1
|
Wu M, Wang Y, Zhang S, Xiang Y. A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice. PLANT MOLECULAR BIOLOGY 2024; 114:95. [PMID: 39223419 DOI: 10.1007/s11103-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The regulation mechanism of bamboo height growth has always been one of the hotspots in developmental biology. In the preliminary work of this project, the function of LBD transcription factor regulating height growth was firstly studied. Here, a gene PheLBD12 regulating height growth was screened. PheLBD12-overexpressing transgenic rice had shorter internodes, less bioactive gibberellic acid (GA3), and were more sensitive to GA3 than wild-type (WT) plants, which implied that PheLBD12 involve in gibberellin (GA) pathway. The transcript levels of OsGA2ox3, that encoding GAs deactivated enzyme, was significantly enhanced in PheLBD12-overexpressing transgenic rice. The transcript levels of OsAP2-39, that directly regulating the expression of EUI1 to reduce GA levels, was also significantly enhanced in PheLBD12-overexpressing transgenic rice. Expectedly, yeast one-hybrid assays, Dual-luciferase reporter assay and EMSAs suggested that PheLBD12 directly interacted with the promoter of OsGA2ox3 and OsAP2-39. Together, our results reveal that PheLBD12 regulates plant height growth by modulating GA catabolism. Through the research of this topic, it enriches the research content of LBD transcription factors and it will theoretically enrich the research content of height growth regulation.
Collapse
Affiliation(s)
- Min Wu
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yufang Wang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Shunran Zhang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Coomey JH, MacKinnon KJM, McCahill IW, Khahani B, Handakumbura PP, Trabucco GM, Mazzola J, Leblanc NA, Kheam R, Hernandez-Romero M, Barry K, Liu L, Lee JE, Vogel JP, O’Malley RC, Chambers JJ, Hazen SP. Mechanically induced localisation of SECONDARY WALL INTERACTING bZIP is associated with thigmomorphogenic and secondary cell wall gene expression. QUANTITATIVE PLANT BIOLOGY 2024; 5:e5. [PMID: 38774130 PMCID: PMC11106548 DOI: 10.1017/qpb.2024.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses. Brachypodium distachyon SECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated in B. distachyon roots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression. SWIZ overexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics.
Collapse
Affiliation(s)
- Joshua H. Coomey
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Kirk J.-M. MacKinnon
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Ian W. McCahill
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Bahman Khahani
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Pubudu P. Handakumbura
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Gina M. Trabucco
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Jessica Mazzola
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | - Rithany Kheam
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | - Miriam Hernandez-Romero
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lifeng Liu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ji E. Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John P. Vogel
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C. O’Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James J. Chambers
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, USA
| | - Samuel P. Hazen
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Fukazawa J, Mori K, Ando H, Mori R, Kanno Y, Seo M, Takahashi Y. Jasmonate inhibits plant growth and reduces gibberellin levels via microRNA5998 and transcription factor MYC2. PLANT PHYSIOLOGY 2023; 193:2197-2214. [PMID: 37562026 DOI: 10.1093/plphys/kiad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Jasmonate (JA) and gibberellins (GAs) exert antagonistic effects on plant growth and development in response to environmental and endogenous stimuli. Although the crosstalk between JA and GA has been elucidated, the role of JA in GA biosynthesis remains unclear. Therefore, in this study, we investigated the mechanism underlying JA-mediated regulation of endogenous GA levels in Arabidopsis (Arabidopsis thaliana). Transient and electrophoretic mobility shift assays showed that transcription factor MYC2 regulates GA inactivation genes. Using transgenic plants, we further evaluated the contribution of MYC2 in regulating GA inactivation genes. JA treatment increased DELLA accumulation but did not inhibit DELLA protein degradation. Additionally, JA treatment decreased bioactive GA content, including GA4, significantly decreased the expression of GA biosynthesis genes, including ent-kaurene synthase (AtKS), GA 3β-hydroxylase (AtGA3ox1), and AtGA3ox2, and increased the expression of GA inactivation genes, including GA 2 oxidase (AtGA2ox4), AtGA2ox7, and AtGA2ox9. Conversely, JA treatment did not significantly affect gene expression in the myc2 myc3 myc4 triple mutant, demonstrating the MYC2-4-dependent effects of JA in GA biosynthesis. Additionally, JA post-transcriptionally regulated AtGA3ox1 expression. We identified microRNA miR5998 as an AtGA3ox1-associated miRNA; its overexpression inhibited plant growth by suppressing AtGA3ox1 expression. Overall, our findings indicate that JA treatment inhibits endogenous GA levels and plant growth by decreasing the expression of GA biosynthesis genes and increasing the expression of GA inactivation genes via miR5998 and MYC2 activities.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kazuya Mori
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroki Ando
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Ryota Mori
