1
|
De Ryck J, Jonckheere V, De Paepe B, De Keyser A, Peeters N, Van Vaerenbergh J, Debode J, Van Damme P, Goormachtig S. Exploring the Tomato Root Protein Network Exploited by Core Type 3 Effectors from the Ralstonia solanacearum Species Complex. J Proteome Res 2025; 24:696-709. [PMID: 39786355 DOI: 10.1021/acs.jproteome.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the Ralstonia solanacearum species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB. The RipU proxeome was enriched for multiple protein kinases, suggesting a potential impact on the two branches of the plant immune surveillance system, being the membrane-localized PAMP-triggered immunity (PTI) and the RIN4-dependent effector-triggered immunity (ETI) complexes. In agreement, a transcriptomics analysis in tomato revealed the potential involvement of RipU in modulating reactive oxygen species (ROS) signaling. The proxeome of RipB was putatively enriched for mitochondrial and chloroplast proteins and that of RipD for proteins potentially involved in the endomembrane system. Together, our results demonstrate that TurboID-PL in tomato hairy roots represents a promising tool to study Ralstonia T3E targets and functioning and that it can unravel potential host processes that can be hijacked by the bacterial pathogen.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Brigitte De Paepe
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Johan Van Vaerenbergh
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Zhao Y, Day B. Subcellular spatial regulation of immunity-induced phosphorylation of RIN4 links PAMP-triggered immunity to Exo70B1. FRONTIERS IN PLANT SCIENCE 2024; 15:1473944. [PMID: 39735778 PMCID: PMC11681384 DOI: 10.3389/fpls.2024.1473944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4T166) in Arabidopsis transgenic lines expressing various RIN4 variants. Our pathological and molecular genetic analyses reveal that RIN4T166 phosphorylation disrupts its localization to the plasma membrane (PM) and represses plant defense activation. We found that RIN4's PM tethering relies on Exo70B1-mediated exocytosis and the integrity of the host cytoskeletal actin network. Phosphorylation at RIN4T166 disrupts its PM localization due to reduced binding affinity with Exo70B1. This disruption was further evidenced by the 35S::RIN4T166D/rin124 transgenic line, which exhibited suppressed PTI responses similar to the exo70b1 mutant. Our findings demonstrate that RIN4's subcellular localization is regulated by phosphorylation, suggesting that plants use a sophisticated network of signaling processes to precisely control the timing and localization of immune signaling activation. This study uncovers a mechanism by which PTI is repressed through RIN4 phosphorylation, providing new insights into the spatial regulation of RIN4 within plant immune signaling pathways.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, United States
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Ran Z, Chen X, Li R, Duan W, Zhang Y, Fang L, Guo L, Zhou J. Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4919-4933. [PMID: 36942522 DOI: 10.1002/jsfa.12563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Panax quinquefolius L. is one of the most important foods and herbs because of its high nutritional value and medicinal potential. In our previous study we found that the ginsenoside content in P. quinquefolius was improved by arbuscular mycorrhizal fungi (AMFs). However, little research has been conducted on the molecular mechanisms in P. quinquefolius roots induced by AMFs colonization. To identify the metabolomic and transcriptomic mechanisms of P. quinquefolius induced by AMFs, non-mycorrhized (control) and mycorrhized (AMF) P. quinquefolius were used as experimental materials for comparative analysis of the transcriptome and metabolome. RESULTS Compared with the control, 182 metabolites and 545 genes were significantly changed at the metabolic and transcriptional levels in AMFs treatment. The metabolic pattern of AMFs was changed, and the contents of ginsenosides (Rb1, Rg2), threonine, and glutaric acid were significantly increased. There were significant differences in the expression of genes involved in plant hormone signal transduction, glutathione metabolism, and the plant-pathogen interaction pathway. In addition, several transcription factors from the NAC, WRKY, and basic helix-loop-helix families were identified in AMFs versus the control. Furthermore, the combined analysis of 'transcriptomics-metabolomics' analysis showed that 'Plant hormone signal transduction', 'Amino sugar and nucleotide sugar metabolism' and 'Glutathione metabolism' pathways were the important enriched pathways in response to AMFs colonization. CONCLUSION Overall, these results provide new insights into P. quinquefolius response to AMFs, which improve our understanding of the molecular mechanisms of P. quinquefolius induced by AMFs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Rui Li
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
4
|
