52 patients who selected to have the curative operation alone. The median RFS and OS were 24.5 months and 97.7 months in the patients receiving adjuvant ATVAC and 12.6 months and 41.0 months in the group receiving surgery alone (P = 0.011 and 0.029). In the treated group, patients with positive delayed-type hypersensitivity (DTH) had a better prognosis (RFS P = 0.019, OS P = 0.025). No adverse events of grade 3 or more were observed. A postoperative dendritic cell vaccine plus activated T cell transfer would be a feasible and effective treatment for preventing recurrence in HCC patients and achieving long-term survival especially in DTH positive patients.
Collapse
Affiliation(s)
- Koichi Shimizu
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Yoshihito Kotera
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Atsushi Aruga
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan; Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Nobuhiro Takeshita
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Satoshi Katagiri
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Shun-ichi Ariizumi
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Yutaka Takahashi
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Kenji Yoshitoshi
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Ken Takasaki
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
37
|
Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2013; 2:e27010. [PMID: 24498547 PMCID: PMC3906430 DOI: 10.4161/onci.27010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 02/06/2023] Open
Abstract
The prognosis of patients with advanced pancreatic cancer is extremely poor and there are only a few standard treatments. Here, we report the results of a Phase I clinical trial to investigate the safety, immunostimulatory effects, and antineoplastic activity of a multi-target vaccine composed of four distinct peptides derived from cancer-testis (CT) antigens and vascular endothelial growth factor receptors (VEGFRs). Nine patients with unresectable, advanced pancreatic cancer who were refractory to standard chemotherapy were enrolled. Each patient was vaccinated with HLA-A*2402-restricted peptides derived from the CT antigens kinesin family member 20A (KIF20A) and cell division cycle-associated 1 (CDCA1) as well as from VEGFR1 and VEGFR2 subcutaneously once a week, and disease progression was evaluated up to 6 mo later. Adverse events were assessed using the Common Terminology Criteria for Adverse Events v. 3.0. Immunological responses were monitored by ELISPOT assays and flow cytometry based on peptide-specific dextramers. The clinical outcomes that were measured were tumor response, progression-free survival (PFS) and overall survival (OS). In general, the multi-peptide vaccine was well-tolerated, and no grade 3 or 4 adverse events were observed upon vaccination. Peptide-specific T-cell responses were detected in all 9 patients, and clinical benefits were observed in four of them. Median PFS and OS were 90 and 207 d, respectively. The elicitation of multiple and robust peptide-specific T-cell responses as well as the status of host lymphocytes may be useful prognostic factors among patients with advanced pancreatic cancer treated with peptide-based anticancer vaccines.
Collapse
Affiliation(s)
- Ryuji Okuyama
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan
| | - Atsushi Aruga
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan ; Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Tokyo, Japan
| | - Takashi Hatori
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Immunology; Juntendo School of Medicine; Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Tokyo, Japan
| |
Collapse
|