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Yohsuke Takahashi
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
4
|
Luo J, Tang Y, Chu Z, Peng Y, Chen J, Yu H, Shi C, Jafar J, Chen R, Tang Y, Lu Y, Ye Z, Li Y, Ouyang B. SlZF3 regulates tomato plant height by directly repressing SlGA20ox4 in the gibberellic acid biosynthesis pathway. HORTICULTURE RESEARCH 2023; 10:uhad025. [PMID: 37090098 PMCID: PMC10116951 DOI: 10.1093/hr/uhad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Plant height is an important target trait for crop genetic improvement. Our previous work has identified a salt-tolerant C2H2 zinc finger, SlZF3, and its overexpression lines also showed a semi-dwarf phenotype, but the molecular mechanism remains to be elucidated. Here, we characterized the dwarf phenotype in detail. The dwarfism is caused by a decrease in stem internode cell elongation and deficiency of bioactive gibberellic acids (GAs), and can be rescued by exogenous GA3 treatment. Gene expression assays detected reduced expression of genes in the GA biosynthesis pathway of the overexpression lines, including SlGA20ox4. Several protein-DNA interaction methods confirmed that SlZF3 can directly bind to the SlGA20ox4 promoter and inhibit its expression, and the interaction can also occur for SlKS and SlKO. Overexpression of SlGA20ox4 in the SlZF3-overexpressing line can recover the dwarf phenotype. Therefore, SlZF3 regulates plant height by directly repressing genes in the tomato GA biosynthesis pathway.
Collapse
Affiliation(s)
- Jinying Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunfei Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuannan Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jahanzeb Jafar
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Corresponding authors. E-mail: ;
| | | |
Collapse
|
5
|
Zhang T, Wang J, Luo R, Man J, Long Q, Xu N. OsHLS1 regulates plant height and development by controlling active gibberellin accumulation in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111508. [PMID: 36283578 DOI: 10.1016/j.plantsci.2022.111508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, we identified a gene related to plant height, leaf, and premature senescence in rice, and named it OsHLS1. Through bioinformatics analysis, it was found that this gene belongs to a new gene family-HLS family, and this gene family exists widely in higher plants. Expression of OsHLS1 was significantly brought about by gibberellin (GA). Subcellular localization showed that OsHLS1 was located in the nucleus. oshls1-3 displayed a GA-deficient phenotype, with dwarf plants. In addition, oshls1-3 also showed premature senescence, shorter and narrower leaves, and pollen abortion. Exogenous GA3 can restore the plant height of oshls1-3. Histomorphological analysis showed that the gene affected the progress of internode cells in the first and third nodes under the rice panicle. Through the verification of the homologous gene AT4G25690 in Arabidopsis, it was found that the mutant at4g25690 lines also showed plant dwarfing, premature senescence, and shortening and narrowing of leaves and pollen abortion. OsHLS1 affected the expression levels of genes involved in the GA metabolic pathway and affected the content of active GA, thereby regulating plant height development in rice. In conclusion, we suggest that OsHLS1 regulates plant height and development by controlling the accumulation of active gibberellins in rice.
Collapse
Affiliation(s)
- Tonghua Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jiafu Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qing Long
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
6
|
Sakai Y, Suriyasak C, Inoue M, Hamaoka N, Ishibashi Y. Heat stress during grain filling regulates seed germination through alterations of DNA methylation in barley (Hordeum vulgare L.). PLANT MOLECULAR BIOLOGY 2022; 110:325-332. [PMID: 35581415 DOI: 10.1007/s11103-022-01278-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Alterations in DNA methylation levels of ROS, GA and ABA related gene promoters cause transcriptional changes upon imbibition to induce seed germination in barley seeds exposed to heat stress during grain filling. Environmental changes, especially changes in temperature, during seed development affect germination in several plant species. We have previously shown that heat stress during rice grain filling alters DNA methylation, an epigenetic mark important for gene silencing, regulates transcript levels of phytohormone metabolism genes, and delays seed germination. However, whether this phenomenon is present in other plant species remained to be elucidated. In this study, we compared seeds germination of barley (Hordeum vulgare L.) plants grown at 15 °C (control) or 25 °C (heat stress) during grain filling. Heat stress during grain filling significantly promoted seed germination in comparison with the control. The phytohormone gibberellic acid (GA) and reactive oxygen species produced by NADPH oxidases promote seed germination, whereas phytohormone abscisic acid (ABA) suppresses seed germination. We found that in heat-stressed seeds, genes related to ABA biosynthesis (HvNCED1 and 2) were significantly suppressed, whereas genes related to ABA catabolism (HvABA8'OH) and GA biosynthesis (HvHA20ox, HvGA3ox), and NADPH oxidase (HvRboh) genes were significantly upregulated after imbibition. Using MeDIP-qPCR, we showed that the promoters of HvNCED were hyper-methylated, and those of HvABA8'OH1, HvABA8'OH3, HvGA3ox2, and HvRbohF2 were hypo-methylated in heat treated seeds. Taken together, our data suggest that heat stress during grain filling affects DNA methylation of germination-related genes and promotes seed germination in barley.
