1
|
Ashikari M, Nagai K, Bailey-Serres J. Surviving floods: Escape and quiescence strategies of rice coping with submergence. PLANT PHYSIOLOGY 2025; 197:kiaf029. [PMID: 39880379 DOI: 10.1093/plphys/kiaf029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 01/31/2025]
Abstract
Historical and recent insights into the molecular mechanisms of escape and quiescence strategies employed by rice to survive flooding.
Collapse
Affiliation(s)
- Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Plant Stress Resilience, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
2
|
Yasin MU, Liu Y, Wu M, Chen N, Gan Y. Regulatory mechanisms of trichome and root hair development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 115:14. [PMID: 39739145 DOI: 10.1007/s11103-024-01534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/03/2024] [Indexed: 01/02/2025]
Abstract
In plants, cell fate determination is regulated temporally and spatially via a complex of signals consisting of a large number of genetic interactions. Trichome and root hair formation are excellent models for studying cell fate determination in plants. Nowadays, the mysteries underlying the reprograming of trichome and root hair and how nature programs the development of trichome and root hair is an interesting topic in the scientific field. In this review, we discuss the spatial and temporal regulatory networks and cross-talk between phytohormones and epigenetic modifications in the regulation of trichome and root hair initiation in Arabidopsis. The discussion in this review provides a good model for understanding the regulatory mechanism of cell differentiation processes in plants. Moreover, we summarize recent advances in the modulation of trichome and root hair initiation in plants and compare different regulatory mechanisms to help illuminate key goals for future research.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, Shandong, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Nana Chen
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Liu J, Meng F, Jiang A, Hou X, Liu Q, Fan H, Chen M. Exogenous 6-BA enhances salt tolerance of Limonium bicolor by increasing the number of salt glands. PLANT CELL REPORTS 2023; 43:12. [PMID: 38135797 DOI: 10.1007/s00299-023-03104-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE Exogenous 6-BA can increase endogenous hormone content, improve photosynthesis, decrease Na+ by increasing leaf salt gland density and salt secretion ability, and reduce ROS content so that it can promote L. bicolor growth. 6-benzyl adenine (6-BA) is an artificial cytokinin and has been widely applied to improving plant adaptation to stress. However, it is rarely reported that 6-BA alleviates salt damage of halophytes. In this paper, we treated Limonium bicolor seedlings, a recretohalophyte with high medicinal and ornamental values, with 300 mM NaCl and different concentrations of 6-BA (0.5, 1.0, and 1.5 mg/L) and measured plant growth, physiological index, the density of salt gland, and the salt secretion ability of leaves. The results showed that exogenous applications 1.0 mg/L 6-BA significantly improved plant growth and photosynthesis, increased cytokinin and auxins contents, K+ and organic soluble matter contents, the activities of SOD, CAT, APX, and POD, and decreased Na+, H2O2, and O2- contents compared to that treated with 300 mM NaCl. Further research showed that exogenous 6-BA significantly increased the density of salt gland and the salt secretion ability of leaves by upregulating the expression of the salt gland developmental genes, therefore, can secrete more excess Na+, and thus reduces the Na+ concentration in leaves, which can alleviate Na+ damage to the species. In all, exogenous 1.0 mg/L 6-BA can increase endogenous hormone, improve photosynthesis, decrease Na+ by increasing secretion ability, and reduce ROS content of L. bicolor so that it can improve the growth. These results above systematically prove the new role of 6-BA in salt tolerance of L. bicolor.
