1
|
Zhang J, Hu D. miR-1298-5p Influences the Malignancy Phenotypes of Breast Cancer Cells by Inhibiting CXCL11. Cancer Manag Res 2021; 13:133-145. [PMID: 33469358 PMCID: PMC7810718 DOI: 10.2147/cmar.s279121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Breast cancer (BC) has deleterious effects on women's health worldwide, yet its molecular mechanism remains unclear. OBJECTIVE This study aimed to discover the underlying mechanism used by miR-1298-5p to regulate CXCL11 in BC. METHODS Microarray analysis was performed to identify the key mRNA and miRNA involved in BC. The expression of miR-1298-5p and CXCL11 mRNA in BC clinical tissues and cell lines was detected using quantitative reverse transcription PCR (RT-qPCR), while the demonstration of intra- and extra-cellular CXCL11 protein was measured using western-blotting or ELISA assay. CCK-8, BrdU ELISA, colony formation, wound healing, and cell adhesion assays were carried out to determine cell viability, cell proliferation, colony formation, cell migration and adhesion phenotypes, respectively. A dual-luciferase assay kit was also employed to confirm the predicted binding scheme between miR-1298-5p and CXCL11. RESULTS Microarray analysis confirmed miR-1298-5p and CXCL11 as the miRNA and mRNA to be further investigated in BC. After observing low-level miR-1298-5p and high-level CXCL11 in BC clinical tissues and cell lines, it was discovered that miR-1298-5p inhibited the phenotypes of BC cells, while CXCL11 promoted the tumorigenesis of BC cells. Findings indicated that miR-1298-5p attenuated the promotive effect of CXCL11 on BC cell phenotypes. CONCLUSION This research revealed that miR-1298-5p could influence the malignancy phenotypes of BC cells by inhibiting CXCL11.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Breast Surgery, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei067000, People’s Republic of China
| | - Dawei Hu
- Department of Breast Surgery, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei067000, People’s Republic of China
| |
Collapse
|
2
|
Rozenblit M, Hendrickx W, Heguy A, Chiriboga L, Loomis C, Ray K, Darvishian F, Egeblad M, Demaria S, Marincola FM, Bedognetti D, Adams S. Transcriptomic profiles conducive to immune-mediated tumor rejection in human breast cancer skin metastases treated with Imiquimod. Sci Rep 2019; 9:8572. [PMID: 31189943 PMCID: PMC6561945 DOI: 10.1038/s41598-019-42784-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Imiquimod is a topical toll-like-receptor-7 agonist currently used for treating basal cell carcinoma. Recently, imiquimod has demonstrated tumor regression in melanoma and breast cancer skin metastases. However, the molecular perturbations induced by imiquimod in breast cancer metastases have not been previously characterized. Here, we describe transcriptomic profiles associated with responsiveness to imiquimod in breast cancer skin metastases. Baseline and post-treatment tumor samples from patients treated with imiquimod in a clinical trial were profiled using Nanostring technology. Through an integrative analytic pipeline, we showed that tumors from patients who achieved a durable clinical response displayed a permissive microenvironment, substantiated by the upregulation of transcripts encoding for molecules involved in leukocyte adhesion and migration, cytotoxic functions, and antigen presentation. In responding patients, Imiquimod triggered a strong T-helper-1 (Th-1)/cytotoxic immune response, characterized by the coordinated upregulation of Th-1 chemokines, migration of Th-1 and cytotoxic T cells into the tumor, and activation of immune-effector functions, ultimately mediating tumor destruction. In conclusion, we have shown that topical imiquimod can induce a robust immune response in breast cancer metastases, and this response is more likely to occur in tumors with a pre-activated microenvironment. In this setting, imiquimod could be utilized in combination with other targeted immunotherapies to increase therapeutic efficacy.
Collapse
Affiliation(s)
- Mariya Rozenblit
- Department of Hematology Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wouter Hendrickx
- Tumor Biology, Immunology, and Therapy Section, Immunology, Inflammation, and Metabolism Department, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, New York, USA.,Genome Technology Center, Division of Advanced Research Technologies, University of New York School of Medicine, New York, New York, USA
| | - Luis Chiriboga
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Karina Ray
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Farbod Darvishian
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, USA
| | - Sandra Demaria
- Department of Radiation Oncology Weill Cornell Medical College, New York, New York, USA
| | | | - Davide Bedognetti
- Tumor Biology, Immunology, and Therapy Section, Immunology, Inflammation, and Metabolism Department, Division of Translational Medicine, Sidra Medicine, Doha, Qatar.