Zhang Y, Guo S, Zhang F, Gan P, Li M, Wang C, Li H, Gao G, Wang X, Kang Z, Zhang X. CaREM1.4 interacts with CaRIN4 to regulate Ralstonia solanacearum tolerance by triggering cell death in pepper. HORTICULTURE RESEARCH 2023; 10:uhad053. [PMID: 37213684 PMCID: PMC10199716 DOI: 10.1093/hr/uhad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 05/23/2023]
Abstract
Remorins, plant-specific proteins, have a significant role in conferring on plants the ability to adapt to adverse environments. However, the precise function of remorins in resistance to biological stress remains largely unknown. Eighteen CaREM genes were identified in pepper genome sequences based on the C-terminal conserved domain that is specific to remorin proteins in this research. Phylogenetic relations, chromosomal localization, motif, gene structures, and promoter regions of these remorins were analyzed and a remorin gene, CaREM1.4, was cloned for further study. The transcription of CaREM1.4 in pepper was induced by infection with Ralstonia solanacearum. Knocking down CaREM1.4 in pepper using virus-induced gene silencing (VIGS) technologies reduced the resistance of pepper plants to R. solanacearum and downregulated the expression of immunity-associated genes. Conversely, transient overexpression of CaREM1.4 in pepper and Nicotiana benthamiana plants triggered hypersensitive response-mediated cell death and upregulated expression of defense-related genes. In addition, CaRIN4-12, which interacted with CaREM1.4 at the plasma membrane and cell nucleus, was knocked down with VIGS, decreasing the susceptibility of Capsicum annuum to R. solanacearum. Furthermore, CaREM1.4 reduced ROS production by interacting with CaRIN4-12 upon co-injection in pepper. Taken together, our findings suggest that CaREM1.4 may function as a positive regulator of the hypersensitive response, and it interacts with CaRIN4-12, which negatively regulates plant immune responses of pepper to R. solanacearum. Our study provides new evidence for comprehending the molecular regulatory network of plant cell death.
Collapse
Affiliation(s)
- Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Cong Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | | | |
Collapse
|
5
|
Solis-Miranda J, Quinto C. The CrRLK1L subfamily: One of the keys to versatility in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:88-102. [PMID: 34091211 DOI: 10.1016/j.plaphy.2021.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Catharanthus roseous kinase 1L receptors (CrRLK1Ls) are a subfamily of membrane receptors unique to plant cells that perceive internal and external signals, integrate metabolic, physiological, and molecular processes, and regulate plant development. Recent genomic studies have suggested that this receptor subfamily arose during the emergence of terrestrial plants and has since diversified, preserving its essential functions. Participation of some of these CrRLK1Ls in different processes is presented and discussed herein, as well as the increasing number of interactors necessary for their function. At least five different responses have been detected after activating these receptors, such as physiological changes, formation or disassembly of protein complexes, metabolic responses, modification of gene expression, and modulation of phytohormone activity. To date, a common response mechanism for all processes involving CrRLK1Ls has not been described. In this review, the information available on the different functions of CrRLK1Ls was compiled. Additionally, the physiological and/or molecular mechanisms involved in the signaling processes triggered by these receptors are also discussed. In this review, we propose a possible common signaling mechanism for all processes regulated by CrRLK1Ls and pose questions to be answered in the future.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
6
|
Bian X, Zhao Y, Xiao S, Yang H, Han Y, Zhang L. Metabolome and transcriptome analysis reveals the molecular profiles underlying the ginseng response to rusty root symptoms. BMC PLANT BIOLOGY 2021; 21:215. [PMID: 33985437 PMCID: PMC8117609 DOI: 10.1186/s12870-021-03001-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties. RESULTS In this study, GRS and healthy ginseng (HG) samples were used as experimental materials for comparative analysis of transcriptome and metabolome. Compared with those in HG samples, 949 metabolites and 9451 genes were significantly changed at the metabolic and transcriptional levels in diseased samples. The diseased tissues' metabolic patterns changed, and the accumulation of various organic acids, alkaloids, alcohols and phenols in diseased tissues increased significantly. There were significant differences in the expression of genes involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the peroxidase pathway, and the plant-pathogen interaction pathway. CONCLUSION The current study involved a comparative metabolome and transcriptome analysis of GRS and HG samples. Based on the findings at the transcriptional and metabolic levels, a mechanism model of the ginseng response to GRS was established. Our results provide new insights into ginseng's response to GRS, which will reveal the potential molecular mechanisms of this disease in ginseng.
