1
|
Lu X, Wang Y, Zhen X, Che Y, Yu H, Ge Y, Wang X, Li R, Geng M, Zhou B, Liu J, Guo J, Yao Y. Editing of the soluble starch synthase gene MeSSIII-1 enhanced the amylose and resistant starch contents in cassava. Carbohydr Polym 2025; 348:122903. [PMID: 39567138 DOI: 10.1016/j.carbpol.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Foods with high amylose and resistant starch (RS) contents have great potential to enhance human health. In this study, cassava soluble starch synthase MeSSIII-1 gene mutants were generated using CRISPR/Cas9 system. The results showed that the storage roots of messiii-1 mutants had higher contents of amylose, RS, and total starch than those in CK. The rates of small and large-sized starch granules were increased. Additionally, amylopectin starch in messiii-1 mutants had a higher proportion of medium- and long- chains, and a lower proportion of short-chains than those in CK. The onset, peak, and conclusion temperatures of starch gelatinization in messiii-1 mutants were significantly lower than those in CK, and the peak viscosity, trough viscosity and final viscosity all increased. MeSSIII-1 mutation could increase the contents of sucrose, glucose, and fructose in cassava storage roots. We hypothesize that these soluble sugars serve a dual role: they provide the necessary carbon source for starch synthesis and act as sugar signals to trigger the transcriptional reprogramming of genes involved in starch biosynthesis. This process results in a collective enhancement of amylose, RS, and total starch contents, accompanied by changes in starch granule morphology, fine structure, and physicochemical properties.
Collapse
Affiliation(s)
- Xiaohua Lu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yajie Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinghou Zhen
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yannian Che
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Hui Yu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yujian Ge
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiangwen Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Mengting Geng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Bin Zhou
- Guilin Agricultural Science Research Centre, Guilin 541006, China
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
2
|
Engineering Properties of Sweet Potato Starch for Industrial Applications by Biotechnological Techniques including Genome Editing. Int J Mol Sci 2021; 22:ijms22179533. [PMID: 34502441 PMCID: PMC8431112 DOI: 10.3390/ijms22179533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022] Open
Abstract
Sweet potato (Ipomoea batatas) is one of the largest food crops in the world. Due to its abundance of starch, sweet potato is a valuable ingredient in food derivatives, dietary supplements, and industrial raw materials. In addition, due to its ability to adapt to a wide range of harsh climate and soil conditions, sweet potato is a crop that copes well with the environmental stresses caused by climate change. However, due to the complexity of the sweet potato genome and the long breeding cycle, our ability to modify sweet potato starch is limited. In this review, we cover the recent development in sweet potato breeding, understanding of starch properties, and the progress in sweet potato genomics. We describe the applicational values of sweet potato starch in food, industrial products, and biofuel, in addition to the effects of starch properties in different industrial applications. We also explore the possibility of manipulating starch properties through biotechnological means, such as the CRISPR/Cas-based genome editing. The ability to target the genome with precision provides new opportunities for reducing breeding time, increasing yield, and optimizing the starch properties of sweet potatoes.
Collapse
|
3
|
Guan L, Ma X, Zhou X, Tan B, Wang ZY. An optimized method to obtain high-quality RNA from cassava storage root. 3 Biotech 2019; 9:118. [PMID: 30854278 PMCID: PMC6399363 DOI: 10.1007/s13205-019-1608-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
Extracting RNA with high quality and integrity is crucial for molecular biology studies in eukaryotes. However, RNA isolation from cassava storage root raises a great concern because it contains large amounts of polysaccharides and polyphenol compounds. In the current study, four RNA extraction methods were evaluated for extracting RNA from cassava storage root. We found that the modified TM method (MTM) is timesaving and low-cost extraction method with high quality and quantities of RNA. The effectiveness of the improved method was assessed for qPCR analysis of four selected genes from total RNA of storage root. The improved protocol generated 4.18-5.94 µg RNA/g fresh weight. An A260/280 ratios of RNA samples are ranged from 2.14 to 2.17. The RIN values are ranged from 7.2 to 8.0. Importantly, isolated total RNA by MTM was successfully used for library construction and transcriptome sequencing. Therefore, we provide an efficient and low-cost method, MTM, for extracting high quality and quantities of RNA from cassava storage root.
