1
|
Minorsky PV. The "plant neurobiology" revolution. PLANT SIGNALING & BEHAVIOR 2024; 19:2345413. [PMID: 38709727 PMCID: PMC11085955 DOI: 10.1080/15592324.2024.2345413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
The 21st-century "plant neurobiology" movement is an amalgam of scholars interested in how "neural processes", broadly defined, lead to changes in plant behavior. Integral to the movement (now called plant behavioral biology) is a triad of historically marginalized subdisciplines, namely plant ethology, whole plant electrophysiology and plant comparative psychology, that set plant neurobiology apart from the mainstream. A central tenet held by these "triad disciplines" is that plants are exquisitely sensitive to environmental perturbations and that destructive experimental manipulations rapidly and profoundly affect plant function. Since destructive measurements have been the norm in plant physiology, much of our "textbook knowledge" concerning plant physiology is unrelated to normal plant function. As such, scientists in the triad disciplines favor a more natural and holistic approach toward understanding plant function. By examining the history, philosophy, sociology and psychology of the triad disciplines, this paper refutes in eight ways the criticism that plant neurobiology presents nothing new, and that the topics of plant neurobiology fall squarely under the purview of mainstream plant physiology. It is argued that although the triad disciplines and mainstream plant physiology share the common goal of understanding plant function, they are distinct in having their own intellectual histories and epistemologies.
Collapse
Affiliation(s)
- Peter V. Minorsky
- Department of Natural Sciences, Mercy University, Dobbs Ferry, NY, USA
| |
Collapse
|
2
|
Sahin İ, Eroksuz Y, Ugur K, İncili CA, Eroksuz H, Aydin GN, Ozpolat E, Bildirici F, Aydin S. Some animal protein antigens identified in cells of two plant species. TURKISH JOURNAL OF BIOCHEMISTRY 2024; 49:612-620. [DOI: 10.1515/tjb-2024-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Abstract
Objectives
It has been recently reported that immune activity of some animal peptides/proteins has been found in some plants. In this study, the presence of immune reactivity of alarin, asprosin, paraoxonase, elabela, glucagon, and nesfatin-1 like molecules was investigated in two plant species related to Kastamonu Taşköprü garlic (an endemic cultivar of the Allium sativum L.) and Tunceli garlic (Allium tuncelianum).
Methods
Ten Kastamonu and 10 Tunceli garlic were embedded in paraffin blocks and 4–5 μm transversal and longitudinal sections were taken and stained by immunohistochemical method. In addition, 500 mg of wet tissue samples were homogenized from these garlic and supernatants were obtained. The amounts of alarin, asprosin, elabela, glucagon and nesfatin-1 were studied by enzyme linked immunosorbent assay (ELISA) method and paraoxonase was studied by spectrophotometric method.
Results
Studied molecules show immune reactivity in the cytoplasm of the bulb storage cells of the plants parenchyma. The ELISA supernatant results also confirmed the presence of these animal molecules in the plants.
Conclusions
Although we cannot reveal the purpose of the presence of these animal molecules detected in plants with these existing data, we predict that these data will be a source of inspiration in the field of botany, that studies will shift in this direction and that they might contribute to the revision of the evolutionary processes of all living things, especially an ancestor of garlics.