Collapse
Affiliation(s)
- Jing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Fanxia Meng
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Aijuan Jiang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xueting Hou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Qing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
- Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
4
|
Wang Y, Wang G, Lin D, Luo Q, Xu W, Qu S. QTL mapping and stability analysis of trichome density in zucchini ( Cucurbita pepo L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1232154. [PMID: 37636121 PMCID: PMC10457680 DOI: 10.3389/fpls.2023.1232154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Trichomes provide an excellent model for studying cell differentiation and proliferation. The aboveground tissues of plants with long dense trichomes (LDTs) can cause skin itching in people working in a zucchini field, in which management, pollination, and fruit harvesting are difficult. In this study, an F2 population was constructed with the LDT inbred line "16" and the sparse micro trichome (SMT) inbred line "63" for QTL analysis of type I and II trichome density. Two QTLs were identified on chromosomes 3 and 15 using the QTL-seq method. Additionally, 191 InDel markers were developed on 20 chromosomes, a genetic map was constructed for QTL mapping, and three QTLs were identified on chromosomes 3, 6, and 15. Two QTLs, CpTD3.1 and CpTD15.1, were identified in both QTL-seq and genetic map-based QTL analyses, and CpTD15.1 was the major-effect QTL. The stability of CpTD3.1 and CpTD15.1 was confirmed using data from F2 plants under different environmental conditions. The major-effect QTL CpTD15.1 was located between markers chr15-4991349 and chr15-5766791, with a physical distance of 775.44 kb, and explained 12.71%-29.37% of the phenotypic variation observed in the three environments. CpTD3.1 was located between markers chr3-218350 and chr3-2891236, in a region with a physical distance of 2,672.89 kb, and explained 5.00%-10.64% of the phenotypic variation observed in the three environments. The functional annotations of the genes within the CpTD15.1 region were predicted, and five genes encoding transcription factors regulating trichome development were selected. Cp4.1LG15g04400 encoded zinc finger protein (ZFP) and harbored nonsynonymous SNPs in the conserved ring finger domain between the two parental lines. There were significant differences in Cp4.1LG15g04400 expression between "16" and "63", and a similar pattern was found between germplasm resources of LDT lines and SMT lines. It was presumed that Cp4.1LG15g04400 might regulate trichome density in zucchini. These results lay a foundation for better understanding the density of multicellular nonglandular trichomes and the regulatory mechanism of trichome density in zucchini.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Dongjuan Lin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Qinfen Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Gan Y, Liu Y, Yang S, Khan AR. TOE1/TOE2 Interacting with GIS to Control Trichome Development in Arabidopsis. Int J Mol Sci 2023; 24:ijms24076698. [PMID: 37047669 PMCID: PMC10095060 DOI: 10.3390/ijms24076698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Trichomes are common appendages originating and projecting from the epidermal cell layer of most terrestrial plants. They act as a first line of defense and protect plants against different types of adverse environmental factors. GL3/EGL3-GL1-TTG1 transcriptional activator complex and GIS family genes regulate trichome initiation through gibberellin (GA) signaling in Arabidopsis. Here, our novel findings show that TOE1/TOE2, which are involved in developmental timing, control the initiation of the main-stem inflorescence trichome in Arabidopsis. Phenotype analysis showed that the 35S:TOE1 transgenic line increases trichome density of the main-stem inflorescence in Arabidopsis, while 35S:miR172b, toe1, toe2 and toe1toe2 have the opposite phenotypes. Quantitative RT-PCR results showed that TOE1/TOE2 positively regulate the expression of GL3 and GL1. In addition, protein-protein interaction analysis experiments further demonstrated that TOE1/TOE2 interacting with GIS/GIS2/ZFP8 regulate trichome initiation in Arabidopsis. Furthermore, phenotype and expression analysis also demonstrated that TOE1 is involved in GA signaling to control trichome initiation in Arabidopsis. Taken together, our results suggest that TOE1/TOE2 interact with GIS to control trichome development in Arabidopsis. This report could provide valuable information for further study of the interaction of TOE1/TOE2 with GIS in controlling trichome development in plants.
Collapse
Affiliation(s)
- Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Lv Z, Li J, Qiu S, Qi F, Su H, Bu Q, Jiang R, Tang K, Zhang L, Chen W. The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in Artemisia annua. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1212-1228. [PMID: 35355415 DOI: 10.1111/jipb.13258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The important antimalarial drug artemisinin is biosynthesized and stored in Artemisia annua glandular trichomes and the artemisinin content correlates with trichome density; however, the factors affecting trichome development are largely unknown. Here, we demonstrate that the A. annua R2R3 MYB transcription factor TrichomeLess Regulator 1 (TLR1) negatively regulates trichome development. In A. annua, TLR1 overexpression lines had 44.7%-64.0% lower trichome density and 11.5%-49.4% lower artemisinin contents and TLR1-RNAi lines had 33%-93.3% higher trichome density and 32.2%-84.0% higher artemisinin contents compared with non-transgenic controls. TLR1 also negatively regulates the expression of anthocyanin biosynthetic pathway genes in A. annua. When heterologously expressed in Arabidopsis thaliana, TLR1 interacts with GLABROUS3a, positive regulator of trichome development, and represses trichome development. Yeast two-hybrid and pull-down assays indicated that TLR1 interacts with the WUSCHEL homeobox (WOX) protein AaWOX1, which interacts with the LEAFY-like transcription factor TLR2. TLR2 overexpression in Arabidopsis and A. annua showed that TLR2 reduces trichome development by reducing gibberellin levels. Furthermore, artemisinin contents were 19%-43% lower in TLR2-overexpressing A. annua plants compared to controls. These data indicate that TLR1 and TLR2 negatively regulate trichome density by lowering gibberellin levels and may enable approaches to enhance artemisinin yields.
