1
|
Insights into current directions of protein and peptide-based hydrogel drug delivery systems for inflammation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
2
|
Bomkamp C, Skaalure SC, Fernando GF, Ben‐Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102908. [PMID: 34786874 PMCID: PMC8787436 DOI: 10.1002/advs.202102908] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Indexed: 05/03/2023]
Abstract
Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.
Collapse
Affiliation(s)
- Claire Bomkamp
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | | | | - Tom Ben‐Arye
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | - Elliot W. Swartz
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | |
Collapse
|
3
|
Ly KL, Hu P, Pham LHP, Luo X. Flow-assembled chitosan membranes in microfluidics: recent advances and applications. J Mater Chem B 2021; 9:3258-3283. [PMID: 33725061 PMCID: PMC8369861 DOI: 10.1039/d1tb00045d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of membranes in microfluidic devices has been extensively exploited for various chemical engineering and bioengineering applications over the past few decades. To augment the applicability of membrane-integrated microfluidic platforms for biomedical and tissue engineering studies, a biologically friendly fabrication process with naturally occurring materials is highly desired. The in situ preparation of membranes involving interfacial reactions between parallel laminar flows in microfluidic networks, known as the flow-assembly technique, is one of the most biocompatible approaches. Membranes of many types with flexible geometries have been successfully assembled inside complex microchannels using this facile and versatile flow-assembly approach. Chitosan is a naturally abundant polysaccharide known for its pronounced biocompatibility, biodegradability, good mechanical stability, ease of modification and processing, and film-forming ability under near-physiological conditions. Chitosan membranes assembled by flows in microfluidics are freestanding, robust, semipermeable, and well-aligned in microstructure, and show high affinity to bioactive reagents and biological components (e.g. biomolecules, nanoparticles, or cells) that provide facile biological functionalization of microdevices. Here, we discuss the recent developments and optimizations in the flow-assembly of chitosan membranes and chitosan-based membranes in microfluidics. Furthermore, we recapitulate the applications of the chitosan membrane-integrated microfluidic platforms dedicated to biology, biochemistry, and drug release fields, and envision the future developments of this important platform with versatile functions.
Collapse
Affiliation(s)
- Khanh L Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | |
Collapse
|
4
|
Correa SO, Luo X, Raub CB. Microfluidic fabrication of stable collagen microgels with aligned microstructure using flow-driven co-deposition and ionic gelation. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2020; 30:085002. [PMID: 37273664 PMCID: PMC10237176 DOI: 10.1088/1361-6439/ab8ebf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The controlled biofabrication of stable, aligned collagen hydrogels within microfluidic devices is critically important to the design of more physiologically accurate, longer-cultured on-chip models of tissue and organs. To address this goal, collagen-alginate microgels were formed in a microfluidic channel by calcium crosslinking of a flowing collagen-alginate solution through a cross-channel chitosan membrane spanning a pore allowing ion diffusion but not convection. The gels formed within seconds as isolated islands in a single channel, and their growth was self-limiting. Total gel thickness was controlled by altering the concentration of calcium and collagen-alginate flow rate to reach an equilibrium of calcium diffusion and solution convection at the gel boundary, for a desired thickness of 30-200 μm. Additionally, less calcium and higher flow produced greater compression of the gel, with regions farther from the pore compressing more. An aligned, stable collagen network was demonstrated by collagen birefringence, circumferential texture orientation, and little change in gel dimensions with de-chelation of calcium from alginate by prolonged flow of EDTA in the channel. Resultant gels were most stable and only slightly asymmetric when formed from solutions containing 8 mg ml-1 collagen. Diffusion of 4 kDa and 70 kDa fluorescently-labeled dextran indicated size-dependent diffusion across the gel, and accessibility of the construct to appropriately-sized bioactive molecules. This work demonstrates the physicochemical parameter control of collagen gel formation in microfluidic devices, with utility toward on-chip models of dense extracellular matrix invasion, cancer growth and drug delivery to cells within dense extracellular matrix bodies.
Collapse
Affiliation(s)
- Santiago O Correa
- Department of Biomedical Engineering, Washington DC, United States of America
| | - Xiaolong Luo
- Department of Mechanical Engineering, Washington DC, United States of America
- These authors contributed equally to this work
| | - Christopher B Raub
- Department of Biomedical Engineering, Washington DC, United States of America
- These authors contributed equally to this work
| |
Collapse
|
5
|
Physical and mechanical properties of RAFT-stabilised collagen gels for tissue engineering applications. J Mech Behav Biomed Mater 2019; 99:216-224. [DOI: 10.1016/j.jmbbm.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
|
6
|
Pawelec KM, Yoon C, Giger RJ, Sakamoto J. Engineering a platform for nerve regeneration with direct application to nerve repair technology. Biomaterials 2019; 216:119263. [PMID: 31220794 DOI: 10.1016/j.biomaterials.2019.119263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
The development of effective treatment options for repair of peripheral nerves is complicated by lack of knowledge concerning the interactions between cells and implants. A promising device, the multichannel scaffold, incorporates microporous channels, aligning glia and directing axonal growth across a nerve gap. To enhance clinical outcomes of nerve repair, a platform, representative of current implant technology, was engineered which 1) recapitulated key device features (porosity and linearity) and 2) demonstrated remyelination of adult neurons. The in vitro platform began with the study of Schwann cells on porous polycaprolactone (PCL) and poly(lactide co-glycolide) (PLGA) substrates. Surface roughness determined glial cell attachment, and an additional layer of topography, 40 μm linear features, aligned Schwann cells and axons. In addition, direct co-culture of sensory neurons with Schwann cells significantly increased neurite outgrowth, compared to neurons cultured alone (naive or pre-conditioned). In contrast to the control substrate (glass), on porous PCL substrates, Schwann cells differentiated into a mature myelinating phenotype, expressing Oct-6, MPZ and MBP. The direct applicability of this platform to nerve implants, including its response to physiological cues, allows for optimization of cell-material interactions, close observation of the regeneration process, and the study of therapeutics, necessary to advance peripheral nerve repair technology.
