1
|
Influence of Culture Media and Environmental Factors (Water Potential and Temperature) on Mycelial Growth of Phytopythium vexans (de Bary), the Causal Agent of Dieback Disease in Apple Trees. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed at evaluating the effects of culture media and environmental factors (temperature and water potential (Ψw)) on the growth of the pathogenic fungus Phytopythium vexans (de Bary) associated with root rot and dieback disease in apple trees. Tomato agar, potato dextrose agar (PDA), and soybean agar were the most favourable for rapid mycelial growth, with optimum growth recorded for PDA medium. To determine the environmental conditions that promoted the development of this phytopathogen, the effects of temperature (5–30 °C), water potential (Ψw) (−15.54; −0.67 MPa) (0.89–0.995 aw), and their interaction were evaluated on the in vitro radial growth rates of the five isolates of P. vexans and on their latency phase (time period prior to growth). The results of this study showed that temperature, water potential, and their interaction had significant effects (p < 0.001) on the radial growth rates and latency phases of all tested P. vexans isolates. All isolates were able to grow throughout the temperature range (5 to 30 °C), with the maximum radial growth rate being observed at the highest temperatures, 25–30 °C. Growth was seen to be faster at −0.67 MPa (0.995 aw) at 25 °C and 30 °C. No growth was observed at Ψw < −5.44 MPa (0.96 aw), regardless of the temperature. It was found that the length of the latency phase depended significantly on both environmental factors. The longest latency phases (5 days on average) were recorded at a temperature of 5 °C and Ψw of −0.67 MPa (0.995 aw) and −2.69 MPa (0.98 aw), while the shortest latency phases were observed at a temperature of 30 °C and a Ψw of −0.67 MPa (0.995 aw), with an average of 0.2 days. The findings from this study could help to understand the impact of these environmental factors on the occurrence of diseases caused by P. vexans and more likely to design a reliable preventive control strategy based on the avoidance of conditions that play in favour of the phytopathogen.
Collapse
|
2
|
Robinett NG, Peterson RL, Culotta VC. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J Biol Chem 2017; 293:4636-4643. [PMID: 29259135 DOI: 10.1074/jbc.tm117.000182] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The copper-containing superoxide dismutases (SODs) represent a large family of enzymes that participate in the metabolism of reactive oxygen species by disproportionating superoxide anion radical to oxygen and hydrogen peroxide. Catalysis is driven by the redox-active copper ion, and in most cases, SODs also harbor a zinc at the active site that enhances copper catalysis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are widespread, from the periplasm of bacteria to virtually every organelle in the human cell. However, a new class of copper-containing SODs has recently emerged that function without zinc. These copper-only enzymes serve as extracellular SODs in specific bacteria (i.e. Mycobacteria), throughout the fungal kingdom, and in the fungus-like oomycetes. The eukaryotic copper-only SODs are particularly unique in that they lack an electrostatic loop for substrate guidance and have an unusual open-access copper site, yet they can still react with superoxide at rates limited only by diffusion. Copper-only SOD sequences similar to those seen in fungi and oomycetes are also found in the animal kingdom, but rather than single-domain enzymes, they appear as tandem repeats in large polypeptides we refer to as CSRPs (copper-only SOD-repeat proteins). Here, we compare and contrast the Cu,Zn versus copper-only SODs and discuss the evolution of copper-only SOD protein domains in animals and fungi.
Collapse
Affiliation(s)
- Natalie G Robinett
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ryan L Peterson
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
3
|
Gleason FH, Scholz B, Jephcott TG, van Ogtrop FF, Henderson L, Lilje O, Kittelmann S, Macarthur DJ. Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0038-2016. [PMID: 28361735 PMCID: PMC11687468 DOI: 10.1128/microbiolspec.funk-0038-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Indexed: 12/25/2022] Open
Abstract
The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.
Collapse
Affiliation(s)
- Frank H Gleason
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Bettina Scholz
- Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, Iceland
- BioPol ehf., Einbúastig 2, 545 Skagaströnd, Iceland
| | - Thomas G Jephcott
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Floris F van Ogtrop
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Linda Henderson
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Osu Lilje
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Sandra Kittelmann
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Deborah J Macarthur
- School of Science, Faculty of Health Sciences, Australian Catholic University, NSW 2059, Australia
| |
Collapse
|
4
|
Peterson RL, Galaleldeen A, Villarreal J, Taylor AB, Cabelli DE, Hart PJ, Culotta VC. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases. J Biol Chem 2016; 291:20911-20923. [PMID: 27535222 DOI: 10.1074/jbc.m116.748251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or "pseudofungi" species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.