Collapse
Affiliation(s)
- Yuki Sakai
- Graduate School of Bioresource Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | | | - Miki Inoue
- Graduate School of Bioresource Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Norimitsu Hamaoka
- Graduate School of Bioresource Sciences, Kyushu University, Fukuoka, 819-0395, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yushi Ishibashi
- Graduate School of Bioresource Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Wang L, Gui Y, Yang B, Dong W, Xu P, Si F, Yang W, Luo Y, Guo J, Niu D, Jiang C. Mitogen-Activated Protein Kinases Associated Sites of Tobacco Repression of Shoot Growth Regulates Its Localization in Plant Cells. Int J Mol Sci 2022; 23:ijms23168941. [PMID: 36012208 PMCID: PMC9409217 DOI: 10.3390/ijms23168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Plant defense and growth rely on multiple transcriptional factors (TFs). Repression of shoot growth (RSG) is a TF belonging to a bZIP family in tobacco, known to be involved in plant gibberellin feedback regulation by inducing the expression of key genes. The tobacco calcium-dependent protein kinase CDPK1 was reported to interact with RSG and manipulate its intracellular localization by phosphorylating Ser-114 of RSG previously. Here, we identified tobacco mitogen-activated protein kinase 3 (NtMPK3) as an RSG-interacting protein kinase. Moreover, the mutation of the predicted MAPK-associated phosphorylation site of RSG (Thr-30, Ser-74, and Thr-135) significantly altered the intracellular localization of the NtMPK3-RSG interaction complex. Nuclear transport of RSG and its amino acid mutants (T30A and S74A) were observed after being treated with plant defense elicitor peptide flg22 within 5 min, and the two mutated RSG swiftly re-localized in tobacco cytoplasm within 30 min. In addition, triple-point mutation of RSG (T30A/S74A/T135A) mimics constant unphosphorylated status, and is predominantly localized in tobacco cytoplasm. RSG (T30A/S74A/T135A) showed no re-localization effect under the treatments of flg22, B. cereus AR156, or GA3, and over-expression of this mutant in tobacco resulted in lower expression levels of downstream gene GA20ox1. Our results suggest that MAPK-associated phosphorylation sites of RSG regulate its localization in tobacco, and that constant unphosphorylation of RSG in Thr-30, Ser-74, and Thr-135 keeps RSG predominantly localized in cytoplasm.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (C.J.); (L.W.)
| | - Ying Gui
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Bingye Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Wenpan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Peiling Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Fangjie Si
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an 223300, China
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chunhao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
- Correspondence: (C.J.); (L.W.)