Collapse
Affiliation(s)
- Xingbo Bian
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Shengyuan Xiao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China.
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China
| | - Yongzhong Han
- Jilin Provincial Ginseng and Pilose Antler Office, Changchun, China
| | - Lianxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China.
| |
Collapse
|
7
|
Gouguet P, Gronnier J, Legrand A, Perraki A, Jolivet MD, Deroubaix AF, German-Retana S, Boudsocq M, Habenstein B, Mongrand S, Germain V. Connecting the dots: from nanodomains to physiological functions of REMORINs. PLANT PHYSIOLOGY 2021; 185:632-649. [PMID: 33793872 PMCID: PMC8133660 DOI: 10.1093/plphys/kiaa063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/31/2020] [Indexed: 05/11/2023]
Abstract
REMORINs (REMs) are a plant-specific protein family, proposed regulators of membrane-associated molecular assemblies and well-established markers of plasma membrane nanodomains. REMs play a diverse set of functions in plant interactions with pathogens and symbionts, responses to abiotic stresses, hormone signaling and cell-to-cell communication. In this review, we highlight the established and more putative roles of REMs throughout the literature. We discuss the physiological functions of REMs, the mechanisms underlying their nanodomain-organization and their putative role as regulators of nanodomain-associated molecular assemblies. Furthermore, we discuss how REM phosphorylation may regulate their functional versatility. Overall, through data-mining and comparative analysis of the literature, we suggest how to further study the molecular mechanisms underpinning the functions of REMs.
Collapse
Affiliation(s)
- Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- ZMBP, Universität Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Julien Gronnier
- Department of Plant and Microbial Biology University of Zürich, Zollikerstrasse, Zürich, Switzerland
| | - Anthony Legrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Artemis Perraki
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Anne-Flore Deroubaix
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Sylvie German-Retana
- Equipe de Virologie, Institut Scientifique de Recherche Agronomique and Université de Bordeaux, BP81, 33883 Villenave d’Ornon, France
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, Orsay, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Author for communication: (S.M.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
8
|
van Wersch S, Tian L, Hoy R, Li X. Plant NLRs: The Whistleblowers of Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100016. [PMID: 33404540 PMCID: PMC7747998 DOI: 10.1016/j.xplc.2019.100016] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/19/2023]
Abstract
The study of plant diseases is almost as old as agriculture itself. Advancements in molecular biology have given us much more insight into the plant immune system and how it detects the many pathogens plants may encounter. Members of the primary family of plant resistance (R) proteins, NLRs, contain three distinct domains, and appear to use several different mechanisms to recognize pathogen effectors and trigger immunity. Understanding the molecular process of NLR recognition and activation has been greatly aided by advancements in structural studies, with ZAR1 recently becoming the first full-length NLR to be visualized. Genetic and biochemical analysis identified many critical components for NLR activation and homeostasis control. The increased study of helper NLRs has also provided insights into the downstream signaling pathways of NLRs. This review summarizes the progress in the last decades on plant NLR research, focusing on the mechanistic understanding that has been achieved.
