1
|
Cao Y, Guo H, Liu Z, Wang C, Wang Y. The homeodomain (PHD) protein, PdbPHD3, confers salt tolerance by regulating squamosa promoter binding protein PdbSBP3 in Populus davidiana × P. bolleana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109128. [PMID: 39307106 DOI: 10.1016/j.plaphy.2024.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Plant homeodomain (PHD) proteins are a family of zinc finger transcription factors that play roles in abiotic stress tolerance. However, their mechanisms in conferring salt tolerance are largely unknown. In this study, we characterized a PHD gene, PdbPHD3, from Populus davidiana × P. bolleana (Shanxin poplar) in response to salt stress. PdbPHD3 is a nuclear protein that is strongly induced by salt and abscisic acid (ABA) treatments. Overexpression of PdbPHD3 conferred salt tolerance, while silencing of PdbPHD3 increased sensitivity to salt. PdbPHD3 could enhance the activities of superoxide dismutase and peroxidase to reduce the abundance of reactive oxygen species, and enhance the osmotic potential by increasing the proline content. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed that PdbPHD3 could bind to various DNA motifs, including the G-box ("CACGTG"), PALBOXAPC ("GGACGG"), and POLLEN1LELAT52 ("TTTCTT"). ChIP-seq combined with RNA sequencing identified a transcription factor gene, squamosa promoter binding protein 3 (PdbSBP3), which is directly regulated by PdbPHD3. Overexpression and silencing of PdbSBP3 improved and decreased salt tolerance, respectively. PdbSBP3 could also regulate all the physiological changes associated with salt tolerance, similar to PdbPHD3. These results suggest that PdbPHD3 confers salt tolerance by regulating PdbSBP3 to reduce ROS accumulation and increase proline content. Therefore, the regulatory axis of PdbPHD3 and PdbSBP3 confers salt tolerance in Shanxin poplar.
Collapse
Affiliation(s)
- Yanting Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Huiyan Guo
- Key Laboratory of Forest Tree Genetic Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Zhujun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; Key Laboratory of Forest Tree Genetic Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
2
|
Zhang D, Ma S, Liu Z, Yang Y, Yang W, Zeng H, Su H, Yang Y, Zhang W, Zhang J, Ku L, Ren Z, Chen Y. ZmABF4-ZmVIL2/ZmFIP37 module enhances drought tolerance in maize seedlings. PLANT, CELL & ENVIRONMENT 2024; 47:3605-3618. [PMID: 38747469 DOI: 10.1111/pce.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 08/16/2024]
Abstract
Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.
Collapse
Affiliation(s)
- Dongling Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shixiang Ma
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuwei Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjing Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haixia Zeng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yang Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wanjun Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Malik AH, Khurshaid N, Shabir N, Ashraf N. Transcriptome wide identification, characterization and expression analysis of PHD gene family in Crocus sativus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:81-91. [PMID: 38435850 PMCID: PMC10902251 DOI: 10.1007/s12298-024-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Crocus sativus L., of the Iridaceae family, yields world's most prized spice, saffron. Saffron is well known for its distinctive aroma, odour and colour, which are imputed to the presence of some specific glycosylated apocarotenoids. Even though the main biosynthetic pathway and most of the enzymes leading to apocarotenoid production have been identified, the regulatory mechanisms that govern the developmental stage and tissue specific production of apocarotenoids in Crocus remain comparatively unravelled. Towards this, we report identification, and characterization of plant homeodomain (PHD) finger transcription factor family in Crocus sativus. We also report cloning and characterisation of CstPHD27 from C. sativus. CstPHD27 recorded highest expression in stigma throughout flower development. CstPHD27 exhibited expression pattern which corresponded to the apocarotenoid accumulation in Crocus stigmas. CstPHD27 is nuclear localized and transcriptionally active in yeast Y187 strain. Over-expression of CstPHD27 in Crocus stigmas enhanced apocarotenoid content by upregulating the biosynthetic pathway genes. This report on PHD finger transcription factor family from C. sativus may offer a basis for elucidating role of this gene family in this traditionally and industrially prized crop. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01410-3.