Collapse
Affiliation(s)
- Lulu Guan
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 Hainan China
| | - Xiaowen Ma
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 Hainan China
| | - Xiaoxia Zhou
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 Hainan China
| | - Bowen Tan
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 Hainan China
| | - Zhen-Yu Wang
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 Hainan China
| |
Collapse
|
4
|
Tappiban P, Smith DR, Triwitayakorn K, Bao J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Geng MT, Min Y, Yao Y, Chen X, Fan J, Yuan S, Wang L, Sun C, Zhang F, Shang L, Wang YL, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Isolation and Characterization of Ftsz Genes in Cassava. Genes (Basel) 2017; 8:genes8120391. [PMID: 29244730 PMCID: PMC5748709 DOI: 10.3390/genes8120391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the MeFtsZs play an important role in chloroplast division, and that MeFtsZ2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.
Collapse
Affiliation(s)
- Meng-Ting Geng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yi Min
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xia Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jie Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Shuai Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lei Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Fan Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lu Shang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yun-Lin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Rui-Mei Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
6
|
Geng MT, Yao Y, Wang YL, Wu XH, Sun C, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Int J Mol Sci 2017; 18:E1041. [PMID: 28498327 PMCID: PMC5454953 DOI: 10.3390/ijms18051041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hexokinase (HXK) proteins play important roles in catalyzing hexose phosphorylation and sugar sensing and signaling. To investigate the roles of HXKs in cassava tuber root development, seven HXK genes (MeHXK1-7) were isolated and analyzed. A phylogenetic analysis revealed that the MeHXK family can be divided into five subfamilies of plant HXKs. MeHXKs were clearly divided into type A (MeHXK1) and type B (MeHXK2-7) based on their N-terminal sequences. MeHXK1-5 all had typical conserved regions and similar protein structures to the HXKs of other plants; while MeHXK6-7 lacked some of the conserved regions. An expression analysis of the MeHXK genes in cassava organs or tissues demonstrated that MeHXK2 is the dominant HXK in all the examined tissues (leaves, stems, fruits, tuber phloems, and tuber xylems). Notably, the expression of MeHXK2 and the enzymatic activity of HXK were higher at the initial and expanding tuber stages, and lower at the mature tuber stage. Furthermore, the HXK activity of MeHXK2 was identified by functional complementation of the HXK-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). The gene expression and enzymatic activity of MeHXK2 suggest that it might be the main enzyme for hexose phosphorylation during cassava tuber root development, which is involved in sucrose metabolism to regulate the accumulation of starch.
Collapse
Affiliation(s)
- Meng-Ting Geng
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yun-Lin Wang
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiao-Hui Wu
- Prisys Biotechnologies Company Limited, Shanghai 201203, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Rui-Mei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
7
|
Characters related to higher starch accumulation in cassava storage roots. Sci Rep 2016; 6:19823. [PMID: 26892156 PMCID: PMC4759534 DOI: 10.1038/srep19823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed.
Collapse
|
8
|
Peukert M, Thiel J, Mock HP, Marko D, Weschke W, Matros A. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains. FRONTIERS IN PLANT SCIENCE 2016; 6:1245. [PMID: 26834760 PMCID: PMC4717867 DOI: 10.3389/fpls.2015.01245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/21/2015] [Indexed: 05/21/2023]
Abstract
Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed.
Collapse
Affiliation(s)
- Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
- University of CologneCologne, Germany
| | - Johannes Thiel
- Plant Architecture Group, IPK-GaterslebenGatersleben, Germany
| | - Hans-Peter Mock
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of ViennaVienna, Austria
| | | | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
| |
Collapse
|
9
|
Huang C, Yu QB, Yuan XB, Li ZR, Wang J, Ye LS, Xu L, Yang ZN. Rubisco accumulation is important for the greening of the fln2-4 mutant in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:185-194. [PMID: 26025532 DOI: 10.1016/j.plantsci.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/11/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
The fructokinase-like protein2 (FLN2) is a component of the PEP complex. FLN2 knockout mutants displayed a delayed greening phenotype on sucrose-containing medium. Our previous work indicated that partial PEP activity is essential for its greening phenotype. In this study, we further report that sufficient Rubisco accumulation is critical for fln2-4 greening. Sugar serves many important functions, such as an energy source and signaling molecule. Through pharmacological experiments using a sugar analog and sugar signaling inhibitor, we demonstrate that sugar serves as energy to support the fln2-4 greening. Seed-reserve and photosynthetic CO2-fixation are the primary energy sources for early seedling growth. No obvious differences were observed in the seed-reserve of the wild-type and fln2-4 by comparing their seed size and dark-germination, indicating that the defective carbon fixation may account for the energy deficit in fln2-4 during its early seedling growth. The Rubisco content was low in fln2-4, but it rapidly accumulated during the greening of fln2-4. Expression of a nuclear-encoded rbcL gene facilitates Rubisco accumulation and partially complements the mutant defects. These results suggest that the Rubisco accumulation is critical for fln2-4 greening. In summary, the rapid Rubisco accumulation that depends on sufficient PEP activity is important for normal seedling growth.
