1
|
Ke X, Yoshida H, Hikosaka S, Goto E. Effect of red and blue light versus white light on fruit biomass radiation-use efficiency in dwarf tomatoes. FRONTIERS IN PLANT SCIENCE 2024; 15:1393918. [PMID: 38974982 PMCID: PMC11224545 DOI: 10.3389/fpls.2024.1393918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
The effect of the ratio of red and blue light on fruit biomass radiation-use efficiency (FBRUE) in dwarf tomatoes has not been well studied. Additionally, whether white light offers a greater advantage in improving radiation-use efficiency (RUE) and FBRUE over red and blue light under LED light remains unknown. In this study, two dwarf tomato cultivars ('Micro-Tom' and 'Rejina') were cultivated in three red-blue light treatments (monochromatic red light, red/blue light ratio = 9, and red/blue light ratio = 3) and a white light treatment at the same photosynthetic photon flux density of 300 μmol m-2 s-1. The results evidently demonstrated that the red and blue light had an effect on FBRUE by affecting RUE rather than the fraction of dry mass partitioned into fruits (Ffruits). The monochromatic red light increased specific leaf area, reflectance, and transmittance of leaves but decreased the absorptance and photosynthetic rate, ultimately resulting in the lowest RUE, which induced the lowest FBRUE among all treatments. A higher proportion of blue light (up to 25%) led to a higher photosynthetic rate, resulting in a higher RUE and FBRUE in the three red-blue light treatments. Compared with red and blue light, white light increased RUE by 0.09-0.38 g mol-1 and FBRUE by 0.14-0.25 g mol-1. Moreover, white light improved the Ffruits in 'Rejina' and Brix of fruits in 'Micro-Tom' and both effects were cultivar-specific. In conclusion, white light may have greater potential than mixed red and blue light for enhancing the dwarf tomato FBRUE during their reproductive growth stage.
Collapse
Affiliation(s)
- Xinglin Ke
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hideo Yoshida
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Shoko Hikosaka
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Chiba, Matsudo, Japan
| |
Collapse
|
2
|
Yamamoto R, Higuchi S, Iwata Y, Takeda S, Koizumi N, Mishiba KI. High β-carotene accumulation in transgenic eggplant fruits grown under artificial light. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:77-81. [PMID: 39464866 PMCID: PMC11500568 DOI: 10.5511/plantbiotechnology.23.1129b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 10/29/2024]
Abstract
Eggplant (Solanum melongena L.) fruits are known to contain few carotenoids such as β-carotene, which are abundant in congener tomato fruits. In a previous study, we introduced a fruit-specific EEF48 gene promoter-driven crtB gene encoding phytoene synthase (PSY) of Erwinia uredovora into eggplant 'Senryo No. 2'. The transgenic plants grown in a greenhouse set fruits that accumulated β-carotene (∼1.67 µg g-1FW) in the T0 and T1 generations. In the present study, we grew T1 and T2 generations of the transgenic eggplant plants in artificial climate chambers to investigate their fruit set and β-carotene accumulation. No clear difference in β-carotene accumulation was observed in the fruit of transgenic plants grown under either HID (high-intensity discharge) or LED (light-emitting diode) light, or between T1 and T2 generations. The β-carotene accumulation (8.83 µg g-1FW on average) was approximately 5 times higher than the previous results obtained from greenhouse-grown plants. However, the fruit weight and size of the T-DNA (+) plants were significantly smaller than that of their null-segregant T-DNA (-) plants derived from the same line, suggesting that β-carotene accumulation may inhibit fruit development. Considering that a part of plants grown under LED irradiation failed to set fruits or set smaller fruits than those grown under HID irradiation, the light condition in the LED chamber may not be sufficient to promote fruit development. The present results are expected to provide valuable information for the selection of transgenic eggplants with high β-carotene content in fruit under artificial lighting.