Collapse
Affiliation(s)
- Solveig van Wersch
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Lei Tian
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Lambertucci S, Orman KM, Das Gupta S, Fisher JP, Gazal S, Williamson RJ, Cramer R, Bindschedler LV. Analysis of Barley Leaf Epidermis and Extrahaustorial Proteomes During Powdery Mildew Infection Reveals That the PR5 Thaumatin-Like Protein TLP5 Is Required for Susceptibility Towards Blumeria graminis f. sp. hordei. FRONTIERS IN PLANT SCIENCE 2019; 10:1138. [PMID: 31736984 PMCID: PMC6831746 DOI: 10.3389/fpls.2019.01138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
Powdery mildews are biotrophic pathogens causing fungal diseases in many economically important crops, including cereals, which are affected by Blumeria graminis. Powdery mildews only invade the epidermal cell layer of leaf tissues, in which they form haustorial structures. Haustoria are at the center of the biotrophic interaction by taking up nutrients from the host and by delivering effectors in the invaded cells to jeopardize plant immunity. Haustoria are composed of a fungal core delimited by a haustorial plasma membrane and cell wall. Surrounding these is the extrahaustorial complex, of which the extrahaustorial membrane is of plant origin. Although haustoria transcriptomes and proteomes have been investigated for Blumeria, the proteomes of barley epidermis upon infection and the barley components of the extrahaustorial complex remains unexplored. When comparing proteomes of infected and non-infected epidermis, several classical pathogenesis-related (PR) proteins were more abundant in infected epidermis. These included peroxidases, chitinases, cysteine-rich venom secreted proteins/PR1 and two thaumatin-like PR5 protein isoforms, of which TLP5 was previously shown to interact with the Blumeria effector BEC1054 (CSEP0064). Against expectations, transient TLP5 gene silencing suggested that TLP5 does not contribute to resistance but modulates susceptibility towards B. graminis. In a second proteomics comparison, haustorial structures were enriched from infected epidermal strips to identify plant proteins closely associated with the extrahaustorial complex. In these haustoria-enriched samples, relative abundances were higher for several V-type ATP synthase/ATPase subunits, suggesting the generation of proton gradients in the extrahaustorial space. Other haustoria-associated proteins included secreted or membrane proteins such as a PIP2 aquaporin, an early nodulin-like protein 9, an aspartate protease and other proteases, a lipase, and a lipid transfer protein, all of which are potential modulators of immunity, or the targets of pathogen effectors. Moreover, the ER BIP-like HSP70, may link ER stress responses and the idea of ER-like properties previously attributed to the extrahaustorial membrane. This initial investigation exploring the barley proteomes of Blumeria-infected tissues and haustoria, associated with a transient gene silencing approach, is invaluable to gain first insight of key players of resistance and susceptibility.
Collapse
Affiliation(s)
- Sebastien Lambertucci
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Kate Mary Orman
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Shaoli Das Gupta
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - James Paul Fisher
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Snehi Gazal
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | - Rainer Cramer
- Department of Chemistry, University of Reading, Reading, United Kingdom
| | | |
Collapse
|
10
|
Ray SK, Macoy DM, Kim WY, Lee SY, Kim MG. Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives. Mol Cells 2019; 42:503-511. [PMID: 31362467 PMCID: PMC6681865 DOI: 10.14348/molcells.2019.2433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.