| | - Sylvia Adams
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
3
|
Prabhakaran S, Rizk VT, Ma Z, Cheng CH, Berglund AE, Coppola D, Khalil F, Mulé JJ, Soliman HH. Evaluation of invasive breast cancer samples using a 12-chemokine gene expression score: correlation with clinical outcomes. Breast Cancer Res 2017. [PMID: 28629479 PMCID: PMC5477261 DOI: 10.1186/s13058-017-0864-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background A unique 12-chemokine gene expression score (CS) accurately predicted the presence of tumor-localized, ectopic lymph node-like structures (TL-ELNs) and improved overall survival (OS) in primary colorectal cancer and metastatic melanoma. We analyzed the correlation between CS, clinicopathological variables, molecular data, and 366 survival in Moffitt Cancer Center’s Total Cancer Care (TCC) patients with non-metastatic breast cancer. Methods Affymetrix gene expression profiles were used to interrogate the CS by the principal component method. Breast tumors were classified as high or low score based on median split, and correlations between clinicopathologic variables, PAM50 molecular subtype, and ELN formation were analyzed using the TCC dataset. Differences in overall survival (OS) and recurrence-free survival (RFS) in the larger KM Plot breast cancer public datasets were compared using Kaplan-Meier curves. Results We divided the Total Cancer Care (TCC) breast cancer patients into two groups of high or low CS. Mean CS was 0.24 (range, 2.2–2.1). Patients with higher CS were more likely to be white (172 vs. 159; p = 0.03), had poorly differentiated tumors (112 vs. 59; p <0.0001), ER/PR negative (41 vs. 26) and HER2 positive (36 vs. 19; p = 0.001), and contain TL-ELNs. Higher CS scores were also seen in the basal and HER2+ molecular subtypes. In the KM Plot breast cancer datasets higher CS patients demonstrated superior OS (HR = 0.73, p = 0.008) and RFS (HR 0.76, p = <0.0001), especially in basal and HER2+ patients. Conclusions High CS breast tumors tend to be higher grade, basal or HER2+, and present more frequently in Caucasians. However, this group of patients also shows the presence of TL-ELNs within the tumor microenvironment and has better survival outcomes. The CS is a novel tool that can identify breast cancer patients with tumors of a unique intratumoral immune composition and better prognosis. Whether or not the CS is a predictive response marker in breast cancer patients undergoing immunotherapy remains to be determined. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0864-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Victoria T Rizk
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Zhenjun Ma
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chia-Ho Cheng
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Dominico Coppola
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah Khalil
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - James J Mulé
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hatem H Soliman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
4
|
Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohée S, Garaud S, Noël G, Dang Chi VL, Lodewyckx JN, Naveaux C, Duvillier H, Goriely S, Larsimont D, Willard-Gallo K. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2017; 2:91487. [PMID: 28570278 DOI: 10.1172/jci.insight.91487] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5-) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment.
Collapse
Affiliation(s)
| | | | - Laurence Buisseret
- Molecular Immunology Unit.,Breast Cancer Translational Research Laboratory
| | | | | | | | | | | | | | | | - Hugues Duvillier
- Flow Cytometry Core Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stanislas Goriely
- Welbio and Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
5
|
Hendrickx W, Simeone I, Anjum S, Mokrab Y, Bertucci F, Finetti P, Curigliano G, Seliger B, Cerulo L, Tomei S, Delogu LG, Maccalli C, Wang E, Miller LD, Marincola FM, Ceccarelli M, Bedognetti D. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 2017; 6:e1253654. [PMID: 28344865 PMCID: PMC5353940 DOI: 10.1080/2162402x.2016.1253654] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy is revolutionizing the clinical management of several tumors, but has demonstrated limited activity in breast cancer. The development of more effective treatments is hindered by incomplete knowledge of the genetic determinant of immune responsiveness. To fill this gap, we mined copy number alteration, somatic mutation, and expression data from The Cancer Genome Atlas (TCGA). By using RNA-sequencing data from 1,004 breast cancers, we defined distinct immune phenotypes characterized by progressive expression of transcripts previously associated with immune-mediated rejection. The T helper 1 (Th-1) phenotype (ICR4), which also displays upregulation of immune-regulatory transcripts such as PDL1, PD1, FOXP3, IDO1, and CTLA4, was associated with prolonged patients' survival. We validated these findings in an independent meta-cohort of 1,954 breast cancer gene expression data. Chromosome segment 4q21, which includes genes encoding for the Th-1 chemokines CXCL9-11, was significantly amplified only in the immune favorable phenotype (ICR4). The mutation and neoantigen load progressively decreased from ICR4 to ICR1 but could not fully explain immune phenotypic differences. Mutations of TP53 were enriched in the immune favorable phenotype (ICR4). Conversely, the presence of MAP3K1 and MAP2K4 mutations were tightly associated with an immune-unfavorable phenotype (ICR1). Using both the TCGA and the validation dataset, the degree of MAPK deregulation segregates breast tumors according to their immune disposition. These findings suggest that mutation-driven perturbations of MAPK pathways are linked to the negative regulation of intratumoral immune response in breast cancer. Modulations of MAPK pathways could be experimentally tested to enhance breast cancer immune sensitivity.