Collapse
Affiliation(s)
- Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - JinXing Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Qi
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Hang Su
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qitao Bu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
8
|
Liu Y, Yu W, Wu B, Li J. Patterns of genomic divergence in sympatric and allopatric speciation of three Mihoutao ( Actinidia) species. HORTICULTURE RESEARCH 2022; 9:uhac054. [PMID: 35591930 PMCID: PMC9113235 DOI: 10.1093/hr/uhac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/19/2022] [Indexed: 06/15/2023]
Abstract
Isolation by geographic distance is involved in the formation of potential genomic islands and the divergence of genomes, which often result in speciation. The mechanisms of sympatric and allopatric speciation associated with geographic distance remain a topic of interest to evolutionary biologists. Here, we examined genomic divergence in three Actinidia species from large-scale sympatric and allopatric regions. Genome sequence data revealed that hexaploid Actinidia deliciosa originated from Actinidia chinensis and supported the speciation-with-gene-flow model in sympatric regions. The common ancestor of Actinidia setosa and A. deliciosa migrated from the mainland to the Taiwan Island ~2.91 Mya and formed A. setosa ~0.92 Mya, and the speciation of A. setosa is consistent with the divergence-after-speciation model with selective sweeps. Geographic isolation resulted in population contraction and accelerated the process of lineage sorting and speciation due to natural selection. Genomic islands contained genes associated with organ development, local adaptation, and stress resistance, indicating selective sweeps on a specific set of traits. Our results highlight the patterns of genomic divergence in sympatric and allopatric speciation, with the mediation of geographic isolation in the formation of genomic islands during Actinidia speciation.
Collapse
Affiliation(s)
| | - Wenhao Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment,
Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Baofeng Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment,
Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment,
Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| |
Collapse
|
9
|
Yang S, Wang Y, Zhu H, Zhang M, Wang D, Xie K, Fan P, Dou J, Liu D, Liu B, Chen C, Yan Y, Zhao L, Yang L. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. THE NEW PHYTOLOGIST 2022; 233:2643-2658. [PMID: 35037268 DOI: 10.1111/nph.17967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important trait in cucumber, affecting not only commercial quality, but also fruit smoothness, transportation and storage. Spine size is determined by a multi-cellular base. However, the molecular mechanism underlying the regulation of cucumber spine base remains largely unknown. Here, we report map-based cloning and characterization of a spine base size 1 (SBS1) gene, encoding a C2H2 zinc-finger transcription factor. Near-isogenic lines of cucumber were used to map, identify and quantify cucumber spine base size 1 (CsSBS1). Yeast-hybrid, bimolecular fluorescence complementation (BiFC), co-immunoprecipitation (Co-IP) and RNA-sequencing assays were used to explore the molecular mechanism of CsSBS1 in regulating spine base size development. CsSBS1 was specifically expressed in cucumber ovaries with particularly high expression in fruit spines. Overexpression of CsSBS1 resulted in large fruit spine base, while RNA-interference silencing of CsSBS1 inhibited the expansion of fruit spine base. Sequence analysis of natural cucumber accessions revealed that CsSBS1 was lost in small spine base accessions, resulting from a 4895 bp fragment deletion in CsSBS1 locus. CsSBS1 can form a trimeric complex with two positive regulators CsTTG1 and CsGL1 to regulate spine base development through ethylene signaling. A novel regulator network is proposed that the CsGL1/CsSBS1/CsTTG1 complex plays a significant role in regulating spine base formation and size, which offers a strategy for cucumber breeders to develop smooth fruit.