Collapse
Affiliation(s)
- Sujit Kumar Ray
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| | - Donah Mary Macoy
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Science (RILS), Gyeongsang National University, Jinju 52828,
Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus), Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
11
|
Dissecting quantitative resistance to Xanthomonas campestris pv. campestris in leaves of Brassica oleracea by QTL analysis. Sci Rep 2019; 9:2015. [PMID: 30765761 PMCID: PMC6376059 DOI: 10.1038/s41598-019-38527-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022] Open
Abstract
Black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), produces important economic losses in crops of Brassica oleracea worldwide. Resistance to race 1, the most virulent and widespread in B. oleracea, is under quantitative control. Knowledge about the genetics of this resistance would help in designing strategies to control initial stages of invasion and development of the disease. QTL analysis of the resistance in the BolTBDH mapping population was performed. Resistance was measured with five traits related to initial stages of the invasion, success of infection and spread of the pathogen. Four single-trait QTLs of resistance were found, from which one represent novel variation. After performing multi-trait QTL, we concluded that spread of Xcc is related to the size of the leaf. Individuals from the mapping population follow two different strategies to cope with the spread of the disease: reducing lesion size or maintain more area of the leaf photosynthetically active, being more tolerant to Xcc invasion. Mechanisms underlying variation for resistance may be related to different aspects of plant immunity, including the synthesis of glucosinolates and phenolics.
Collapse
|
12
|
Chialva M, Zhou Y, Spadaro D, Bonfante P. Not only priming: Soil microbiota may protect tomato from root pathogens. PLANT SIGNALING & BEHAVIOR 2018; 13:e1464855. [PMID: 29701498 PMCID: PMC6149515 DOI: 10.1080/15592324.2018.1464855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
An increasing number of studies have investigated soil microbial biodiversity. However, the mechanisms regulating plant responses to soil microbiota are largely unknown. A previous work tested the hypothesis that tomato plants grown on native soils with their complex microbiotas respond differently from tomato growing in a sterile substrate. Two soils, suppressive or conducive to Fusarium oxysporum f. sp. lycopersici (FOL), and two genotypes susceptible and resistant to the same pathogen were considered. The work highlighted that the two tested soil microbiotas, irrespectively of their taxonomic composition, elicit the PAMP-triggered Immunity Pathway, the first level of plant defence, as well as an increased lignin synthesis, leading to an active protection when FOL is present in the soil. Here, we tested the expression of a panel of genes involved in Effector-Triggered Immunity (ETI), demonstrating that soil microbiota, beside genotype, affects plant resistance to FOL also modulating this pathway.
Collapse
Affiliation(s)
- Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| | - Yang Zhou
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
- College of Horticulture, South China Agricultural University, No. 483, Wushan St., Tianhe Dist. Guangzhou, China PR, 510642
| | - Davide Spadaro
- Department of Agricultural, Forestry and Food Sciences (DISAFA) and AGROINNOVA, Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, Largo Braccini 2, I-10095 Grugliasco, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| |
Collapse
|
13
|
Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. MOLECULAR PLANT 2018; 11:269-287. [PMID: 29229567 DOI: 10.1016/j.molp.2017.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 05/23/2023]
Abstract
Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turnover of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREM1. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.
Collapse
Affiliation(s)
- Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
15
|
Lv X, Jing Y, Xiao J, Zhang Y, Zhu Y, Julian R, Lin J. Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:3-16. [PMID: 28081290 DOI: 10.1111/tpj.13480] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/04/2017] [Indexed: 05/20/2023]
Abstract
Arabidopsis hypersensitive-induced reaction (AtHIR) proteins function in plant innate immunity. However, the underlying mechanisms by which AtHIRs participate in plant immunity remain elusive. Here, using VA-TIRFM and FLIM-FRET, we revealed that AtHIR1 is present in membrane microdomains and co-localizes with the membrane microdomain marker REM1.3. Single-particle tracking analysis revealed that membrane microdomains and the cytoskeleton, especially microtubules, restrict the lateral mobility of AtHIR1 at the plasma membrane and facilitate its oligomerization. Furthermore, protein proximity index measurements, fluorescence cross-correlation spectroscopy, and biochemical experiments demonstrated that the formation of the AtHIR1 complex upon pathogen perception requires intact microdomains and cytoskeleton. Taken together, these findings suggest that microdomains and the cytoskeleton constrain AtHIR1 dynamics, promote AtHIR1 oligomerization, and increase the efficiency of the interactions of AtHIR1 with components of the AtHIR1 complex in response to pathogens, thus providing valuable insight into the mechanisms of defense-related responses in plants.