Collapse
Affiliation(s)
- İbrahim Sahin
- Department of Medical Biology, Medical School , Erzincan Binali Yildirim University , Erzincan , Türkiye
| | - Yesari Eroksuz
- Department of Pathology, Veterinary School , Firat University , Elazig , Türkiye
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), Medical School , Firat University , Elazig , Türkiye
| | - Canan Akdeniz İncili
- Department of Pathology, Veterinary School , Firat University , Elazig , Türkiye
| | - Hatice Eroksuz
- Department of Pathology, Veterinary School , Firat University , Elazig , Türkiye
| | - Gizem Nur Aydin
- Agriculture, Agriculture Faculty , 19 Mayis University , Samsun , Türkiye
| | - Emine Ozpolat
- Department of Fisheries Technology, Faculty of Fisheries , Fırat University , Elazig , Türkiye
| | - Furkan Bildirici
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School , 64177 Firat University , Elazig , Türkiye
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School , 64177 Firat University , Elazig , Türkiye
| |
Collapse
|
3
|
Vogel D, Hills P, Moore JP. Strigolactones GR-24 and Nijmegen Applications Result in Reduced Susceptibility of Tobacco and Grapevine Plantlets to Botrytis cinerea Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:3202. [PMID: 37765366 PMCID: PMC10535315 DOI: 10.3390/plants12183202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Priming agents are plant defence-inducing compounds which can prompt a state of protection but may also aid in plant growth and interactions with beneficial microbes. The synthetic strigolactones (±)-GR24 and Nijmegen-1 were evaluated as potential priming agents for induced resistance against Botrytis cinerea in tobacco and grapevine plants. The growth and stress response profiles of B. cinerea to strigolactones were also investigated. Soil drench treatment with strigolactones induced resistance in greenhouse-grown tobacco plants and restricted lesion development. The mode of action appeared to function by priming redox-associated compounds to produce an anti-oxidant protective response for limiting the infection. The results obtained in the in vitro assays mirrored that of the greenhouse-grown plants. Exposure of B. cinerea to the strigolactones resulted in increased hyphal branching, with (±)-GR24 stimulating a stronger effect than Nijmegen-1 by affecting colony diameter and radial growth. An oxidative stress response was observed, with B. cinerea exhibiting increased ROS and SOD levels when grown with strigolactones. This study identified the application of strigolactones as potential priming agents to induce disease resistance in both tobacco and grapevine plants. In addition, strigolactones may alter the ROS homeostasis of B. cinerea, resulting in both morphological and physiological changes, thereby reducing virulence.
Collapse
Affiliation(s)
- Dominic Vogel
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Paul Hills
- Institute for Plant Biotechnology, Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
4
|
Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
|
6
|
|
7
|
Kawa NC. Plants that Keep the Bad Vibes Away: Boundary Maintenance and Phyto-Communicability in Urban Amazonia. ETHNOS 2020. [DOI: 10.1080/00141844.2020.1765830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Zer H, Mizrahi H, Malchenko N, Avin-Wittenberg T, Klipcan L, Ostersetzer-Biran O. The Phytotoxicity of Meta-Tyrosine Is Associated With Altered Phenylalanine Metabolism and Misincorporation of This Non-Proteinogenic Phe-Analog to the Plant's Proteome. FRONTIERS IN PLANT SCIENCE 2020; 11:140. [PMID: 32210982 PMCID: PMC7069529 DOI: 10.3389/fpls.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 05/10/2023]
Abstract
Plants produce a myriad of specialized (secondary) metabolites that are highly diverse chemically, and exhibit distinct biological functions. Here, we focus on meta-tyrosine (m-tyrosine), a non-proteinogenic byproduct that is often formed by a direct oxidation of phenylalanine (Phe). Some plant species (e.g., Euphorbia myrsinites and Festuca rubra) produce and accumulate high levels of m-tyrosine in their root-tips via enzymatic pathways. Upon its release to soil, the Phe-analog, m-tyrosine, affects early post-germination development (i.e., altered root development, cotyledon or leaf chlorosis, and retarded growth) of nearby plant life. However, the molecular basis of m-tyrosine-mediated (phyto)toxicity remains, to date, insufficiently understood and are still awaiting their functional characterization. It is anticipated that upon its uptake, m-tyrosine impairs key metabolic processes, or affects essential cellular activities in the plant. Here, we provide evidences that the phytotoxic effects of m-tyrosine involve two distinct molecular pathways. These include reduced steady state levels of several amino acids, and in particularly altered biosynthesis of the phenylalanine (Phe), an essential α-amino acid, which is also required for the folding and activities of proteins. In addition, proteomic studies indicate that m-tyrosine is misincorporated in place of Phe, mainly into the plant organellar proteomes. These data are supported by analyses of adt mutants, which are affected in Phe-metabolism, as well as of var2 mutants, which lack FtsH2, a major component of the chloroplast FtsH proteolytic machinery, which show higher sensitivity to m-tyrosine. Plants treated with m-tyrosine show organellar biogenesis defects, reduced respiration and photosynthetic activities and growth and developmental defect phenotypes.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikol Malchenko
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Klipcan
- Institute of Plant Sciences, the Gilat Research Center, Agricultural Research Organization (ARO), Negev, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| |
Collapse
|
9
|
Biological evolution as defense of 'self'. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:54-74. [PMID: 30336184 DOI: 10.1016/j.pbiomolbio.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Although the origin of self-referential consciousness is unknown, it can be argued that the instantiation of self-reference was the commencement of the living state as phenomenal experientiality. As self-referential cognition is demonstrated by all living organisms, life can be equated with the sustenance of cellular homeostasis in the continuous defense of 'self'. It is proposed that the epicenter of 'self' is perpetually embodied within the basic cellular form in which it was instantiated. Cognition-Based Evolution argues that all of biological and evolutionary development represents the perpetual autopoietic defense of self-referential basal cellular states of homeostatic preference. The means by which these states are attained and maintained is through self-referential measurement of information and its communication. The multicellular forms, either as biofilms or holobionts, represent the cellular attempt to achieve maximum states of informational distinction and energy efficiency through individual and collective means. In this frame, consciousness, self-consciousness and intelligence can be identified as forms of collective cellular phenotype directed towards the defense of fundamental cellular self-reference.