Collapse
Affiliation(s)
- Ryohei Yamamoto
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Seigo Higuchi
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Yuji Iwata
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Satomi Takeda
- Graduate School of Sciences, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kei-ichiro Mishiba
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
3
|
Ke X, Yoshida H, Hikosaka S, Goto E. Photosynthetic photon flux density affects fruit biomass radiation-use efficiency of dwarf tomatoes under LED light at the reproductive growth stage. FRONTIERS IN PLANT SCIENCE 2023; 14:1076423. [PMID: 36923121 PMCID: PMC10009779 DOI: 10.3389/fpls.2023.1076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to analyze the effects of photosynthetic photon flux density (PPFD) on fruit biomass radiation-use efficiency (FBRUE) of the dwarf tomato cultivar 'Micro-Tom' and to determine the suitable PPFD for enhancing the FBRUE under LED light at the reproductive growth stage. We performed four PPFD treatments under white LED light: 200, 300, 500, and 700 μmol m-2 s-1. The results demonstrated that a higher PPFD led to higher fresh and dry weights of the plants and lowered specific leaf areas. FBRUE and radiation-use efficiency (RUE) were the highest under 300 μmol m-2 s-1. FBRUE decreased by 37.7% because RUE decreased by 25% and the fraction of dry mass portioned to fruits decreased by 16.9% when PPFD increased from 300 to 700 μmol m-2 s-1. Higher PPFD (500 and 700 μmol m-2 s-1) led to lower RUE owing to lower light absorptance, photosynthetic quantum yield, and photosynthetic capacity of the leaves. High source strength and low fruit sink strength at the late reproductive growth stage led to a low fraction of dry mass portioned to fruits. In conclusion, 300 µmol m-2 s-1 PPFD is recommended for 'Micro-Tom' cultivation to improve the FBRUE at the reproductive growth stage.
Collapse
Affiliation(s)
- Xinglin Ke
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Hideo Yoshida
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shoko Hikosaka
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Yokoyama A, Oiwa S, Matsui T, Sawada K, Tasaka Y, Matsumura T. Energy-efficient production of vaccine protein against porcine edema disease from transgenic lettuce (Lactuca sativa L.). Sci Rep 2022; 12:15951. [PMID: 36153428 PMCID: PMC9509315 DOI: 10.1038/s41598-022-19491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
The development of functional protein production systems using transgenic plants as hosts has been rapidly progressing in recent years. Lettuce (Lactuca sativa L.) has been studied as one such host, and it has been reported that the biomass of lettuce per area and target protein expression level can be increased by optimizing the cultivation conditions. Therefore, we investigated methods to minimize the input light energy per target protein to reduce production costs. Herein, we examined the yield of a nontoxic B subunit of Stx2e (Stx2eB) from transgenic lettuce under various cultivation conditions. Stx2eB acts as a vaccine against swine edema disease. The effects of photon flux densities (PPFDs), photoperiod, and light source on Stx2eB production were examined and the findings suggested that 400 μmol m-2 s-1, 24 h, and white LED lamps, respectively, contributed to energy-efficient Stx2eB production. In addition, Stx2eB was produced 1.4 times more efficiently per unit area time using a high plant density (228.5 plants m-2) than a common density (30.4 plants m-2). The findings of the present study can facilitate the development of energy-efficient and low-cost production processes for vaccine protein production, considering temporal and spatial perspectives.
Collapse
Affiliation(s)
- Asuka Yokoyama
- Innovation Strategy and Carbon Neutral Transformation Department, Idemitsu Kosan Co., Ltd., 1-2-1, Otemachi, Chiyoda-Ku, Tokyo, Japan.
| | - Seika Oiwa
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Yasushi Tasaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan
| |
Collapse
|
5
|
Improvement of recombinant miraculin production in transgenic tomato by crossbreeding-based genetic background modification. Transgenic Res 2022; 31:567-578. [PMID: 35974134 DOI: 10.1007/s11248-022-00320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
An important optimization step in plant-based recombinant protein production systems is the selection of an appropriate cultivar after a potential host has been determined. Previously, we have shown that transgenic tomatoes of the variety 'Micro-Tom' accumulate incredibly high levels of miraculin (MIR) due to the introduction of MIR gene controlled by a CaMV35S promoter and a heat-shock protein terminator. However, 'Micro-Tom' is unsuitable for commercial production of MIR as it is a dwarf cultivar characterized by small-sized fruit and poor yield. Here, we used the crossbreeding approach to transfer the high MIR accumulation trait of transgenic 'Micro-Tom' tomatoes to 'Natsunokoma' and 'Aichi First', two commercial cultivars producing medium and large fruit sizes, respectively. Fruits of the resultant crossbred lines were larger (~ 95 times), but their miraculin accumulation levels (~ 1,062 μg/g fresh mass) were comparable to the donor cultivar, indicating that the high miraculin accumulation trait was preserved regardless of fruit size or cultivar. Further, the transferred trait resulted in a 3-4 fold increase in overall miraculin production than that of the previously reported line 5B. These findings demonstrate the effectiveness of crossbreeding in improving MIR production in tomatoes and could pave the way for a more efficient production of recombinant proteins in other plants.