Collapse
Affiliation(s)
- Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dengke Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kuixi Xie
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Pengfei Fan
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Junling Dou
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Bin Liu
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain
| | - Chunhua Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijun Zhao
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| |
Collapse
|
10
|
Zheng F, Cui L, Li C, Xie Q, Ai G, Wang J, Yu H, Wang T, Zhang J, Ye Z, Yang C. Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:228-244. [PMID: 34499170 DOI: 10.1093/jxb/erab417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Trichomes are specialized glandular or non-glandular structures that provide physical or chemical protection against insect and pathogen attack. Trichomes in Arabidopsis have been extensively studied as typical non-glandular structures. By contrast, the molecular mechanism underlying glandular trichome formation and elongation remains largely unknown. We previously demonstrated that Hair is essential for the formation of type I and type VI trichomes. Here, we found that overexpression of Hair increased the density and length of tomato trichomes. Biochemical assays revealed that Hair physically interacts with its close homolog SlZFP8-like (SlZFP8L), and SlZFP8L also directly interacts with Woolly. SlZFP8L-overexpressing plants showed increased trichome density and length. We further found that the expression of SlZFP6, which encodes a C2H2 zinc finger protein, is positively regulated by Hair. Using chromatin immunoprecipitation, yeast one-hybrid, and dual-luciferase assays we identified that SlZFP6 is a direct target of Hair. Similar to Hair and SlZFP8L, the overexpression of SlZFP6 also increased the density and length of tomato trichomes. Taken together, our results suggest that Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato.
Collapse
Affiliation(s)
- Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Long Cui
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qingmin Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junqiang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
11
|
Han G, Li Y, Qiao Z, Wang C, Zhao Y, Guo J, Chen M, Wang B. Advances in the Regulation of Epidermal Cell Development by C2H2 Zinc Finger Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:754512. [PMID: 34630497 PMCID: PMC8497795 DOI: 10.3389/fpls.2021.754512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 05/31/2023]
Abstract
Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.
Collapse
|
12
|
Huang J, Zhang Q, He Y, Liu W, Xu Y, Liu K, Xian F, Li J, Hu J. Genome-Wide Identification, Expansion Mechanism and Expression Profiling Analysis of GLABROUS1 Enhancer-Binding Protein (GeBP) Gene Family in Gramineae Crops. Int J Mol Sci 2021; 22:ijms22168758. [PMID: 34445464 PMCID: PMC8395763 DOI: 10.3390/ijms22168758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
The GLABROUS1 enhancer-binding protein (GeBP) gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the GeBP gene family is available in the case of the Gramineae crops. Here, 125 GeBP genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis. Evolutionary analyses showed that whole genome duplication (WGD) and segmental duplication play important roles in the expansion of the GeBP gene family. The various gene structures and protein motifs revealed that the GeBP genes play diverse functions in plants. In addition, the expression profile analysis of the GeBP genes showed that 13 genes expressed in all tested organs and stages of development in rice, with especially high levels of expression in the leaf, palea, and lemma. Furthermore, the hormone- and metal-induced expression patterns showed that the expression levels of most genes were affected by various biotic stresses, implying that the GeBP genes had an important function in response to various biotic stresses. Furthermore, we confirmed that OsGeBP11 and OsGeBP12 were localized to the nucleus through transient expression in the rice protoplast, indicating that GeBPs function as transcription factors to regulate the expression of downstream genes. This study provides a comprehensive understanding of the origin and evolutionary history of the GeBP genes family in Gramineae, and will be helpful in a further functional characterization of the GeBP genes.
Collapse
Affiliation(s)
- Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Qiannan Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Yurong He
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Wei Liu
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, UK;
| | - Yanghong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200000, China;
| | - Kejia Liu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Fengjun Xian
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Junde Li
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.); (Q.Z.); (Y.H.); (K.L.); (F.X.); (J.L.)