Collapse
Affiliation(s)
- Xueqin Lv
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jianwei Xiao
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Russell Julian
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jinxing Lin
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
16
|
Vlasschaert C, Cook D, Xia X, Gray DA. The evolution and functional diversification of the deubiquitinating enzyme superfamily. Genome Biol Evol 2017; 9:558-573. [PMID: 28177072 PMCID: PMC5381560 DOI: 10.1093/gbe/evx020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/18/2017] [Accepted: 02/04/2017] [Indexed: 12/16/2022] Open
Abstract
Ubiquitin and ubiquitin-like molecules are attached to and removed from cellular proteins in a dynamic and highly regulated manner. Deubiquitinating enzymes are critical to this process, and the genetic catalogue of deubiquitinating enzymes expanded greatly over the course of evolution. Extensive functional redundancy has been noted among the 93 members of the human deubiquitinating enzyme (DUB) superfamily. This is especially true of genes that were generated by duplication (termed paralogs) as they often retain considerable sequence similarity. Because complete redundancy in systems should be eliminated by selective pressure, we theorized that many overlapping DUBs must have significant and unique spatiotemporal roles that can be evaluated in an evolutionary context. We have determined the evolutionary history of the entire class of deubiquitinating enzymes, including the sequence and means of duplication for all paralogous pairs. To establish their uniqueness, we have investigated cell-type specificity in developmental and adult contexts, and have investigated the coemergence of substrates from the same duplication events. Our analysis has revealed examples of DUB gene subfunctionalization, neofunctionalization, and nonfunctionalization.
Collapse
Affiliation(s)
- Caitlyn Vlasschaert
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ontario, Canada
| | - David Cook
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Douglas A. Gray
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Rutter BD, Innes RW. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. PLANT PHYSIOLOGY 2017; 173:728-741. [PMID: 27837092 PMCID: PMC5210723 DOI: 10.1104/pp.16.01253] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/14/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses.
Collapse
Affiliation(s)
- Brian D Rutter
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
18
|
Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots. PLoS One 2016; 11:e0148048. [PMID: 26849436 PMCID: PMC4744058 DOI: 10.1371/journal.pone.0148048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC) is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp). Among them, 49,959 (79.92%) genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%), Gene Ontology (GO) (33,767, 54.02%), Clusters of Orthologous Groups (KOG) (14,721, 23.55%) and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) (12,974, 20.76%) searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs) between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR) were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR), ethylene (ET)- and jasmonic (JA)-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR) proteins, UDP-glycosyltransferase (UDPG), pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters), myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying FOC resistance in cabbage.
Collapse
|
19
|
Wu L, Chen H, Curtis C, Fu ZQ. Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected]. Virulence 2015; 5:710-21. [PMID: 25513772 PMCID: PMC4189877 DOI: 10.4161/viru.29755] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.