Collapse
Affiliation(s)
- Chao Huang
- Department of Biology, East China Normal University, Shanghai 200241, China.
| | - Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xin-Bo Yuan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zi-Ran Li
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Jing Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Lin-Shan Ye
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ling Xu
- Department of Biology, East China Normal University, Shanghai 200241, China.
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
10
|
Cortés Sierra SP, Chavarriaga P, Ceballos H, López Carrascal CE. EVALUACIÓN DE LA EXPRESIÓN DE GENES IMPLICADOS EN LA BIOSÍNTESIS DE ALMIDÓN EN DIFERENTES VARIEDADES DE YUCA. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v20n2.42875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Las raíces almacenadoras de yuca representan una fuente importante de almidón. La ruta metabólica del almidón ha sido reconstruida recientemente en yuca gracias a la liberación de la secuencia completa de su genoma. En este estudio se evaluó la expresión de los genes que codifican para las enzimas Pululanasa, Isoamilasa, α-amilasa, Enzima Desproporcionante, ADP-glucosa pirofoforilasa, Almidón sintasa unida al gránulo, Enzima ramificante del almidón y Sintasa soluble del almidón, en las raíces almacenadoras de plantas de 5 y 11 meses de edad, en un grupo de cinco variedades de yuca. Se evidenciaron diferencias importantes en la expresión de estos genes entre las variedades evaluadas y entre los dos tiempos. Las variedades CM523-7 y SM1219-2 presentaron uno de los niveles más altos de expresión para los genes ADP-glucosa pirofoforilasa y Almidón sintasa unida al gránulo mientras que el gen para α-amilasa fue el más bajo en estas dos variedades. Aunque la variedad TMS60444 presentó niveles de expresión similares en genes implicados en la síntesis de almidón, fue la que presentó el mayor nivel de expresión de la α-amilasa. Estos datos se pueden correlacionar con el relativo bajo contenido de materia seca en esta variedad. Los datos de expresión génica presentados en este trabajo permitirán complementar información sobre actividad enzimática con miras a identificar los elementos más importantes en la acumulación diferencial de almidón entre variedades de yuca.</p><p><strong>ABSTRACT</strong></p><p>Cassava storage roots represent an important starch source. Recently, the starch metabolic pathway in cassava has been reconstructed thanks to the full release of its genome. In this study gene expression was evaluated for genes coding Pullulanase, Isoamylase, α-amylase, Deproportionating enzyme, ADP-glucose pyrophosphorylase, Granule bound starch synthase, Starch branching enzyme and Soluble starch synthase, in cassava storage roots 5 and 11 months old, in 5 cassava varieties. Important gene expression differences were detected both at the variety and time level. CM523-7 and SM1219-2 showed one of the highest expression levels for AGPase and GBSS genes, while α-amylase showed the lowest level in these two varieties. TMS60444 variety showed similar expression levels in starch biosynthesis-related genes, but conversely also showed the highest α-amylase expression. This correlates with the relative low dry-matter content in TMS60444. Gene expression data reported here will allow complementing actual information on enzymatic activity, in order to identify the most relevant factors in differential starch accumulation between cassava varieties.</p><br /><p> </p>
Collapse
|
11
|
Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock HP, Matros A. Spatio-temporal dynamics of fructan metabolism in developing barley grains. THE PLANT CELL 2014; 26:3728-44. [PMID: 25271242 PMCID: PMC4213166 DOI: 10.1105/tpc.114.130211] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 05/19/2023]
Abstract
Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase.