Collapse
Affiliation(s)
- Aubid Hussain Malik
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Nargis Khurshaid
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Najwa Shabir
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Nasheeman Ashraf
- Plant Molecular Biology and Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
4
|
Wang J, Eulgem T. The Arabidopsis RRM domain proteins EDM3 and IBM2 coordinate the floral transition and basal immune responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:128-143. [PMID: 37347678 DOI: 10.1111/tpj.16364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The transition from vegetative to reproductive development (floral transition) is a costly process in annual plants requiring increased investments in metabolic resources. The Arabidopsis thaliana (Arabidopsis) PHD finger protein EDM2 and RRM domain proteins EDM3 and IBM2 are known to form chromatin-associated complexes controlling transcript processing. We are reporting that distinct splice isoforms of EDM3 and IBM2 cooperate in the coordination of the floral transition with basal immune responses. These cooperating splice isoforms, termed EDM3L and IBM2L, control the intensity of basal immunity and, via a separate pathway, the timing of the floral transition. During the developmental phase prior to the floral transition expression of EDM3L and IBM2L strongly and gradually increases, while these isoforms simultaneously down-regulate expression of the floral suppressor gene FLC and promote the transition to reproductive growth. At the same time these accumulating EDM3 and IBM2 splice isoforms gradually suppress basal immunity against the virulent Noco2 isolate of the pathogenic oomycete Hyaloperonospora arabidopsidis and down-regulate expression of a set of defense-associated genes and immune receptor genes. We are providing clear evidence for a functional link between the floral transition and basal immunity in the annual plant Arabidopsis. Coordination of these two biological processes, which compete for metabolic resources, is likely critical for plant survival and reproductive success.
Collapse
Affiliation(s)
- Jianqiang Wang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
5
|
Molecular basis of locus-specific H3K9 methylation catalyzed by SUVH6 in plants. Proc Natl Acad Sci U S A 2023; 120:e2208525120. [PMID: 36580600 PMCID: PMC9910501 DOI: 10.1073/pnas.2211155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dimethylated histone H3 Lys9 (H3K9me2) is a conserved heterochromatic mark catalyzed by SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG (SUVH) methyltransferases in plants. However, the mechanism underlying the locus specificity of SUVH enzymes has long been elusive. Here, we show that a conserved N-terminal motif is essential for SUVH6-mediated H3K9me2 deposition in planta. The SUVH6 N-terminal peptide can be recognized by the bromo-adjacent homology (BAH) domain of the RNA- and chromatin-binding protein ANTI-SILENCING 1 (ASI1), which has been shown to function in a complex to confer gene expression regulation. Structural data indicate that a classic aromatic cage of ASI1-BAH domain specifically recognizes an arginine residue of SUVH6 through extensive hydrogen bonding interactions. A classic aromatic cage of ASI1 specifically recognizes an arginine residue of SUVH6 through extensive cation-π interactions, playing a key role in recognition. The SUVH6-ASI1 module confers locus-specific H3K9me2 deposition at most SUVH6 target loci and gives rise to distinct regulation of gene expression depending on the target loci, either conferring transcriptional silencing or posttranscriptional processing of mRNA. More importantly, such mechanism is conserved in multiple plant species, indicating a coordinated evolutionary process between SUVH6 and ASI1. In summary, our findings uncover a conserved mechanism for the locus specificity of H3K9 methylation in planta. These findings provide mechanistic insights into the delicate regulation of H3K9 methylation homeostasis in plants.
Collapse
|
6
|
Zhang YZ, Lin J, Ren Z, Chen CX, Miki D, Xie SS, Zhang J, Chang YN, Jiang J, Yan J, Li QQ, Zhu JK, Duan CG. Genome-wide distribution and functions of the AAE complex in epigenetic regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:707-722. [PMID: 33438356 DOI: 10.1111/jipb.13068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhizhong Ren
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chun-Xiang Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jun Yan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, 91766, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
7
|
Lai Y, Cuzick A, Lu XM, Wang J, Katiyar N, Tsuchiya T, Le Roch K, McDowell JM, Holub E, Eulgem T. The Arabidopsis RRM domain protein EDM3 mediates race-specific disease resistance by controlling H3K9me2-dependent alternative polyadenylation of RPP7 immune receptor transcripts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:646-660. [PMID: 30407670 PMCID: PMC7138032 DOI: 10.1111/tpj.14148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 05/18/2023]
Abstract
The NLR-receptor RPP7 mediates race-specific immunity in Arabidopsis. Previous screens for enhanced downy mildew (edm) mutants identified the co-chaperone SGT1b (EDM1) and the PHD-finger protein EDM2 as critical regulators of RPP7. Here, we describe a third edm mutant compromised in RPP7 immunity, edm3. EDM3 encodes a nuclear-localized protein featuring an RNA-recognition motif. Like EDM2, EDM3 promotes histone H3 lysine 9 dimethylation (H3K9me2) at RPP7. Global profiling of H3K9me2 showed EDM3 to affect this silencing mark at a large set of loci. Importantly, both EDM3 and EDM2 co-associate in vivo with H3K9me2-marked chromatin and transcripts at a critical proximal polyadenylation site of RPP7, where they suppress proximal transcript polyadeylation/termination. Our results highlight the complexity of plant NLR gene regulation, and establish a functional and physical link between a histone mark and NLR-transcript processing.