Collapse
Affiliation(s)
- Ryan L Peterson
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ahmad Galaleldeen
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas 78228, Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Johanna Villarreal
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas 78228
| | - Alexander B Taylor
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Diane E Cabelli
- Chemistry Department, Brookhaven National Laboratories, Upton, New York 11973-5000, and
| | - P John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, Department of Veterans Affairs, Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Valeria C Culotta
- From the Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,
| |
Collapse
|
5
|
Abstract
All species continuously evolve to adapt to changing environments. The genetic variation that fosters such adaptation is caused by a plethora of mechanisms, including meiotic recombination that generates novel allelic combinations in the progeny of two parental lineages. However, a considerable number of eukaryotic species, including many fungi, do not have an apparent sexual cycle and are consequently thought to be limited in their evolutionary potential. As such organisms are expected to have reduced capability to eliminate deleterious mutations, they are often considered as evolutionary dead ends. However, inspired by recent reports we argue that such organisms can be as persistent as organisms with conventional sexual cycles through the use of other mechanisms, such as genomic rearrangements, to foster adaptation.
Collapse
Affiliation(s)
- Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
6
|
Seidl MF, Van den Ackerveken G, Govers F, Snel B. Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families. Genome Biol Evol 2012; 4:199-211. [PMID: 22230142 PMCID: PMC3318443 DOI: 10.1093/gbe/evs003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have not yet been studied by applying systematic tree reconciliation of the phylome of these species. We analyzed evolutionary dynamics of ten Stramenopiles. Gene gains, duplications, and losses were inferred by tree reconciliation of 18,459 gene trees constituting the phylome with a highly supported species phylogeny. We reconstructed a strikingly large last common ancestor of the Stramenopiles that contained ∼10,000 genes. Throughout evolution, the genomes of pathogenic oomycetes have constantly gained and lost genes, though gene gains through duplications outnumber the losses. The branch leading to the plant pathogenic Phytophthora genus was identified as a major transition point characterized by increased frequency of duplication events that has likely driven the speciation within this genus. Large gene families encoding different classes of enzymes associated with pathogenicity such as glycoside hydrolases are formed by complex and distinct patterns of duplications and losses leading to their expansion in extant oomycetes. This study unveils the large-scale evolutionary dynamics that shaped the genomes of pathogenic oomycetes. By the application of phylogenetic based analyses methods, it provides additional insights that shed light on the complex history of oomycete genome evolution and the emergence of large gene families characteristic for this important class of pathogens.
Collapse
Affiliation(s)
- Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Abstract
Many destructive diseases of plants and animals are caused by oomycetes, a group of eukaryotic pathogens important to agricultural, ornamental, and natural ecosystems. Understanding the mechanisms underlying oomycete virulence and the genomic processes by which those mechanisms rapidly evolve is essential to developing effective long-term control measures for oomycete diseases. Several common mechanisms underlying oomycete virulence, including protein toxins and cell-entering effectors, have emerged from comparing oomycetes with different genome characteristics, parasitic lifestyles, and host ranges. Oomycete genomes display a strongly bipartite organization in which conserved housekeeping genes are concentrated in syntenic gene-rich blocks, whereas virulence genes are dispersed into highly dynamic, repeat-rich regions. There is also evidence that key virulence genes have been acquired by horizontal transfer from other eukaryotic and prokaryotic species.
Collapse
Affiliation(s)
- Rays H Y Jiang
- The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
8
|
Sprockett DD, Piontkivska H, Blackwood CB. Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens. Gene 2011; 479:29-36. [DOI: 10.1016/j.gene.2011.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/06/2011] [Accepted: 02/13/2011] [Indexed: 12/21/2022]
|
9
|
Seidl MF, Van den Ackerveken G, Govers F, Snel B. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. PLANT PHYSIOLOGY 2011; 155:628-644. [PMID: 21119047 PMCID: PMC3032455 DOI: 10.1104/pp.110.167841] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/24/2010] [Indexed: 05/29/2023]
Abstract
Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.
Collapse
Affiliation(s)
- Michael F Seidl
- Theoretical Biology and Bioinformatics , Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|