Collapse
Affiliation(s)
- Liang Wu
- a Department of Biological Sciences; University of South Carolina; Columbia, SC USA
| | | | | | | |
Collapse
|
20
|
Lee D, Bourdais G, Yu G, Robatzek S, Coaker G. Phosphorylation of the Plant Immune Regulator RPM1-INTERACTING PROTEIN4 Enhances Plant Plasma Membrane H⁺-ATPase Activity and Inhibits Flagellin-Triggered Immune Responses in Arabidopsis. THE PLANT CELL 2015; 27. [PMID: 26198070 PMCID: PMC4531345 DOI: 10.1105/tpc.114.132308] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Pseudomonas syringae effector AvrB targets multiple host proteins during infection, including the plant immune regulator RPM1-INTERACTING PROTEIN4 (RIN4) and RPM1-INDUCED PROTEIN KINASE (RIPK). In the presence of AvrB, RIPK phosphorylates RIN4 at Thr-21, Ser-160, and Thr-166, leading to activation of the immune receptor RPM1. Here, we investigated the role of RIN4 phosphorylation in susceptible Arabidopsis thaliana genotypes. Using circular dichroism spectroscopy, we show that RIN4 is a disordered protein and phosphorylation affects protein flexibility. RIN4 T21D/S160D/T166D phosphomimetic mutants exhibited enhanced disease susceptibility upon surface inoculation with P. syringae, wider stomatal apertures, and enhanced plasma membrane H(+)-ATPase activity. The plasma membrane H(+)-ATPase AHA1 is highly expressed in guard cells, and its activation can induce stomatal opening. The ripk knockout also exhibited a strong defect in pathogen-induced stomatal opening. The basal level of RIN4 Thr-166 phosphorylation decreased in response to immune perception of bacterial flagellin. RIN4 Thr166D lines exhibited reduced flagellin-triggered immune responses. Flagellin perception did not lower RIN4 Thr-166 phosphorylation in the presence of strong ectopic expression of AvrB. Taken together, these results indicate that the AvrB effector targets RIN4 in order to enhance pathogen entry on the leaf surface as well as dampen responses to conserved microbial features.
Collapse
Affiliation(s)
- DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, California 95616
| | | | - Gang Yu
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California 95616
| |
Collapse
|
21
|
Andolfo G, Ercolano MR. Plant Innate Immunity Multicomponent Model. FRONTIERS IN PLANT SCIENCE 2015; 6:987. [PMID: 26617626 PMCID: PMC4643146 DOI: 10.3389/fpls.2015.00987] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/28/2015] [Indexed: 05/04/2023]
Abstract
Our understanding of plant-pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defense mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defense response activation. To better describe the sophisticated defense system of plants, we propose a new model of plant immunity. This model considers the plant's ability to distinguish the feeding behavior of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defense against the different behaviors of pathogens with the intention to stimulate further interest in this research area.
Collapse
|
22
|
Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R. Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2014; 15:948-56. [PMID: 24751103 PMCID: PMC6638912 DOI: 10.1111/mpp.12145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two mutants (tri6Δ and noxABΔ) of the fungal pathogen Fusarium graminearum were assessed for their ability to prime immune responses in wheat (cv. Roblin) against challenge with pathogenic F. graminearum. Priming treatments generated Fusarium head blight (FHB)-resistant wheat phenotypes and reduced the accumulation of fungal mycotoxins in infected tissues. Microarray analysis identified 260 transcripts that were differentially expressed during the priming period. Expression changes were observed in genes associated with immune surveillance systems, signalling cascades, antimicrobial compound production, oxidative burst, secondary metabolism, and detoxification and transport. Specifically, genes related to jasmonate, gibberellin and ethylene biosynthesis exhibited differential expression during priming. In addition, the induction of the phenylpropanoid pathways that lead to flavonoid, coumarin and hydroxycinnamic acid amide accumulation was also observed. This study highlights the utility of nonpathogenic mutants to both elicit and delineate stages of defence responses in wheat.
Collapse
Affiliation(s)
- Michael Ravensdale
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada, K1A 0C6
| | | | | | | | | | | |
Collapse
|
23
|
McLachlan DH, Kopischke M, Robatzek S. Gate control: guard cell regulation by microbial stress. THE NEW PHYTOLOGIST 2014; 203:1049-1063. [PMID: 25040778 DOI: 10.1111/nph.12916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/26/2014] [Indexed: 05/07/2023]
Abstract
Terrestrial plants rely on stomata, small pores in the leaf surface, for photosynthetic gas exchange and transpiration of water. The stomata, formed by a pair of guard cells, dynamically increase and decrease their volume to control the pore size in response to environmental cues. Stresses can trigger similar or opposing movements: for example, drought induces closure of stomata, whereas many pathogens exploit stomata and cause them to open to facilitate entry into plant tissues. The latter is an active process as stomatal closure is part of the plant's immune response. Stomatal research has contributed much to clarify the signalling pathways of abiotic stress, but guard cell signalling in response to microbes is a relatively new area of research. In this article, we discuss present knowledge of stomatal regulation in response to microbes and highlight common points of convergence, and differences, compared to stomatal regulation by abiotic stresses. We also expand on the mechanisms by which pathogens manipulate these processes to promote disease, for example by delivering effectors to inhibit closure or trigger opening of stomata. The study of pathogen effectors in stomatal manipulation will aid our understanding of guard cell signalling.