Collapse
Affiliation(s)
- Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Johannes Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Darin Peshev
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee (2434), Belgium
| | - Winfriede Weschke
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Wim Van den Ende
- Lab of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee (2434), Belgium
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland, OT Gatersleben, Germany
| |
Collapse
|
12
|
Cloning, 3D modeling and expression analysis of three vacuolar invertase genes from cassava (Manihot Esculenta Crantz). Molecules 2014; 19:6228-45. [PMID: 24838076 PMCID: PMC6270675 DOI: 10.3390/molecules19056228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.
Collapse
|
13
|
Gulati J, Baldwin IT, Gaquerel E. The roots of plant defenses: integrative multivariate analyses uncover dynamic behaviors of gene and metabolic networks of roots elicited by leaf herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:880-92. [PMID: 24456376 PMCID: PMC4190575 DOI: 10.1111/tpj.12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 05/08/2023]
Abstract
High-throughput analyses have frequently been used to characterize herbivory-induced reconfigurations in plant primary and secondary metabolism in above- and below-ground tissues, but the conclusions drawn from these analyses are often limited by the univariate methods used to analyze the data. Here we use our previously described multivariate time-series data analysis to evaluate leaf herbivory-elicited transcriptional and metabolic dynamics in the roots of Nicotiana attenuata. We observed large, but transient, systemic responses in the roots that contrasted with the pattern of co-linearity observed in the up- and downregulation of genes and metabolites across the entire time series in treated and systemic leaves. Using this newly developed approach for the analysis of whole-plant molecular responses in a time-course multivariate data set, we simultaneously analyzed stress responses in leaves and roots in response to the elicitation of a leaf. We found that transient systemic responses in roots resolved into two principal trends characterized by: (i) an inversion of root-specific semi-diurnal (12 h) transcript oscillations and (ii) transcriptional changes with major amplitude effects that translated into a distinct suite of root-specific secondary metabolites (e.g. alkaloids synthesized in the roots of N. attenuata). These findings underscore the importance of understanding tissue-specific stress responses in the correct day-night phase context and provide a holistic framework for the important role played by roots in above-ground stress responses.
Collapse
Affiliation(s)
- Jyotasana Gulati
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Yang Z, Wang Y, Xu S, Xu C, Yan C. Molecular evolution and functional divergence of soluble starch synthase genes in cassava (manihot esculenta crantz). Evol Bioinform Online 2013; 9:239-49. [PMID: 23888108 PMCID: PMC3712559 DOI: 10.4137/ebo.s11991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in plants. Cassava starch has many remarkable characteristics, which should be influenced by the evolution of SS genes in this starchy root crop. In this work, we performed a comprehensive phylogenetic and evolutionary analysis of the soluble starch synthases in cassava. Genome-wide identification showed that there are 9 genes encoding soluble starch synthases in cassava. All of the soluble starch synthases encoded by these genes contain both Glyco_transf_5 and Glycos_transf_1 domains, and a correlation analysis showed evidence of coevolution between these 2 domains in cassava SS genes. The SS genes in land plants can be divided into 6 subfamilies that were formed before the origin of seed plants, and species-specific expansion has contributed to the evolution of this family in cassava. A functional divergence analysis for this family provided statistical evidence for shifted evolutionary rates between the subfamilies of land plant soluble starch synthases. Although the main selective pressure acting on land plant SS genes was purifying selection, our results also revealed that point mutation with positive selection contributed to the evolution of 2 SS genes in cassava. The remarkable cassava starch characteristics might be the result of both the duplication and adaptive selection of SS genes.
Collapse
Affiliation(s)
- Zefeng Yang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | | | | | | | | |
Collapse
|
15
|
Hu YF, Li YP, Zhang J, Liu H, Tian M, Huang Y. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize (Zea mays L.) endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5979-89. [PMID: 23048129 DOI: 10.1093/jxb/ers246] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Starch synthase I (SSI) contributes the majority of the starch synthase activity in developing maize endosperm. In this work, the effects of various plant hormones and sugars on the expression of the starch synthase I gene (ZmSSI) in developing maize endosperms were examined. The accumulation of ZmSSI mRNA was induced using abscisic acid (ABA) but not with glucose, sucrose, or gibberellin treatment. To investigate the molecular mechanism underlying this effect, the ZmSSI promoter region (-1537 to +51) was isolated and analysed. A transient expression assay in maize endosperm tissue showed that the full-length ZmSSI promoter is activated by ABA. The results of deletion and mutation assays demonstrated that a CACCG motif in the ZmSSI promoter is responsible for the ABA inducibility. The results of binding shift assays indicated that this CACCG motif interacts with the maize ABI4 protein in vitro. The overexpression of ABI4 in endosperm tissue enhanced the activity of a promoter containing the CACCG motif in the absence of ABA treatment. Expression pattern analysis indicated that the transcription pattern of ABI4 in the developing maize endosperm was induced by ABA treatment but was only slightly affected by glucose or sucrose treatment. Taken together, these data indicate that ABI4 binds to the CACCG motif in the ZmSSI promoter and mediates its ABA inducibility.