| |
Collapse
|
8
|
Exogenous Proline Optimizes Osmotic Adjustment Substances and Active Oxygen Metabolism of Maize Embryo under Low-Temperature Stress and Metabolomic Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maize (Zea mays L.) is more sensitive to low-temperature stress in the early growth period. The study was to explore the response mechanism of proline to low-temperature stress during maize seed germination. Maize varieties Xinxin 2 (low-temperature insensitive) and Damin 3307 (low-temperature sensitive) were chosen as the test materials, setting the normal temperature for germination (22 °C/10 °C, 9d), low-temperature germination (4 °C/4 °C, 5d) and normal temperature recovery (22 °C/10 °C, 4d), combined with proline (15 mmol·L−1) soaking treatment, to study its effects on the osmotic regulation system and antioxidant protection system of maize embryos. Metabolomics analysis was carried out to initially reveal the basis of the metabolic regulation mechanism. The results showed that the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbic acid peroxidase (APX) and glutathione reductase (GR) were induced to some extent under low-temperature stress. The activities of SOD, POD, APX and GR were further enhanced in the soaking seeds with proline. Proline treatment improved the activities of catalase (CAT), monodehydrated ascorbic acid reductase (MDHAR) and dehydroascorbic acid (DHAR), increased the contents of ascorbic acid (AsA) and glutathione (GSH) and decreased the contents of oxidized ascorbic acid (DHA) and reduced glutathione (GSSG) under low-temperature stress. The ratio of AsA/DHA and GSH/GSSG increased. The increase in antioxidant enzyme activity and the content of antioxidants can help to maintain the stability of the AsA-GSH cycle, and effectively reduce the production rate of superoxide anion (O2•−), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Based on the UPLC-MS/MS detection platform and self-built database, 589 metabolites were detected in each treated maize embryo; 262 differential metabolites were obtained, including 32 organic acids, 28 amino acids, 20 nucleotides and their derivatives, 26 sugars and alcohols, 46 lipids, 51 alkaloids, 44 phenols and 15 other metabolites. Sixty-eight metabolic pathways involving different metabolites were obtained by KEGG enrichment analysis. The results showed that proline increased the accumulation of sorbitol, planteose, erythritose 4-phosphate, arabinose and other saccharides and alcohols in response to low-temperature stress, increased the content of osmoregulation substances under low-temperature stress. Proline also restored the TCA cycle by increasing the content of α-ketoglutarate and fumaric acid. Proline increased the contents of some amino acids (ornithine, proline, glycine, etc.), alkaloids (cocamidopropyl betaine, vanillylamine, 6-hydroxynicotinic acid, etc.), phenols (phenolic ayapin, chlorogenic acid, etc.) and vitamins (ascorbic acid, etc.) in the embryo under low-temperature stress. Combined with pathway enrichment analysis, proline could enhance the low-temperature stress resistance of germinated maize embryos by enhancing starch and sucrose metabolism, arginine and proline metabolism, biosynthesis of secondary metabolites, flavonoid biosynthesis and pentose phosphate pathway.
Collapse
|
9
|
Dong W, Wu D, Wang C, Liu Y, Wu D. Characterization of the molecular mechanism underlying the dwarfism of dsh mutant watermelon plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111074. [PMID: 34763866 DOI: 10.1016/j.plantsci.2021.111074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Developing dwarf watermelon is a major objective among breeders. The dsh dwarf watermelon germplasm developed in our laboratory is genetically stable. We previously produced preliminary evidence that Cla010726, which encodes a gibberellin 20-oxidase-like protein, is the primary gene controlling dwarfism in watermelon. However, the underlying genetic mechanism was unknown. In this study, we characterized the spontaneous recessive mutant dsh, which is a gibberellin (GA)-deficient mutant. Many of the phenotypic traits of dsh plants are similar to those of known GA-deficient mutants. The dsh plants were sensitive to exogenous bioactive GAs, which increased seedling height. Moreover, a quantitative analysis of endogenous GA3 proved that the bioactive GA3 content was substantially lower than normal in dsh. Additionally, the T5ClaGA20ox RNAi plants generally exhibited dwarfism, with short stems and internodes as well as small leaves and fruit. An examination of the transgenic plants carrying the ClaGA20ox1 promoter-GUS and mutant ClaGA20ox2 promoter-GUS constructs confirmed that two promoter sites are involved in the regulation of ClaGA20ox expression. Hence, mutations in the promoter of the GA20ox gene, which encodes a key enzyme involved in gibberellin biosynthesis, lead to the dwarfism of watermelon plants. The dsh mutant is a potentially useful germplasm resource for developing new watermelon varieties exhibiting dwarfism.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Caihui Wang
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Ying Liu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Defeng Wu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| |
Collapse
|
10
|