Collapse
Affiliation(s)
- K M Pawelec
- University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, 48109, USA
| | - C Yoon
- University of Michigan, Department of Cell and Developmental Biology, Ann Arbor, MI, 48109, USA
| | - R J Giger
- University of Michigan, Department of Cell and Developmental Biology, Ann Arbor, MI, 48109, USA
| | - J Sakamoto
- University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Ma F, Wang F, Li R, Zhu J. Application of drug delivery systems for the controlled delivery of growth factors to treat nervous system injury. Organogenesis 2018; 14:123-128. [PMID: 30148412 DOI: 10.1080/15476278.2018.1491183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Nervous system injury represent the most common injury and was unique clinical challenge. Using of growth factors (GFs) for the treatment of nervous system injury showed effectiveness in halting its process. However, simple application of GFs could not achieve high efficacy because of its rapid diffusion into body fluids and lost from the lesion site. The drug delivery systems (DDSs) construction used to deliver GFs were investigated so that they could surmount its rapid diffusion and retain at the injury site. This study summarizes commonly used DDSs for sustained release of GFs that provide neuroprotection or restoration effects for nervous system injury.
Collapse
Affiliation(s)
- Fukai Ma
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China
| | - Fan Wang
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China.,b Department of Neurology , Guizhou Provincial People's Hospital , Guiyang , China
| | - Ronggang Li
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China.,c Department of Neurosurgery , Shanghai Public Health Clinical Center, Fudan University , Shanghai , China
| | - Jianhong Zhu
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China
| |
Collapse
|
8
|
Skardal A. Perspective: “Universal” bioink technology for advancing extrusion bioprinting-based biomanufacturing. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.e00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Jones JM, Player DJ, Martin NRW, Capel AJ, Lewis MP, Mudera V. An Assessment of Myotube Morphology, Matrix Deformation, and Myogenic mRNA Expression in Custom-Built and Commercially Available Engineered Muscle Chamber Configurations. Front Physiol 2018; 9:483. [PMID: 29867538 PMCID: PMC5951956 DOI: 10.3389/fphys.2018.00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
There are several three-dimensional (3D) skeletal muscle (SkM) tissue engineered models reported in the literature. 3D SkM tissue engineering (TE) aims to recapitulate the structure and function of native (in vivo) tissue, within an in vitro environment. This requires the differentiation of myoblasts into aligned multinucleated myotubes surrounded by a biologically representative extracellular matrix (ECM). In the present work, a new commercially available 3D SkM TE culture chamber manufactured from polyether ether ketone (PEEK) that facilitates suitable development of these myotubes is presented. To assess the outcomes of the myotubes within these constructs, morphological, gene expression, and ECM remodeling parameters were compared against a previously published custom-built model. No significant differences were observed in the morphological and gene expression measures between the newly introduced and the established construct configuration, suggesting biological reproducibility irrespective of manufacturing process. However, TE SkM fabricated using the commercially available PEEK chambers displayed reduced variability in both construct attachment and matrix deformation, likely due to increased reproducibility within the manufacturing process. The mechanical differences between systems may also have contributed to such differences, however, investigation of these variables was beyond the scope of the investigation. Though more expensive than the custom-built models, these PEEK chambers are also suitable for multiple use after autoclaving. As such this would support its use over the previously published handmade culture chamber system, particularly when seeking to develop higher-throughput systems or when experimental cost is not a factor.
Collapse
Affiliation(s)
- Julia M Jones
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Vivek Mudera
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom
| |
Collapse
|
10
|
Mukhey D, Phillips JB, Daniels JT, Kureshi AK. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents. Acta Biomater 2018; 67:229-237. [PMID: 29208552 DOI: 10.1016/j.actbio.2017.11.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. STATEMENT OF SIGNIFICANCE For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils and thus subsequently exploited this property in vitro to improve the architecture of engineered RAFT tissue equivalents of the corneal stroma. Existing techniques are extremely lengthy and carry significant risk and cost for GMP manufacture. This rapid and tunable technique takes just 8 h of culture and is therefore ideal for clinical manufacture, creating biomimetic tissue equivalents with both cellular and ECM organization. Thus, cellular self-alignment can be a useful bioengineering tool for the development of organized tissue equivalents in a variety of applications.