Collapse
|
10
|
Towards Systemic View for Plant Learning: Ecophysiological Perspective. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Jaggers RW, Bon SAF. Communication between hydrogel beads via chemical signalling. J Mater Chem B 2017; 5:8681-8685. [PMID: 32264261 DOI: 10.1039/c7tb02278f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, we demonstrate chemical communication between millimetre-sized soft hydrogel beads in an aqueous environment. Silver cations (Ag+) and the Ag+ chelator dithiothreitol (DTT) are used as signalling molecules. By exploiting their interplay, we conduct a series of 'conversations' between millimetre-sized beads. The communication process is monitored by tracking the response and behaviour of a central bead. This bead is loaded with the enzyme urease and has the ability to undergo a change in colour associated with a change in pH. Competitive communication between three beads, whereby the central bead receives two competing signals from two senders, is shown. We believe that our hydrogel-based system demonstrates an advance in the communication capabilities of small soft matter objects.
Collapse
Affiliation(s)
- Ross W Jaggers
- Department of Chemistry, University of Warwick, Coventry, C47 7AL, UK.
| | | |
Collapse
|
12
|
Loke KK, Rahnamaie-Tajadod R, Yeoh CC, Goh HH, Mohamed-Hussein ZA, Zainal Z, Ismail I, Mohd Noor N. Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. PeerJ 2017; 5:e2938. [PMID: 28265493 PMCID: PMC5333554 DOI: 10.7717/peerj.2938] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polygonum minus is an herbal plant in the Polygonaceae family which is rich in ethnomedicinal plants. The chemical composition and characteristic pungent fragrance of Polygonum minus have been extensively studied due to its culinary and medicinal properties. There are only a few transcriptome sequences available for species from this important family of medicinal plants. The limited genetic information from the public expressed sequences tag (EST) library hinders further study on molecular mechanisms underlying secondary metabolite production. METHODS In this study, we performed a hybrid assembly of 454 and Illumina sequencing reads from Polygonum minus root and leaf tissues, respectively, to generate a combined transcriptome library as a reference. RESULTS A total of 34.37 million filtered and normalized reads were assembled into 188,735 transcripts with a total length of 136.67 Mbp. We performed a similarity search against all the publicly available genome sequences and found similarity matches for 163,200 (86.5%) of Polygonum minus transcripts, largely from Arabidopsis thaliana (58.9%). Transcript abundance in the leaf and root tissues were estimated and validated through RT-qPCR of seven selected transcripts involved in the biosynthesis of phenylpropanoids and flavonoids. All the transcripts were annotated against KEGG pathways to profile transcripts related to the biosynthesis of secondary metabolites. DISCUSSION This comprehensive transcriptome profile will serve as a useful sequence resource for molecular genetics and evolutionary research on secondary metabolite biosynthesis in Polygonaceae family. Transcriptome assembly of Polygonum minus can be accessed at http://prims.researchfrontier.org/index.php/dataset/transcriptome.