Collapse
Affiliation(s)
- Yan Lai
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
| | - Alayne Cuzick
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Xueqing M Lu
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Jianqiang Wang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Neerja Katiyar
- Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, 252-0880, Japan
| | - Karine Le Roch
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24060-0329, USA
| | - Eric Holub
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
8
|
Lai Y, Eulgem T. Transcript-level expression control of plant NLR genes. MOLECULAR PLANT PATHOLOGY 2018; 19:1267-1281. [PMID: 28834153 PMCID: PMC6638128 DOI: 10.1111/mpp.12607] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector-triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript-level expression control. Multiple mechanistic steps, including transcription as well as co-/post-transcriptional processing and transcript turn-over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.
Collapse
Affiliation(s)
- Yan Lai
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
- College of Life SciencesFujian Agricultural and Forestry UniversityFuzhouFujian 350002China
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome BiologyUniversity of California at RiversideRiversideCA 92521USA
| |
Collapse
|
9
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
10
|
Karasov TL, Chae E, Herman JJ, Bergelson J. Mechanisms to Mitigate the Trade-Off between Growth and Defense. THE PLANT CELL 2017; 29:666-680. [PMID: 28320784 PMCID: PMC5435432 DOI: 10.1105/tpc.16.00931] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 05/03/2023]
Abstract
Plants have evolved an array of defenses against pathogens. However, mounting a defense response frequently comes with the cost of a reduction in growth and reproduction, carrying critical implications for natural and agricultural populations. This review focuses on how costs are generated and whether and how they can be mitigated. Most well-characterized growth-defense trade-offs stem from antagonistic crosstalk among hormones rather than an identified metabolic expenditure. A primary way plants mitigate such costs is through restricted expression of resistance; this can be achieved through inducible expression of defense genes or by the concentration of defense to particular times or tissues. Defense pathways can be primed for more effective induction, and primed states can be transmitted to offspring. We examine the resistance (R) genes as a case study of how the toll of defense can be generated and ameliorated. The fine-scale regulation of R genes is critical to alleviate the burden of their expression, and the genomic organization of R genes into coregulatory modules reduces costs. Plants can also recruit protection from other species. Exciting new evidence indicates that a plant's genotype influences the microbiome composition, lending credence to the hypothesis that plants shape their microbiome to enhance defense.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Jacob J Herman
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
11
|
Epigenetic Regulation of Intronic Transgenes in Arabidopsis. Sci Rep 2017; 7:45166. [PMID: 28338020 PMCID: PMC5364540 DOI: 10.1038/srep45166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/20/2017] [Indexed: 11/23/2022] Open
Abstract
Defense mechanisms of plant genomes can epigenetically inactivate repetitive sequences and exogenous transgenes. Loss of mutant phenotypes in intronic T-DNA insertion lines by interaction with another T-DNA locus, termed T-DNA suppression, has been observed in Arabidopsis thaliana, although the molecular basis of establishment and maintenance of T-DNA suppression is poorly understood. Here we show that maintenance of T-DNA suppression requires heterochromatinisation of T-DNA sequences and the nuclear proteins, INCREASED IN BONSAI METHYLATION 2 (IBM2) and ENHANCED DOWNY MILDEW 2 (EDM2), which prevent ectopic 3′ end processing of mRNA in atypically long introns containing T-DNA sequences. Initiation of T-DNA suppression is mediated by the canonical RdDM pathway after hybridisation of two T-DNA strains, accompanied by DNA hypermethylation of T-DNA sequences in the F1 generation. Our results reveal the presence of a genome surveillance mechanism through genome hybridisation that masks repetitive DNAs intruding into transcription units.
Collapse
|
12
|
Deleris A, Halter T, Navarro L. DNA Methylation and Demethylation in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:579-603. [PMID: 27491436 DOI: 10.1146/annurev-phyto-080615-100308] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress-induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive.
Collapse
Affiliation(s)
- A Deleris
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| | - T Halter
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| | - L Navarro
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| |
Collapse
|
13
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
14
|
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:157-165. [PMID: 27235540 DOI: 10.1016/j.bbagrm.2016.05.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023]
Abstract
Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
15
|
Espinas NA, Saze H, Saijo Y. Epigenetic Control of Defense Signaling and Priming in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1201. [PMID: 27563304 PMCID: PMC4980392 DOI: 10.3389/fpls.2016.01201] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary "arms race" between plants and pathogens.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| | - Yusuke Saijo
- Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| |
Collapse
|
16
|
To TK, Saze H, Kakutani T. DNA Methylation within Transcribed Regions. PLANT PHYSIOLOGY 2015; 168:1219-25. [PMID: 26143255 PMCID: PMC4528756 DOI: 10.1104/pp.15.00543] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/02/2015] [Indexed: 05/10/2023]
Abstract
DNA methylation within transcribed genes is commonly found in diverse animals and plants. Here, we provide an overview of recent advances and the remaining mystery regarding intragenic DNA methylation.
Collapse
Affiliation(s)
- Taiko K To
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| | - Hidetoshi Saze
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| |
Collapse
|