Collapse
|
11
|
Kapoor S, Kundu SC. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater 2016; 31:17-32. [PMID: 26602821 DOI: 10.1016/j.actbio.2015.11.034] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/08/2015] [Accepted: 11/17/2015] [Indexed: 01/20/2023]
Abstract
Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. STATEMENT OF SIGNIFICANCE This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our work is an effort to highlight the research that has been done in the area of silk-based hydrogels. It aims to provide an overview of the advances that have been made and the future course available. It will provide an overview of the silk-based hydrogels as well as may direct the readers to the specific areas of application.
Collapse
|
12
|
O’Rourke C, Drake RAL, Cameron GWW, Jane Loughlin A, Phillips JB. Optimising contraction and alignment of cellular collagen hydrogels to achieve reliable and consistent engineered anisotropic tissue. J Biomater Appl 2015; 30:599-607. [DOI: 10.1177/0885328215597818] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Engineered anisotropic tissue constructs containing aligned cell and extracellular matrix structures are useful as in vitro models and for regenerative medicine. They are of particular interest for nervous system modelling and regeneration, where tracts of aligned neurons and glia are required. The self-alignment of cells and matrix due to tension within tethered collagen gels is a useful tool for generating anisotropic tissues, but requires an optimal balance between cell density, matrix concentration and time to be achieved for each specific cell type. The aim of this study was to develop an assay system based on contraction of free-floating cellular gels in 96-well plates that could be used to investigate cell–matrix interactions and to establish optimal parameters for subsequent self-alignment of cells in tethered gels. Using C6 glioma cells, the relationship between contraction and alignment was established, with 60–80% contraction in the 96-well plate assay corresponding to alignment throughout tethered gels made using the same parameters. The assay system was used to investigate the effect of C6 cell density, collagen concentration and time. It was also used to show that blocking α1 integrin reduced the contraction and self-alignment of these cells, whereas blocking α2 integrin had little effect. The approach was validated by using primary astrocytes in the assay system under culture conditions that modified their ability to contract collagen gels. This detailed investigation describes a robust assay for optimising cellular self-alignment and provides a useful reference framework for future development of self-aligned artificial tissue.
Collapse
Affiliation(s)
- Caitriona O’Rourke
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, UK
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | - A Jane Loughlin
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, UK
| | - James B Phillips
- Department of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
13
|
Hopkins AM, DeSimone E, Chwalek K, Kaplan DL. 3D in vitro modeling of the central nervous system. Prog Neurobiol 2015; 125:1-25. [PMID: 25461688 PMCID: PMC4324093 DOI: 10.1016/j.pneurobio.2014.11.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/12/2014] [Accepted: 11/15/2014] [Indexed: 12/15/2022]
Abstract
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.
Collapse
Affiliation(s)
- Amy M Hopkins
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Elise DeSimone
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Karolina Chwalek
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
14
|
Hardy JG, Cornelison RC, Sukhavasi RC, Saballos RJ, Vu P, Kaplan DL, Schmidt CE. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering (Basel) 2015; 2:15-34. [PMID: 28955011 PMCID: PMC5597125 DOI: 10.3390/bioengineering2010015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).
Collapse
Affiliation(s)
- John G Hardy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - R Chase Cornelison
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Rushi C Sukhavasi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Richard J Saballos
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Philip Vu
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Christine E Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials 2014; 37:242-51. [PMID: 25453954 DOI: 10.1016/j.biomaterials.2014.10.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/02/2014] [Indexed: 01/12/2023]
Abstract
Adipose-derived stem cells were isolated from rats and differentiated to a Schwann cell-like phenotype in vitro. The differentiated cells (dADSCs) underwent self-alignment in a tethered type-1 collagen gel, followed by stabilisation to generate engineered neural tissue (EngNT-dADSC). The pro-regenerative phenotype of dADSCs was enhanced by this process, and the columns of aligned dADSCs in the aligned collagen matrix supported and guided neurite extension in vitro. EngNT-dADSC sheets were rolled to form peripheral nerve repair constructs that were implanted within NeuraWrap conduits to bridge a 15 mm gap in rat sciatic nerve. After 8 weeks regeneration was assessed using immunofluorescence imaging and transmission electron microscopy and compared to empty conduit and nerve graft controls. The proportion of axons detected in the distal stump was 3.5 fold greater in constructs containing EngNT-dADSC than empty tube controls. Our novel combination of technologies that can organise autologous therapeutic cells within an artificial tissue construct provides a promising new cellular biomaterial for peripheral nerve repair.
Collapse
Affiliation(s)
- Melanie Georgiou
- Advanced Centre for Biochemical Engineering, Bernard Katz Building, University College London, Gordon Street, London WC1H 0AH, UK; Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Jon P Golding
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Alison J Loughlin
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, SE 901 87 Umeå, Sweden
| | - James B Phillips
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| |
Collapse
|