Collapse
Affiliation(s)
- Wouter Hendrickx
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Ines Simeone
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Samreen Anjum
- Qatar Computing Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - Younes Mokrab
- Division of Biomedical Informatics, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - François Bertucci
- Département d'Oncologie Moléculaire, Center de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France; Département d'Oncologie Médicale, CRCM, Institut Paoli-Calmettes, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Center de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes , INSERM UMR1068, CNRS UMR725 , Marseille, France
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, Division of Medical Oncology, European Institute of Oncology , Milan, Italy
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg , Halle, Germany
| | - Luigi Cerulo
- Department of Science and Technology, University of Sannio, Benevento, Italy; BIOGEM Research Center, Ariano Irpino, Italy
| | - Sara Tomei
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari , Sassari, Italy
| | - Cristina Maccalli
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Ena Wang
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Francesco M Marincola
- Office of the Chief Research Officer (CRO), Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Michele Ceccarelli
- Qatar Computing Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - Davide Bedognetti
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| |
Collapse
|
6
|
Duan Z, Gao J, Zhang L, Liang H, Huang X, Xu Q, Zhang Y, Shen T, Lu F. Phenotype and function of CXCR5+CD45RA-CD4+ T cells were altered in HBV-related hepatocellular carcinoma and elevated serum CXCL13 predicted better prognosis. Oncotarget 2016; 6:44239-53. [PMID: 26517519 PMCID: PMC4792554 DOI: 10.18632/oncotarget.6235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
The present study reveals an immunological characterization of circulating and tumor-infiltrating T follicular helper cells (Tfh), namely CXCR5+CD45RA−CD4+ T cells, and their related cytokines in hepatitis B virus-related hepatocellular carcinoma (HCC) patients. In HCC patients, circulating Tfh cells showed a CCR7+ and/or ICOS+ phenotype with increased Th2-like cells and decreased Th1-like and Th17-like subsets. Although the bulk frequency of circulating Tfh cells was not altered in HCC patients, the frequency of infiltrated CXCR5+CD45RA−CD4+ CD3+cells was higher in tumor than in para-tumor tissues, and Th1-like cells were the predominant phenotype. Circulating Tfh cells in HCC patients were defective in the production of IL-21 in vitro, which was in accordance with lower IL-21 levels in tumor tissues than in para-tumor tissues. Serum CXCL13 was increased in HCC patients and associated with recurrence-free survival after hepatectomy. This was confirmed in an additional HCC cohort of 111 patients with up to 5 years follow-up. Immunohistochemical staining indicated that the percentage of CXCR5+ or CXCL13+ cells was higher in poorly differentiated than in well-differentiated tumors. In conclusion, patients with HBV-related HCC showed altered phenotypes and impaired function of Tfh cells or subpopulations. CXCL13 could be a potential biomarker for predicting recurrence in HCC patients after hepatectomy.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
| | - Jian Gao
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
| | - Ling Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xiangbo Huang
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
| | - Yu Zhang
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016; 113:E7240-E7249. [PMID: 27799536 DOI: 10.1073/pnas.1608555113] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the impressive rates of clinical response to programmed death 1 (PD-1) blockade in multiple cancers, the majority of patients still fail to respond to this therapy. The CT26 tumor in mice showed similar heterogeneity, with most tumors unaffected by anti-PD-1. As in humans, response of CT26 to anti-PD-1 correlated with increased T- and B-cell infiltration and IFN expression. We show that intratumoral injection of a highly interferogenic TLR9 agonist, SD-101, in anti-PD-1 nonresponders led to a complete, durable rejection of essentially all injected tumors and a majority of uninjected, distant-site tumors. Therapeutic efficacy of the combination was also observed with the TSA mammary adenocarcinoma and MCA38 colon carcinoma tumor models that show little response to PD-1 blockade alone. Intratumoral SD-101 substantially increased leukocyte infiltration and IFN-regulated gene expression, and its activity was dependent on CD8+ T cells and type I IFN signaling. Anti-PD-1 plus intratumoral SD-101 promoted infiltration of activated, proliferating CD8+ T cells and led to a synergistic increase in total and tumor antigen-specific CD8+ T cells expressing both IFN-γ and TNF-α. Additionally, PD-1 blockade could alter the CpG-mediated differentiation of tumor-specific CD8+ T cells into CD127lowKLRG1high short-lived effector cells, preferentially expanding the CD127highKLRG1low long-lived memory precursors. Tumor control and intratumoral T-cell proliferation in response to the combined treatment is independent of T-cell trafficking from secondary lymphoid organs. These findings suggest that a CpG oligonucleotide given intratumorally may increase the response of cancer patients to PD-1 blockade, increasing the quantity and the quality of tumor-specific CD8+ T cells.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Here, we focus on molecular biomarkers derived from transcriptomic studies to summarize the recent advances in our understanding of the mechanisms associated with differential prognosis and treatment outcome in breast cancer. RECENT FINDINGS Breast cancer is certainly immunogenic; yet it has been historically resistant to immunotherapy. In the past few years, refined immunotherapeutic manipulations have been shown to be effective in a significant proportion of cancer patients. For example, drugs targeting the PD-1 immune checkpoint have been proven to be an effective therapeutic approach in several solid tumors including melanoma and lung cancer. Very recently, the activity of such therapeutics has also been demonstrated in breast cancer patients. Pari passu with the development of novel immune modulators, the transcriptomic analysis of human tumors unveiled unexpected and paradoxical relationships between cancer cells and immune cells. SUMMARY This review examines our understanding of the molecular pathways associated with intratumoral immune response, which represents a critical step for the implementation of stratification strategies toward the development of personalized immunotherapy of breast cancer.