Fukazawa J, Miyamoto C, Ando H, Mori K, Takahashi Y. DELLA-GAF1 complex is involved in tissue-specific expression and gibberellin feedback regulation of GA20ox1 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 107:147-158. [PMID: 34562198 DOI: 10.1007/s11103-021-01195-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The GAF1 transcription factor is shown to bind to the promoter of the Arabidopsis GA-biosynthetic enzyme GA20ox1 and, in association with DELLA protein, promotes GA20ox1 expression, thereby contributing to its feedback regulation and tissue specificity. Gibberellins (GAs) are phytohormones that promote plant growth and development, including germination, elongation, flowering, and floral development. Homeostasis of endogenous GA levels is controlled by GA feedback regulation. DELLAs are negative regulators of GA signaling that are rapidly degraded in the presence of GAs. DELLAs regulate several target genes, including AtGA20ox2 and AtGA3ox1, encoding the GA-biosynthetic enzymes GA 20-oxidase and GA 3-oxidase, respectively. Previous studies have identified GAI-ASSOCIATED FACTOR 1 (GAF1) as a DELLA interactor, with which DELLAs act as transcriptional coactivators; furthermore, AtGA20ox2, AtGA3ox1, and AtGID1b were identified as target genes of the DELLA-GAF1 complex. Among the five Arabidopsis GA20ox genes, AtGA20ox1 is the most highly expressed gene during vegetative growth; its expression is controlled by GA feedback regulation. Here, we investigated whether AtGA20ox1 is regulated by the DELLA-GAF1 complex. The electrophoretic mobility shift and transactivation assays showed that three GAF1-binding sites exist in the AtGA20ox1 promoter. Using transgenic plants, we further evaluated the contribution of the DELLA-GAF1 complex to GA feedback regulation and tissue-specific expression. Mutations in two GAF1-binding sites obliterated the negative feedback regulation and tissue-specific expression of AtGA20ox1 in transgenic plants. Thus, our results showed that GAF1-binding sites are involved in GA feedback regulation and tissue-specific expression of AtGA20ox1 in Arabidopsis, suggesting that the DELLA-GAF1 complex is involved in both processes.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Chika Miyamoto
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hiroki Ando
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Kazuya Mori
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yohsuke Takahashi
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
11
|
CRISPR/Cas9 Directed Mutagenesis of OsGA20ox2 in High Yielding Basmati Rice ( Oryza sativa L.) Line and Comparative Proteome Profiling of Unveiled Changes Triggered by Mutations. Int J Mol Sci 2020; 21:ijms21176170. [PMID: 32859098 PMCID: PMC7504442 DOI: 10.3390/ijms21176170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/29/2023] Open
Abstract
In rice, semi-dwarfism is among the most required characteristics, as it facilitates better yields and offers lodging resistance. Here, semi-dwarf rice lines lacking any residual transgene-DNA and off-target effects were generated through CRISPR/Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants. The results indicated the reduced gibberellins (GA1 and GA4) levels, plant height (28.72%), and flag leaf length, while all the other traits remained unchanged. The OsGA20ox2 expression was highly suppressed, and the mutants exhibited decreased cell length, width, and restored their plant height by exogenous GA3 treatment. Comparative proteomics of the wild-type and homozygous mutant line (GXU43_9) showed an altered level of 588 proteins, 273 upregulated and 315 downregulated, respectively. The identified differentially expressed proteins (DEPs) were mainly enriched in the carbon metabolism and fixation, glycolysis/gluconeogenesis, photosynthesis, and oxidative phosphorylation pathways. The proteins (Q6AWY7, Q6AWY2, Q9FRG8, Q6EPP9, Q6AWX8) associated with growth-regulating factors (GRF2, GRF7, GRF9, GRF10, and GRF11) and GA (Q8RZ73, Q9AS97, Q69VG1, Q8LNJ6, Q0JH50, and Q5MQ85) were downregulated, while the abscisic stress-ripening protein 5 (ASR5) and abscisic acid receptor (PYL5) were upregulated in mutant lines. We integrated CRISPR/Cas9 with proteomic screening as the most reliable strategy for rapid assessment of the CRISPR experiments outcomes.
Collapse
|
12
|
Chu Y, Xu N, Wu Q, Yu B, Li X, Chen R, Huang J. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. RICE (NEW YORK, N.Y.) 2019; 12:38. [PMID: 31139953 PMCID: PMC6538746 DOI: 10.1186/s12284-019-0298-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The MADS-box transcription factors mainly function in floral organ organogenesis and identity specification. Few research on their roles in vegetative growth has been reported. RESULTS Here we investigated the functions of OsMADS57 in plant vegetative growth in rice (Oryza sativa). Knockdown of OsMADS57 reduced the plant height, internode elongation and panicle exsertion in rice plants. Further study showed that the cell length was remarkably reduced in the uppermost internode in OsMADS57 knockdown plants at maturity. Moreover, OsMADS57 knockdown plants were more sensitive to gibberellic acid (GA3), and contained less bioactive GA3 than wild-type plants, which implied that OsMADS57 is involved in gibberellin (GA) pathway. Expectedly, the transcript levels of OsGA2ox3, encoding GAs deactivated enzyme, were significantly enhanced in OsMADS57 knockdown plants. The level of EUI1 transcripts involved in GA deactivation was also increased in OsMADS57 knockdown plants. More importantly, dual-luciferase reporter assay and electrophoretic mobility shift assay showed that OsMADS57 directly regulates the transcription of OsGA2ox3 as well as EUI1 through binding to the CArG-box motifs in their promoter regions. In addition, OsMADS57 also modulated the expression of multiple genes involved in GA metabolism or GA signaling pathway, indicating the key and complex regulatory role of OsMADS57 in GA pathway in rice. CONCLUSIONS These results indicated that OsMADS57 acts as an important transcriptional regulator that regulates stem elongation and panicle exsertion in rice via GA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