Collapse
Affiliation(s)
- Yu-Feng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | | | | | | | | | | |
Collapse
|
16
|
Siriwat W, Kalapanulak S, Suksangpanomrung M, Netrphan S, Meechai A, Saithong T. Transcriptomic Data Integration Inferring the Dominance of Starch Biosynthesis in Carbon Utilization of Developing Cassava Roots. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.procs.2012.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Yi B, Hu L, Mei W, Zhou K, Wang H, Luo Y, Wei X, Dai H. Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules 2011; 16:10157-67. [PMID: 22157579 PMCID: PMC6264345 DOI: 10.3390/molecules161210157] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 11/16/2022] Open
Abstract
An activity-directed fractionation and purification process was used to isolate antioxidant components from cassava stems produced in Hainan. The ethyl acetate and n-butanol fractions showed greater DPPH˙and ABTS·+ scavenging activities than other fractions. The ethyl acetate fraction was subjected to column chromatography, to yield ten phenolic compounds: Coniferaldehyde (1), isovanillin (2), 6-deoxyjacareubin (3), scopoletin (4), syringaldehyde (5), pinoresinol (6), p-coumaric acid (7), ficusol (8), balanophonin (9) and ethamivan (10), which possess significant antioxidant activities. The relative order of DPPH· scavenging capacity for these compounds was ascorbic acid (reference) > 6 > 1 > 8 > 10 > 9 > 3 > 4 > 7 > 5 > 2, and that of ABTS·+ scavenging capacity was 5 > 7 > 1 > 10 > 4 > 6 > 8 > 2 > Trolox (reference compound) > 3 > 9. The results showed that these phenolic compounds contributed to the antioxidant activity of cassava.
Collapse
Affiliation(s)
- Bo Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Graduate School of Chinese Academy of Sciences, Yuquanlu 19A, Beijing 100049, China
- Pharmacy Department of 187 Hospital PLA, Longkun South Road 100, Haikou 571159, China
| | - Lifei Hu
- Hainan Key Laboratory for Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenli Mei
- Hainan Key Laboratory for Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kaibing Zhou
- Hainan Key Laboratory for Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hui Wang
- Hainan Key Laboratory for Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Luo
- Hainan Key Laboratory for Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Haofu Dai
- Hainan Key Laboratory for Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
18
|
Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. PLANT PHYSIOLOGY 2011; 157:188-99. [PMID: 21734113 PMCID: PMC3165869 DOI: 10.1104/pp.111.177311] [Citation(s) in RCA: 398] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/30/2011] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA.
Collapse
|
19
|
Liu J, Zheng Q, Ma Q, Gadidasu KK, Zhang P. Cassava genetic transformation and its application in breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:552-69. [PMID: 21564542 DOI: 10.1111/j.1744-7909.2011.01048.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As a major source of food, cassava (Manihot esculenta Crantz) is an important root crop in the tropics and subtropics of Africa and Latin America, and serves as raw material for the production of starches and bioethanol in tropical Asia. Cassava improvement through genetic engineering not only overcomes the high heterozygosity and serious trait separation that occurs in its traditional breeding, but also quickly achieves improved target traits. Since the first report on genetic transformation in cassava in 1996, the technology has gradually matured over almost 15 years of development and has overcome cassava genotype constraints, changing from mode cultivars to farmer-preferred ones. Significant progress has been made in terms of an increased resistance to pests and diseases, biofortification, and improved starch quality, building on the fundamental knowledge and technologies related to planting, nutrition, and the processing of this important food crop that has often been neglected. Therefore, cassava has great potential in food security and bioenergy development worldwide.
