1
|
Zhang S, Greening DW, Hong Y. Recent advances in bioanalytical methods to measure proteome stability in cells. Analyst 2021; 146:2097-2109. [DOI: 10.1039/d0an01547d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes recent bioanalytical methods for measuring and profiling protein stability in cells on a proteome-wide scale, which can provide insights for proteostasis and associated diseases.
Collapse
Affiliation(s)
- Shouxiang Zhang
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - David W. Greening
- Molecular Proteomics
- Baker Heart and Diabetes Institute
- Melbourne
- Australia
- Department of Biochemistry and Genetics
| | - Yuning Hong
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
2
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
3
|
Meksiriporn B, Ludwicki MB, Stephens EA, Jiang A, Lee HC, Waraho-Zhmayev D, Kummer L, Brandl F, Plückthun A, DeLisa MP. A survival selection strategy for engineering synthetic binding proteins that specifically recognize post-translationally phosphorylated proteins. Nat Commun 2019; 10:1830. [PMID: 31015433 PMCID: PMC6478843 DOI: 10.1038/s41467-019-09854-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent need for affinity reagents that target phospho-modified sites on individual proteins; however, generating such reagents remains a significant challenge. Here, we describe a genetic selection strategy for routine laboratory isolation of phospho-specific designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phosphorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is validated using an existing panel of DARPins that selectively bind the nonphosphorylated (inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated (active) form (pERK2). We then use the selection to affinity-mature a phospho-specific DARPin without compromising its selectivity for pERK2 over ERK2 and to reprogram the substrate specificity of the same DARPin towards non-cognate ERK2. Collectively, these results establish our genetic selection as a useful and potentially generalizable protein engineering tool for studying phospho-specific binding proteins and customizing their affinity and selectivity. Protein phosphorylation helps to control many important cellular activities. Here the authors describe a genetic selection strategy to isolate designed ankyrin repeat proteins that bind specifically to phosphomodified targets.
Collapse
Affiliation(s)
- Bunyarit Meksiriporn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Morgan B Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Erin A Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Allen Jiang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hyeon-Cheol Lee
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Lutz Kummer
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Fabian Brandl
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Matthew P DeLisa
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Sachsenhauser V, Bardwell JC. Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol 2018; 48:117-123. [PMID: 29278775 PMCID: PMC5880552 DOI: 10.1016/j.sbi.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Recently, several innovative approaches have been developed that allow one to directly screen or select for improved protein folding in the cellular context. These methods have the potential of not just leading to a better understanding of the in vivo folding process, they may also allow for improved production of proteins of biotechnological interest.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism. Sci Rep 2014; 4:7570. [PMID: 25531212 PMCID: PMC4273604 DOI: 10.1038/srep07570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/02/2014] [Indexed: 12/29/2022] Open
Abstract
The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary “hitchhiker” mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.
Collapse
|
6
|
Waraho-Zhmayev D, Meksiriporn B, Portnoff AD, DeLisa MP. Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection. Protein Eng Des Sel 2014; 27:351-8. [PMID: 25225416 DOI: 10.1093/protein/gzu038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 'hitchhiker' mechanism of the bacterial twin-arginine translocation pathway has previously been adapted as a genetic selection for detecting pairwise protein interactions in the cytoplasm of living Escherichia coli cells. Here, we extended this method, called FLI-TRAP, for rapid isolation of intracellular antibodies (intrabodies) in the single-chain Fv format that possess superior traits simply by demanding bacterial growth on high concentrations of antibiotic. Following just a single round of survival-based enrichment using FLI-TRAP, variants of an intrabody against the dimerization domain of the yeast Gcn4p transcription factor were isolated having significantly greater intracellular stability that translated to yield enhancements of >10-fold. Likewise, an intrabody specific for the non-amyloid component region of α-synuclein was isolated that has ~8-fold improved antigen-binding affinity. Collectively, our results illustrate the potential of the FLI-TRAP method for intracellular stabilization and affinity maturation of intrabodies, all without the need for purification or immobilization of the antigen.
Collapse
Affiliation(s)
- Dujduan Waraho-Zhmayev
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha-utid Road, Bangmod, Toongkru, Bangkok 10140, Thailand
| | | | - Alyse D Portnoff
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|