Collapse
|
6
|
Optimization of Photosynthetic Photon Flux Density and Light Quality for Increasing Radiation-Use Efficiency in Dwarf Tomato under LED Light at the Vegetative Growth Stage. PLANTS 2021; 11:plants11010121. [PMID: 35009123 PMCID: PMC8796024 DOI: 10.3390/plants11010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
Dwarf tomatoes are advantageous when cultivated in a plant factory with artificial light because they can grow well in a small volume. However, few studies have been reported on cultivation in a controlled environment for improving productivity. We performed two experiments to investigate the effects of photosynthetic photon flux density (PPFD; 300, 500, and 700 μmol m−2 s−1) with white light and light quality (white, R3B1 (red:blue = 3:1), and R9B1) with a PPFD of 300 μmol m−2 s−1 on plant growth and radiation-use efficiency (RUE) of a dwarf tomato cultivar (‘Micro-Tom’) at the vegetative growth stage. The results clearly demonstrated that higher PPFD leads to higher dry mass and lower specific leaf area, but it does not affect the stem length. Furthermore, high PPFD increased the photosynthetic rate (Pn) of individual leaves but decreased RUE. A higher blue light proportion inhibited dry mass production with the same intercepted light because the leaves under high blue light proportion had low Pn and photosynthetic light-use efficiency. In conclusion, 300 μmol m−2 s−1 PPFD and R9B1 are the recommended proper PPFD and light quality, respectively, for ‘Micro-Tom’ cultivation at the vegetative growth stage to increase the RUE.
Collapse
|
7
|
Ono A, Hiwasa-Tanase K, Nonaka S, Ezura H. The accumulation of recombinant miraculin is independent of fruit size in tomato. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:161-165. [PMID: 34177337 PMCID: PMC8215467 DOI: 10.5511/plantbiotechnology.20.0904a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 06/13/2023]
Abstract
The taste-modifying protein miraculin (MIR) has received increasing interest as a new low-calorie sweetener. In our previous study using the tomato variety 'Micro-Tom,' it was shown that in transgenic tomatoes in which MIR was expressed by using the cauliflower mosaic virus 35S promoter (p35S) and a heat shock protein terminator (tHSP) cassette (p35S-MIR-tHSP), higher levels of miraculin accumulated than when MIR was driven by the nopaline synthase terminator (tNOS) cassette (p35S-MIR-tNOS). 'Micro-Tom' is a dwarf tomato used for research and shows a low yield. To achieve high productivity of MIR, it is essential to improve the MIR accumulation potential by using high-yielding cultivars. In this study, we evaluate whether the high MIR accumulation trait mediated by the tHSP appears even when fruit size increases. A line in which the p35S-MIR-tHSP cassette was introduced into a high-yielding variety was bred by backcrossing. The line homozygous for MIR showed higher accumulation of MIR than the heterozygous line. Despite large differences in fruit size, the MIR level in the backcross line was similar to that in the p35S-MIR-tHSP line (background 'Micro-Tom'). It was approximately 3.1 times and 4.0 times higher than those in miracle fruits and the p35S-MIR-tNOS tomato line 5B ('Moneymaker' background, which exhibits the highest miraculin productivity achieved thus far), respectively. These results demonstrate that the high MIR accumulation trait mediated by the tHSP appears even when fruit size is increased.
Collapse
Affiliation(s)
- Azusa Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kyoko Hiwasa-Tanase
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoko Nonaka
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
8
|
Folta KM. Breeding new varieties for controlled environments. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:6-12. [PMID: 0 DOI: 10.1111/plb.12914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 05/15/2023]
Abstract
Agricultural production in controlled environments is increasingly feasible, and may play an important role in providing nutrition and choice to growing urban centres. New technologies in lighting, ventilation, robotics and irrigation are just a few of the innovations that enable production of high-value specialty crops outside of a traditional field setting. However, despite all of the advances in the hardware within the plant factory operation, innovation of the most complex machine has been neglected - the plant itself. Indoor agricultural operations typically rely on legacy varieties, plants selected and bred for field conditions. In the field, phenotypic stability is paramount, as production must be consistent in an unpredictable and changing environment. However, the controlled environment affords focus on different breeding priorities as environmental flux, pests, pathogens and post-harvest quality are less formidable barriers to production. On the contrary, breeding for controlled environments shifts the focus to a completely different set of plant traits, such as rapid growth, performance in low light environments and active manipulation of plant stature. Instead of breeding for phenotypic stability, plants may be bred to maximise genetic plasticity, allowing specific traits to be presented as a function of the quality of the ambient light spectrum. In this scenario plant varieties may be grown with optimal size, supporting a focus on consumer traits like flavour or accumulation of health-related compounds. Gene editing may be a central technology in the production of designer plants for controlled environments. This review considers the opportunity for breeding for controlled environments, with a focus on a revision of priorities for controlled-environment breeders.