Collapse
Affiliation(s)
- Jia Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
20
|
Chen J, Huang B, Li Y, Du H, Gu Y, Liu H, Zhang J, Huang Y. Synergistic influence of sucrose and abscisic acid on the genes involved in starch synthesis in maize endosperm. Carbohydr Res 2011; 346:1684-91. [PMID: 21640984 DOI: 10.1016/j.carres.2011.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 11/27/2022]
Abstract
Starch is the major carbon reserve in plant storage organs, the synthesis of which is orchestrated by four major enzymes, ADP-glucose pyrophosphorylase, starch synthase, starch-branching enzyme and starch-debranching enzyme. There is much information available on the function of these key enzymes; however, little is known about their transcriptional regulation. In order to understand the transcriptional regulation of starch biosynthesis, the expression profiles of 24 starch genes were investigated in this work. The results showed major transcriptional changes for 15 of the 24 starch genes observed in maize endosperm, most of which are elevated at the early and middle stages of the developing endosperm. Sucrose, abscisic acid (ABA) and indole-3-acetic acid (IAA) had a significant correlation with the expression of 15 genes, indicating that sugars and phytohormones might take part in the regulation of starch synthesis. Also, we found that there is interaction of abscisic acid and sucrose on the regulation of the expression of these genes.
Collapse
Affiliation(s)
- Jiang Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mangelsen E, Wanke D, Kilian J, Sundberg E, Harter K, Jansson C. Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. PLANT PHYSIOLOGY 2010; 153:14-33. [PMID: 20304969 PMCID: PMC2862414 DOI: 10.1104/pp.110.154856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 03/16/2010] [Indexed: 05/21/2023]
Abstract
The caryopses of barley (Hordeum vulgare), as of all cereals, are complex sink organs optimized for starch accumulation and embryo development. While their early to late development has been studied in great detail, processes underlying the caryopses' diurnal adaptation to changes in light, temperature, and the fluctuations in phloem-supplied carbon and nitrogen have remained unknown. In an attempt to identify diurnally affected processes in developing caryopses at the early maturation phase, we monitored global changes of both gene expression and metabolite levels. We applied the 22 K Barley1 GeneChip microarray and identified 2,091 differentially expressed (DE) genes that were assigned to six major diurnal expression clusters. Principal component analysis and other global analyses demonstrated that the variability within the data set relates to genes involved in circadian regulation, storage compound accumulation, embryo development, response to abiotic stress, and photosynthesis. The correlation of amino acid and sugar profiles with expression trajectories led to the identification of several hundred potentially metabolite-regulated DE genes. A comparative analysis of our data set and publicly available microarray data disclosed suborgan-specific expression of almost all diurnal DE genes, with more than 350 genes specifically expressed in the pericarp, endosperm, or embryo tissues. Our data reveal a tight linkage between day/night cycles, changes in light, and the supply of carbon and nitrogen. We present a model that suggests several phases of diurnal gene expression in developing barley caryopses, summarized as starvation and priming, energy collection and carbon fixation, light protection and chaperone activity, storage and growth, and embryo development.
Collapse
Affiliation(s)
- Elke Mangelsen
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Mutisya J, Sun C, Jansson C. Circadian oscillation of starch branching enzyme gene expression in the sorghum endosperm. PLANT SIGNALING & BEHAVIOR 2009; 4:871-2. [PMID: 19847113 PMCID: PMC2802788 DOI: 10.4161/psb.4.9.9424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 05/23/2023]
Abstract
Expression of the three SBE genes, encoding starch branching enzymes, in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle. Remarkably, the oscillation in SBE expression was maintained in cultured spikes after a 48-h dark treatment, also when fed a continuous solution of sucrose or abscisic acid. Our findings suggest that the rhythmicity in SBE expression in the endosperm is independent of cues from the photosynthetic source and that the oscillator resides within the endosperm itself.
Collapse
Affiliation(s)
- Joel Mutisya
- Department of Plant Biology & Forest Genetics; The Swedish University of Agricultural Sciences; Uppsala, Sweden
- Kenya Agricultural Research Institute (KARI); Nairobi, Kenya
| | - Chuanxin Sun
- Department of Plant Biology & Forest Genetics; The Swedish University of Agricultural Sciences; Uppsala, Sweden
| | - Christer Jansson
- Department of Plant Biology & Forest Genetics; The Swedish University of Agricultural Sciences; Uppsala, Sweden
- Lawrence Berkeley National Laboratory; Earth Science Division; Berkeley, CA USA
| |
Collapse
|