Collapse
Affiliation(s)
| | | | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
24
|
Matsui H, Fujiwara M, Hamada S, Shimamoto K, Nomura Y, Nakagami H, Takahashi A, Hirochika H. Plasma membrane localization is essential for Oryza sativa Pto-interacting protein 1a-mediated negative regulation of immune signaling in rice. PLANT PHYSIOLOGY 2014; 166:327-36. [PMID: 24958714 PMCID: PMC4149718 DOI: 10.1104/pp.114.243873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oryza sativa Pto-interacting protein 1a (OsPti1a), an ortholog of tomato (Solanum lycopersicum) SlPti1, functions as a negative regulator of innate immunity in rice (Oryza sativa). In ospti1a mutants, the activation of immune responses, including hypersensitive response-like cell death, is caused by loss of the OsPti1a protein; however, it is as yet unclear how OsPti1a suppresses immune responses. Here, we report that OsPti1a localizes to detergent-resistant membrane fractions of the plasma membrane through lipid modification of the protein's amino terminus, which is highly conserved among Pti1 orthologs in several plant species. Importantly, mislocalization of OsPti1a after deletion of its amino terminus reduced its ability to complement the mutant phenotypes, including hypersensitive response-like cell death. Furthermore, complex formation of OsPti1a depends on its amino terminus-mediated membrane localization. Liquid chromatography-tandem mass spectrometry analysis of OsPti1a complex-interacting proteins identified several defense-related proteins. Collectively, these findings indicate that appropriate complex formation by OsPti1a at the plasma membrane is required for the negative regulation of plant immune responses in rice.
Collapse
Affiliation(s)
- Hidenori Matsui
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| | - Masayuki Fujiwara
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| | - Satoshi Hamada
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| | - Ko Shimamoto
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| | - Yuko Nomura
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| | - Hirofumi Nakagami
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| | - Akira Takahashi
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| | - Hirohiko Hirochika
- Disease-Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (H.M., A.T., H.H.);Plant Global Educational Project (M.F.) and Laboratory of Plant Molecular Genetics (S.H., K.S.), Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; andPlant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (Y.N., H.N.)
| |
Collapse
|
25
|
Abstract
To confer resistance against pathogens and pests in plants, typically dominant resistance genes are deployed. However, because resistance is based on recognition of a single pathogen-derived molecular pattern, these narrow-spectrum genes are usually readily overcome. Disease arises from a compatible interaction between plant and pathogen. Hence, altering a plant gene that critically facilitates compatibility could provide a more broad-spectrum and durable type of resistance. Here, such susceptibility (S) genes are reviewed with a focus on the mechanisms underlying loss of compatibility. We distinguish three groups of S genes acting during different stages of infection: early pathogen establishment, modulation of host defenses, and pathogen sustenance. The many examples reviewed here show that S genes have the potential to be used in resistance breeding. However, because S genes have a function other than being a compatibility factor for the pathogen, the side effects caused by their mutation demands a one-by-one assessment of their usefulness for application.
Collapse
|
26
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
27
|
Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 2013; 512:259-66. [DOI: 10.1016/j.gene.2012.10.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 12/17/2022]
|
28
|
Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 2011; 12:60-70. [PMID: 21179061 DOI: 10.1038/nrm3031] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.
Collapse
Affiliation(s)
- J Preben Morth
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Denmark
| | | | | | | | | | | | | |
Collapse
|