13
|
Wang X, Chen X, Wang Q, Chen M, Liu X, Gao D, Li D, Li L. MdBZR1 and MdBZR1-2like Transcription Factors Improves Salt Tolerance by Regulating Gibberellin Biosynthesis in Apple. FRONTIERS IN PLANT SCIENCE 2019; 10:1473. [PMID: 31827478 PMCID: PMC6892407 DOI: 10.3389/fpls.2019.01473] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/23/2019] [Indexed: 05/11/2023]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones that play important roles in regulating plant development. In addition, BRs show considerable functional redundancy with other plant hormones such as gibberellins (GAs). BRASSINAZOLE RESISTANT1 (BZR1) and BRI1-EMS-SUPPRESSOR1 (BES1) transcription factors are negative feedback regulators of BR biosynthesis. This study provides evidence for the roles of MdBZR1 and MdBZR1-2like in promoting GA production. These results also show that BRs regulate GA biosynthesis to improve salt tolerance in apple calli. Moreover, this research proposes a regulatory model, in which MdBZR1 and MdBZR1-2like bind to the promoters of GA biosynthetic genes to regulate their expression in a BR-dependent manner. The expression of key GA biosynthetic genes, MdGA20ox1, MdGA20ox2, and MdGA3ox1 in yeast helps to maintain normal growth even under intense salt stress. In summary, this study underscores the roles of MdBZR1 and MdBZR1-2like in improving salt tolerance by regulating GA biosynthesis in apple calli.
Collapse
Affiliation(s)
- Xuxu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Qingjie Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiao Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- *Correspondence: Dongmei Li, ; Ling Li,
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- *Correspondence: Dongmei Li, ; Ling Li,
| |
Collapse
|
14
|
Tsugama D, Liu S, Fujino K, Takano T. Calcium signalling regulates the functions of the bZIP protein VIP1 in touch responses in Arabidopsis thaliana. ANNALS OF BOTANY 2018; 122:1219-1229. [PMID: 30010769 PMCID: PMC6324745 DOI: 10.1093/aob/mcy125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS VIP1 is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologues transiently accumulate in the nucleus when cells are exposed to hypo-osmotic and/or mechanical stress. Touch-induced root bending is enhanced in transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox), suggesting that VIP1, possibly with its close homologues, suppresses touch-induced root bending. The aim of this study was to identify regulators of these functions of VIP1 in mechanical stress responses. METHODS Co-immunoprecipitation analysis using VIP1-GFP fusion protein expressed in Arabidopsis plants identified calmodulins as VIP1-GFP interactors. In vitro crosslink analysis was performed using a hexahistidine-tagged calmodulin and glutathione S-transferase-fused forms of VIP1 and its close homologues. Plants expressing GFP-fused forms of VIP1 and its close homologues (bZIP59 and bZIP29) were submerged in hypotonic solutions containing divalent cation chelators, EDTA and EGTA, and a potential calmodulin inhibitor, chlorpromazine, to examine their effects on the nuclear-cytoplasmic shuttling of those proteins. VIP1-SRDXox plants were grown on medium containing 40 mm CaCl2, 40 mm MgCl2 or 80 mm NaCl. MCA1 and MCA2 are mechanosensitive calcium channels, and the hypo-osmotic stress-dependent nuclear-cytoplasmic shuttling of VIP1-GFP in the mca1 mca2 double knockout mutant background was examined. KEY RESULTS In vitro crosslink products were detected in the presence of CaCl2, but not in its absence. EDTA, EGTA and chlorpromazine all inhibited both the nuclear import and the nuclear export of VIP1-GFP, bZIP59-GFP and bZIP29-GFP. Either 40 mm CaCl2or 80 mm NaCl enhanced the VIP-SRDX-dependent root bending. The nuclear-cytoplasmic shuttling of VIP1 was observed even in the mca1 mca2 mutant. CONCLUSIONS VIP1 and its close homologues can interact with calmodulins. Their nuclear-cytoplasmic shuttling requires neither MCA1 nor MCA2, but does require calcium signalling. Salt stress affects the VIP1-dependent regulation of root bending.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- For correspondence. E-mail:
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, PR China
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
15
|
Xu W, Huang W. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112436. [PMID: 29156607 PMCID: PMC5713403 DOI: 10.3390/ijms18112436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y. DELLA-GAF1 Complex Is a Main Component in Gibberellin Feedback Regulation of GA20 Oxidase 2. PLANT PHYSIOLOGY 2017; 175:1395-1406. [PMID: 28916594 PMCID: PMC5664458 DOI: 10.1104/pp.17.00282] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/14/2017] [Indexed: 05/05/2023]
Abstract