Collapse
|
9
|
Bedognetti D, Maccalli C, Bader SBA, Marincola FM, Seliger B. Checkpoint Inhibitors and Their Application in Breast Cancer. Breast Care (Basel) 2016; 11:108-15. [PMID: 27239172 PMCID: PMC4881248 DOI: 10.1159/000445335] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoints are crucial for the maintenance of self-tolerance and for the modulation of immune responses in order to minimize tissue damage. Tumor cells take advantage of these mechanisms to evade immune recognition. A significant proportion of tumors, including breast cancers, can express co-inhibitory molecules that are important formediating the escape from T cell-mediated immune surveillance. The interaction of inhibitory receptors with their ligands can be blocked by specific molecules. Monoclonal antibodies (mAbs) directed against the cytotoxic T lymphocyte-associated antigen-4 (CTLA4) and, more recently, against the programmed cell death protein 1 (PD1), have been approved for the therapy of melanoma (anti-CTLA4 and anti-PD1 mAbs) and non-small cell lung cancer (anti-PD1 mAbs). Moreover, inhibition of PD1 signaling has shown extremely promising signs of activity in breast cancer. An increasing number of molecules directed against other immune checkpoints are currently under clinical development. In this review, we summarize the evidence supporting the implementation of checkpoint inhibition in breast cancer by reviewing in detail data on PD-L1 expression and its regulation. In addition, opportunities to boost anti-tumor immunity in breast cancer with checkpoint inhibitor-based immunotherapies alone and in combination with other treatment options will be discussed.
Collapse
Affiliation(s)
- Davide Bedognetti
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Cristina Maccalli
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Salha B.J. Al Bader
- National Center for Cancer Care and Research (NCCCR), and Hamad General Hospital, Doha, Qatar
| | - Francesco M. Marincola
- Office of the Chief Research Officer (CRO), Sidra Medical and Research Center, Doha, Qatar
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
10
|
Shen D, Cao X. Potential role of CXCR3 in proliferation and invasion of prostate cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8091-8098. [PMID: 26339376 PMCID: PMC4555704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/29/2015] [Indexed: 06/05/2023]
Abstract
AIM To investigate the potential role of CXCR3 expression on prostate cancer cell proliferation and invasion and to illustrate its mechanism. METHODS Human PC-3 cells were transfected with siRNA-CXCR3A and siRNA-CXCR3B plasmids respectively. The mRNA expressions of CXCR3A and CXCR3B in PC-3 cells from each group were analyzed using RT-PCR. Besides, cell proliferation ability and cell invasion ability of PC-3 cells in each group were analyzed using MTT assay and Matrige assay respectively. Additionally, expressions of CXCR3 downstream proteins were detected using Western blotting. RESULTS mRNA level of CXCR3A was decreased while CXCR3B mRNA level was increased in PC-3 cells (P<0.05). Compared with the controls, down-regulation of CXCR3A but up-regulation of CXCR3B significantly inhibited PC-3 cell proliferation and cell invasion ability (P<0.05). Besides, aberrant CXCR3 expression significantly increased expressions of phospholipase C (PLCβ), matrix metallo proteinase (MMP-1), and MMP-3 except MMP-7 in PC-3 cells (P<0.05). CONCLUSION The data presented in our study suggested that aberrant CXCR3 expression may play crucial roles in suppressing PC metastasis via inhibiting cell proliferation and invasion ability through the PCLβ signaling pathway.
Collapse
|