Collapse
Affiliation(s)
- Kok-Keong Loke
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | - Chean-Chean Yeoh
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
13
|
Santos AP, Ferreira LJ, Oliveira MM. Concerted Flexibility of Chromatin Structure, Methylome, and Histone Modifications along with Plant Stress Responses. BIOLOGY 2017; 6:biology6010003. [PMID: 28275209 PMCID: PMC5371996 DOI: 10.3390/biology6010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
The spatial organization of chromosome structure within the interphase nucleus, as well as the patterns of methylome and histone modifications, represent intersecting layers that influence genome accessibility and function. This review is focused on the plastic nature of chromatin structure and epigenetic marks in association to stress situations. The use of chemical compounds (epigenetic drugs) or T-DNA-mediated mutagenesis affecting epigenetic regulators (epi-mutants) are discussed as being important tools for studying the impact of deregulated epigenetic backgrounds on gene function and phenotype. The inheritability of epigenetic marks and chromatin configurations along successive generations are interpreted as a way for plants to “communicate” past experiences of stress sensing. A mechanistic understanding of chromatin and epigenetics plasticity in plant response to stress, including tissue- and genotype-specific epigenetic patterns, may help to reveal the epigenetics contributions for genome and phenotype regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| | - Liliana J Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
14
|
Platt CC, Nicholls C, Brookes C, Wood I. Classification of cell signalling in tissue development. CELL COMMUNICATION & ADHESION 2011; 18:9-17. [PMID: 21651343 DOI: 10.3109/15419061.2011.586755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The traditional classification of signalling in biological systems is insufficient and outdated and novel efforts must take into account advances in systems theory, information theory and linguistics. We present some of the classification systems currently used both within and outside of the biological field and discuss some specific aspects of the nature of signalling in tissue development. The analytical methods used in understanding non-biological networks provide a valuable vocabulary, which requires integration and a system of classification to further facilitate development.
Collapse
|
15
|
Witzany G. Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 2010; 1:160-80. [PMID: 21541001 PMCID: PMC3083953 DOI: 10.4331/wjbc.v1.i5.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
This article describes a coherent biocommunication categorization for the kingdoms of bacteria, fungi and plants. The investigation further shows that, besides biotic sign use in trans-, inter- and intraorganismic communication processes, a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour. Far from being mechanistic interactions, communication processes within organisms and between organisms are sign-mediated interactions. Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells, tissues, organs and organisms. Signs of biocommunicative processes are chemical molecules in most cases. The signs that are used in a great variety of signaling processes follow syntactic (combinatorial), pragmatic (context-dependent) and semantic (content-specific) rules. These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms. It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria, fungi and plants.
Collapse
Affiliation(s)
- Günther Witzany
- Guenther Witzany, Telos-Philosophische Praxis, Vogelsangstrasse 18c, A-5111-Buermoos, Austria
| |
Collapse
|
16
|
Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 2009; 262:698-710. [PMID: 19833132 DOI: 10.1016/j.jtbi.2009.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 02/06/2023]
Abstract
In contrast with former definitions of life limited to membrane-bound cellular life forms which feed, grow, metabolise and replicate (i) a role of viruses as genetic symbionts, (ii) along with peripheral phenomena such as cryptobiosis and (iii) the horizontal nature of genetic information acquisition and processing broaden our view of the tree of life. Some researchers insist on the traditional textbook conviction of what is part of the community of life. In a recent review [Moreira, D., Lopez-Garcia, P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311.] they assemble four main arguments which should exclude viruses from the tree of life because of their inability to self-sustain and self-replicate, their polyphyly, the cellular origin of their cell-like genes and the volatility of their genomes. In this article we will show that these features are not coherent with current knowledge about viruses but that viral agents play key roles within the roots and stem of the tree of life.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
17
|
Brenner A. Pflanzen als Selbste. J Verbrauch Lebensm 2009. [DOI: 10.1007/s00003-009-0318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Baluška F, Mancuso S. Plant neurobiology as a paradigm shift not only in the plant sciences. PLANT SIGNALING & BEHAVIOR 2007; 2:205-7. [PMID: 19516989 PMCID: PMC2634129 DOI: 10.4161/psb.2.4.4550] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 05/07/2023]
Abstract
Plants are complex living beings, extremely sensitive to environmental factors, continuously adapting to the ever changing environment. Emerging research document that plants sense, memorize, and process experiences and use this information for their adaptive behavior and evolution. As any other living and evolving systems, plants act as knowledge accumulating systems. Neuronal informational systems are behind this concept of organisms as knowledge accumulating systems because they allow the most rapid and efficient adaptive responses to changes in environment. Therefore, it should not be surprising that neuronal computation is not limited to animal brains but is used also by bacteria and plants. The journal, Plant Signaling & Behavior, was launched as a platform for exchanging information and fostering research on plant neurobiology in order to allow our understanding of plants in their whole integrated, communicative, and behavioral complexity.I always go by official statistics because they are very carefully compounded and, even if they are false, we have no others ... approximately Jaroslav Hasek, 1911.
Collapse
|