1
|
Zhang Q, Kong G, Zhao G, Liu J, Jin H, Li Z, Zhang G, Liu T. Microbial and enzymatic changes in cigar tobacco leaves during air-curing and fermentation. Appl Microbiol Biotechnol 2023; 107:5789-5801. [PMID: 37458766 PMCID: PMC10439857 DOI: 10.1007/s00253-023-12663-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 08/20/2023]
Abstract
Metabolic enzyme activity and microbial composition of the air-curing and fermentation processes determine the quality of cigar tobacco leaves (CTLs). In this study, we reveal the evolution of the dominant microorganisms and microbial community structure at different stages of the air-curing and fermentation processes of CTLs. The results showed that the changes in metabolic enzymes occurred mainly during the air-curing phase, with polyphenol oxidase (PPO) being the most active at the browning phase. Pseudomonas, Bacteroides, Vibrio, Monographella, Bipolaris, and Aspergillus were the key microorganisms in the air-curing and fermentation processes. Principal coordinate analysis revealed significant separation of microbial communities between the air-curing and fermentation phases. Redundancy analysis showed that bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota were correlated with enzyme activity and temperature and humidity. Bacteria mainly act in sugar metabolism, lipid metabolism, and amino acid metabolism, while fungi mainly degrade lignin, cellulose, and pectin through saprophytic action. Spearman correlation network analysis showed that Firmicutes, Proteobacteria, and Actinobacteria were the key bacterial taxa, while Dothideomycetes, Sordariomycetes, and Eurotiomycetes were the key fungal taxa. This research provides the basis for improving the quality of cigars by improving the air-curing and fermentation processes. KEY POINTS: • Changes in POD and PPO activity control the color change of CTLs at the air-curing stage. • Monographella, Aspergillus, Pseudomonas, and Vibrio play an important role in air-curing and fermentation. • Environmental temperature and humidity mainly affect the fermentation process, whereas bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota are associated with enzyme activity and temperature and humidity.
Collapse
Affiliation(s)
- Qing Zhang
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Gaokun Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Jun Liu
- Raw Materials Department of HongYun HongHe Tobacco (Group) Limited Liability Company, Kunming, 650221, Yunnan, China
| | - Honggang Jin
- Raw Materials Department of HongYun HongHe Tobacco (Group) Limited Liability Company, Kunming, 650221, Yunnan, China
| | - Zhihua Li
- Raw Materials Department of HongYun HongHe Tobacco (Group) Limited Liability Company, Kunming, 650221, Yunnan, China
| | - Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| | - Tao Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
3
|
Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Pozueta-Romero J. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 2013; 32:87-106. [PMID: 23827783 DOI: 10.1016/j.biotechadv.2013.06.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Structurally composed of the glucose homopolymers amylose and amylopectin, starch is the main storage carbohydrate in vascular plants, and is synthesized in the plastids of both photosynthetic and non-photosynthetic cells. Its abundance as a naturally occurring organic compound is surpassed only by cellulose, and represents both a cornerstone for human and animal nutrition and a feedstock for many non-food industrial applications including production of adhesives, biodegradable materials, and first-generation bioethanol. This review provides an update on the different proposed pathways of starch biosynthesis occurring in both autotrophic and heterotrophic organs, and provides emerging information about the networks regulating them and their interactions with the environment. Special emphasis is given to recent findings showing that volatile compounds emitted by microorganisms promote both growth and the accumulation of exceptionally high levels of starch in mono- and dicotyledonous plants. We also review how plant biotechnologists have attempted to use basic knowledge on starch metabolism for the rational design of genetic engineering traits aimed at increasing starch in annual crop species. Finally we present some potential biotechnological strategies for enhancing starch content.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacky University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ed Etxeberria
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain.
| |
Collapse
|
4
|
Aranjuelo I, Sanz-Sáez Á, Jauregui I, Irigoyen JJ, Araus JL, Sánchez-Díaz M, Erice G. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1879-92. [PMID: 23564953 PMCID: PMC3638836 DOI: 10.1093/jxb/ert081] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The expansion of the world's population requires the development of high production agriculture. For this purpose, it is essential to identify target points conditioning crop responsiveness to predicted [CO2]. The aim of this study was to determine the relevance of ear sink strength in leaf protein and metabolomic profiles and its implications in photosynthetic activity and yield of durum wheat plants exposed to elevated [CO2]. For this purpose, a genotype with high harvest index (HI) (Triticum durum var. Sula) and another with low HI (Triticum durum var. Blanqueta) were exposed to elevated [CO2] (700 µmol mol(-1) versus 400 µmol mol(-1) CO2) in CO2 greenhouses. The obtained data highlighted that elevated [CO2] only increased plant growth in the genotype with the largest HI; Sula. Gas exchange analyses revealed that although exposure to 700 µmol mol(-1) depleted Rubisco content, Sula was capable of increasing the light-saturated rate of CO2 assimilation (Asat) whereas, in Blanqueta, the carbohydrate imbalance induced the down-regulation of Asat. The specific depletion of Rubisco in both genotypes under elevated [CO2], together with the enhancement of other proteins in the Calvin cycle, revealed that there was a redistribution of N from Rubisco towards RuBP regeneration. Moreover, the down-regulation of N, NO3 (-), amino acid, and organic acid content, together with the depletion of proteins involved in amino acid synthesis that was detected in Blanqueta grown at 700 µmol mol(-1) CO2, revealed that inhibition of N assimilation was involved in the carbohydrate imbalance and consequently with the down-regulation of photosynthesis and growth in these plants.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192-Mutilva Baja, Spain.
| | | | | | | | | | | | | |
Collapse
|