Gibberellins (GAs) are phytohormones that regulate many aspects of plant growth and development, including germination, elongation, flowering, and floral development. Negative feedback regulation contributes to homeostasis of the GA level. DELLAs are negative regulators of GA signaling and are rapidly degraded in the presence of GAs. DELLAs regulate many target genes, including AtGA20ox2 in Arabidopsis (Arabidopsis thaliana), encoding the GA-biosynthetic enzyme GA 20-oxidase. As DELLAs do not have an apparent DNA-binding motif, transcription factors that act in association with DELLA are necessary for regulating the target genes. Previous studies have identified GAI-ASSOCIATED FACTOR1 (GAF1) as such a DELLA interactor, with which DELLAs act as coactivators, and AtGA20ox2 was identified as a target gene of the DELLA-GAF1 complex. In this study, electrophoretic mobility shift and chromatin immunoprecipitation assays showed that four GAF1-binding sites exist in the AtGA20ox2 promoter. Using transgenic plants, we further evaluated the contribution of the DELLA-GAF1 complex to GA feedback regulation. Mutations in four GAF1-binding sites abolished the negative feedback of AtGA20ox2 in transgenic plants. Our results showed that GAF1-binding sites are necessary for GA feedback regulation of AtGA20ox2, suggesting that the DELLA-GAF1 complex is a main component of the GA feedback regulation of AtGA20ox2.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Masahiko Mori
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Satoshi Watanabe
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Chika Miyamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
17
|
Jang S, Li HY, Kuo ML. Ectopic expression of Arabidopsis FD and FD PARALOGUE in rice results in dwarfism with size reduction of spikelets. Sci Rep 2017; 7:44477. [PMID: 28290557 PMCID: PMC5349553 DOI: 10.1038/srep44477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/09/2017] [Indexed: 11/14/2022] Open
Abstract
Key flowering genes, FD and FD PARALOGUE (FDP) encoding bZIP transcription factors that interact with a FLOWERING LOCUS T (FT) in Arabidopsis were ectopically expressed in rice since we found AtFD and AtFDP also interact with HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Transgenic rice plants overexpressing AtFD and AtFDP caused reduction in plant height and spikelet size with decreased expression of genes involved in cell elongation without significant flowering time alteration in spite of increased expression of OsMADS14 and OsMADS15, rice homologues of APETALA1 (AP1) in the leaves. Simultaneous overexpression of AtFD and AtFDP enhanced phenotypes seen with overexpression of either single gene while transgenic rice plants expressing AtFD or AtFDP under the control of phloem-specific Hd3a promoter were indistinguishable from wild-type rice. Candidate genes responsible for the phenotypes were identified by comparison of microarray hybridization and their expression pattern was also examined in WT and transgenic rice plants. It has so far not been reported that AtFD and AtFDP affect cell elongation in plants, and our findings provide novel insight into the possible roles of AtFD and AtFDP in the mesophyll cells of plants, and potential genetic tools for manipulation of crop architecture.
Collapse
Affiliation(s)
- Seonghoe Jang
- Biotechnology Center in Southern Taiwan (BCST), No. 59 Siraya Blvd., Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
- Institute of Tropical Plant Science, National Cheng Kung University, No. 1 University Road, East Dist., Tainan 70101, Taiwan
| | - Hsing-Yi Li
- Biotechnology Center in Southern Taiwan (BCST), No. 59 Siraya Blvd., Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Mei-Lin Kuo
- Biotechnology Center in Southern Taiwan (BCST), No. 59 Siraya Blvd., Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Tsugama D, Liu S, Takano T. The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots. PLANT PHYSIOLOGY 2016; 171:1355-65. [PMID: 27208231 PMCID: PMC4902608 DOI: 10.1104/pp.16.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/30/2016] [Indexed: 05/05/2023]
Abstract
VIP1 is a bZIP transcription factor in Arabidopsis (Arabidopsis thaliana). VIP1 transiently accumulates in the nucleus when cells are exposed to hypoosmotic conditions, but its physiological relevance is unclear. This is possibly because Arabidopsis has approximately 10 close homologs of VIP1 and they function redundantly. To examine their physiological roles, transgenic plants overexpressing a repression domain-fused form of VIP1 (VIP1-SRDXox plants), in which the gene activation mediated by VIP1 is expected to be repressed, were generated. Because hypoosmotic stress can mimic mechanical stimuli (e.g. touch), the touch-induced root-waving phenotypes and gene expression patterns in those transgenic plants were examined. VIP1-SRDXox plants exhibited more severe root waving and lower expression of putative VIP1 target genes. The expression of the VIP1-green fluorescent protein (GFP) fusion protein partially suppressed the VIP1-SRDX-induced increase in root waving when expressed in the VIP1-SRDXox plants. These results suggest that VIP1 can suppress the touch-induced root waving. The VIP1-SRDX-induced increase in root waving was also suppressed when the synthetic auxin 2,4-dichlorophenoxy acetic acid or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, which is known to activate auxin biosynthesis, was present in the growth medium. Root cap cells with the auxin marker DR5rev::GFP were more abundant in the VIP1-SRDXox background than in the wild-type background. Auxin is transported via the root cap, and the conditions of outermost root cap layers were abnormal in VIP1-SRDXox plants. These results raise the possibility that VIP1 influences structures of the root cap and thereby regulates the local auxin responses in roots.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido 060-8589, Japan (D.T.);Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan (D.T., T.T.); andAlkali Soil Natural Environmental Science Center, Northeast Forestry University, Xiangfang District, Harbin 150040, People's Republic of China (S.L.)