Collapse
Affiliation(s)
- K M Folta
- Horticultural Sciences Department, 1251 Fifield Hall, University of Florida, Gainesville, FL, USA
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Li K, Li Z, Yang Q. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes. FRONTIERS IN PLANT SCIENCE 2016; 7:92. [PMID: 26904062 PMCID: PMC4746466 DOI: 10.3389/fpls.2016.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/18/2016] [Indexed: 05/28/2023]
Abstract
The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting.
Collapse
Affiliation(s)
- Kun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural ScienceBeijing, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of AgricultureBeijing, China
| | - Zhipeng Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural ScienceBeijing, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of AgricultureBeijing, China
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural ScienceBeijing, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of AgricultureBeijing, China
| |
Collapse
|
10
|
Gerszberg A, Hnatuszko-Konka K, Kowalczyk T. In vitro regeneration of eight cultivars of Brassica oleracea var. capitata. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2015; 51:80-87. [PMID: 25774081 DOI: 10.1007/s11240-014-0664-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 09/08/2014] [Indexed: 05/22/2023]
Abstract
Eight cultivars of Brassica oleracea var. capitata and two types of explant (hypocotyl and cotyledon) were tested for their potential to regenerate under in vitro conditions. Hypocotyl and cotyledon explants from 10-d-old seedlings were subcultured onto different callus induction media based on Murashige and Skoog (MS) basal medium supplemented with 1% sucrose and different concentrations and combinations of plant growth regulators. Hypocotyl explants were found to be more suitable for callus induction and organogenesis than cotyledon explants for all cultivars tested. In terms of regeneration, the cv. 'Amager' was significantly more responsive than the other cultivars tested and produced the highest number of shoots/buds per explant. Moreover, among five types of media tested, MS + 8.88 μM 6-benzyloaminopurine (BAP) + 0.53 μM α-naphthylacetic acid (NAA) was most effective for shoot regeneration. Rooting was achieved within 10-15 d on all the rooting media, but MS medium containing 5.37 μM NAA produced the maximum number of strong and healthy roots. Plantlets (95%) were subsequently established in the greenhouse, and no phenotypic variations were observed among regenerated plants. This plant regeneration protocol could be suitable for a wide range of cabbage cultivars.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Genetics Plant Molecular Biology and Biotechnology, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Genetics Plant Molecular Biology and Biotechnology, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Genetics Plant Molecular Biology and Biotechnology, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| |
Collapse
|
11
|
Hiwasa-Tanase K, Hirai T, Kato K, Duhita N, Ezura H. From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants. PLANT CELL REPORTS 2012; 31:513-25. [PMID: 22160133 DOI: 10.1007/s00299-011-1197-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 05/05/2023]
Abstract
The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.
Collapse
Affiliation(s)
- Kyoko Hiwasa-Tanase
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
12
|
Sakuraba Y, Balazadeh S, Tanaka R, Mueller-Roeber B, Tanaka A. Overproduction of chl B retards senescence through transcriptional reprogramming in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:505-517. [PMID: 22285931 DOI: 10.1093/pcp/pcs006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Leaf senescence is a developmentally and environmentally regulated process which includes global changes in gene expression. Using Arabidopsis as a model, we modified Chl arrangement in photosystems by overexpressing the catalytic domain (the C domain) of chlorophyllide a oxygenase (CAO) fused with the linker domain (the B domain) of CAO and green fluorescent protein (GFP). In these plants (referred to as the BCG plants for the B and C domains of CAO and GFP), the Chl a/b ratio was drastically decreased and Chl b was incorporated into core antenna complexes. The BCG plants exhibited a significant delay of both developmental and dark-induced leaf senescence. The photosynthetic apparatus, CO(2) fixation enzymes and the chloroplast structure were lost in wild-type plants during senescence, while BCG plants retained them longer than the wild type. Large-scale quantitative real-time PCR analyses of 1,880 transcription factor (TF) genes showed that 241 TFs are differentially expressed between BCG plants and wild-type plants at senescence, ∼40% of which are known senescence-associated genes (SAGs). Expression profiling also revealed the down-regulation of a large number of additional non-TF SAGs. In contrast, genes involved in photosynthesis were up-regulated, while those encoding Chl degradation enzymes were down-regulated in BCG plants. These results demonstrate that alteration of pigment composition in the photosynthetic apparatus retards senescence through transcriptional reprogramming.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819 Japan
| | | | | | | | | |
Collapse
|