| | - Shenkui Liu
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido 060-8589, Japan (D.T.);Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan (D.T., T.T.); andAlkali Soil Natural Environmental Science Center, Northeast Forestry University, Xiangfang District, Harbin 150040, People's Republic of China (S.L.)
| | - Tetsuo Takano
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido 060-8589, Japan (D.T.);Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan (D.T., T.T.); andAlkali Soil Natural Environmental Science Center, Northeast Forestry University, Xiangfang District, Harbin 150040, People's Republic of China (S.L.)
| |
Collapse
|
19
|
Hedayati V, Mousavi A, Razavi K, Cultrera N, Alagna F, Mariotti R, Hosseini-Mazinani M, Baldoni L. Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings. PLANT CELL REPORTS 2015; 34:1151-64. [PMID: 25749737 DOI: 10.1007/s00299-015-1774-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 05/05/2023]
Abstract
Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.
Collapse
Affiliation(s)
- Vahideh Hedayati
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
20
|
DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci U S A 2014; 111:E3571-80. [PMID: 25114251 DOI: 10.1073/pnas.1403851111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
Collapse
|
21
|
Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Phosphorylation-independent binding of 14-3-3 to NtCDPK1 by a new mode. PLANT SIGNALING & BEHAVIOR 2014; 9:e977721. [PMID: 25517861 PMCID: PMC4623332 DOI: 10.4161/15592324.2014.977721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 05/25/2023]
Abstract
14-3-3 pproteins play essential roles in diverse cellular processes through the direct binding to target proteins. REPRESSION OF SHOOT GROWTH (RSG) is a tobacco (Nicotiana tabacum) transcription factor that is involved in gibberellin (GA) feedback regulation. The 14-3-3 proteins bind to RSG depending on the RSG phosphorylation of Ser-114 and negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The Ca(2+)-dependent protein kinase NtCDPK1 was identified as an RSG kinase that promotes 14-3-3 binding of RSG by phosphorylation of RSG. 14-3-3 weakly binds to NtCDPK1 by a new mode. The autophosphorylation of NtCDPK1 was necessary for the formation of the binding between NtCDPK1 and 14-3-3 but not for its maintenance. In this study, we showed that 14-3-3 binding to NtCDPK1 does not require the autophosphorylation when RSG was bound to NtCDPK1. These data suggest that 14-3-3 binds to an unphosphorylated motif in NtCDPK1 exposed by a conformational change in NtCDPK1 but not to a phosphate group generated by autophosphorylation of NtCDPK1.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Biological Science; Graduate School of Science; Hiroshima University; Kagamiyama; Higashi-Hiroshima, Japan
| | - Masaru Nakata
- Department of Biological Science; Graduate School of Science; Hiroshima University; Kagamiyama; Higashi-Hiroshima, Japan
| | - Jutarou Fukazawa
- Department of Biological Science; Graduate School of Science; Hiroshima University; Kagamiyama; Higashi-Hiroshima, Japan
| | - Sarahmi Ishida
- Department of Biological Sciences; Graduate School of Science; University of Tokyo; Hongo; Bunkyo-ku; Tokyo, Japan
| | - Yohsuke Takahashi
- Department of Biological Science; Graduate School of Science; Hiroshima University; Kagamiyama; Higashi-Hiroshima, Japan
| |
Collapse
|
22
|
Abstract
The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
Collapse
|