- Correspondence:
| |
Collapse
|
13
|
Tan W, Han Q, Li Y, Yang F, Li J, Li P, Xu X, Lin H, Zhang D. A HAT1-DELLA signaling module regulates trichome initiation and leaf growth by achieving gibberellin homeostasis. THE NEW PHYTOLOGIST 2021; 231:1220-1235. [PMID: 33904185 DOI: 10.1111/nph.17422] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Trichome initiation and leaf growth are two critical developmental processes in the plant life cycle, which need to be optimized in accordance with developmental stage and immediate surroundings. To a large extent, this optimization is achieved by fine-tuning of hormonal pathways, including the gibberellin (GA) pathway. However, the mechanism by which plants control GA homeostasis to optimize these two developmental processes is unknown. Here, we report that HAT1, a HD-ZIP II transcription factor, negatively regulates GA-mediated trichome initiation and cotyledon expansion. Both protein and transcript levels indicated that HAT1 was induced by GA, while an increased abundance of HAT1, in turn, was found to suppress GA biosynthesis and signaling, thus forming a regulatory negative feedback loop that controls GA homeostasis to fine-tune trichome development and cotyledon expansion. We also found that HAT1 interacts with DELLAs, including GAI and RGA. GAI inhibits both protein stability and the binding activity of HAT1 to its target genes. Overexpression of HAT1 in della5 can completely suppress the enhanced trichome initiation and enlarged cotyledon of della5. Our findings demonstrate that HAT1 functions as a critical repressor to regulate GA-mediated trichome initiation and cotyledon growth; in addition, we describe a novel mechanism by which the plant regulates trichome initiation and cotyledon expansion through a HAT1-DELLA regulatory module under various GA concentrations.
Collapse
Affiliation(s)
- Wenrong Tan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiafeng Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Pengxu Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis [L.] O. Kuntze. Int J Mol Sci 2021; 22:ijms22084197. [PMID: 33919599 PMCID: PMC8074030 DOI: 10.3390/ijms22084197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.
Collapse
|
15
|
Cheng G, Zhang L, Wei H, Wang H, Lu J, Yu S. Transcriptome Analysis Reveals a Gene Expression Pattern Associated with Fuzz Fiber Initiation Induced by High Temperature in Gossypium barbadense. Genes (Basel) 2020; 11:genes11091066. [PMID: 32927688 PMCID: PMC7565297 DOI: 10.3390/genes11091066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022] Open
Abstract
Gossypium barbadense is an important source of natural textile fibers, as is Gossypium hirsutum. Cotton fiber development is often affected by various environmental factors, such as abnormal temperature. However, little is known about the underlying mechanisms of temperature regulating the fuzz fiber initiation. In this study, we reveal that high temperatures (HT) accelerate fiber development, improve fiber quality, and induced fuzz initiation of a thermo-sensitive G. barbadense variety L7009. It was proved that fuzz initiation was inhibited by low temperature (LT), and 4 dpa was the stage most susceptible to temperature stress during the fuzz initiation period. A total of 43,826 differentially expressed genes (DEGs) were identified through comparative transcriptome analysis. Of these, 9667 were involved in fiber development and temperature response with 901 transcription factor genes and 189 genes related to plant hormone signal transduction. Further analysis of gene expression patterns revealed that 240 genes were potentially involved in fuzz initiation induced by high temperature. Functional annotation revealed that the candidate genes related to fuzz initiation were significantly involved in the asparagine biosynthetic process, cell wall biosynthesis, and stress response. The expression trends of sixteen genes randomly selected from the RNA-seq data were almost consistent with the results of qRT-PCR. Our study revealed several potential candidate genes and pathways related to fuzz initiation induced by high temperature. This provides a new view of temperature-induced tissue and organ development in Gossypium barbadense.
Collapse
Affiliation(s)
- Gongmin Cheng
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Longyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Shuxun Yu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- Correspondence: ; Tel.: +86-188-0372-9718
| |
Collapse
|
16
|
Han G, Wei X, Dong X, Wang C, Sui N, Guo J, Yuan F, Gong Z, Li X, Zhang Y, Meng Z, Chen Z, Zhao D, Wang B. Arabidopsis ZINC FINGER PROTEIN1 Acts Downstream of GL2 to Repress Root Hair Initiation and Elongation by Directly Suppressing bHLH Genes. THE PLANT CELL 2020; 32:206-225. [PMID: 31732703 PMCID: PMC6961634 DOI: 10.1105/tpc.19.00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/08/2019] [Accepted: 11/06/2019] [Indexed: 05/18/2023]
Abstract
Cys2His2-like fold group (C2H2)-type zinc finger proteins promote root hair growth and development by regulating their target genes. However, little is known about their potential negative roles in root hair initiation and elongation. Here, we show that the C2H2-type zinc finger protein named ZINC FINGER PROTEIN1 (AtZP1), which contains an ERF-associated amphiphilic repression (EAR) motif, negatively regulates Arabidopsis (Arabidopsis thaliana) root hair initiation and elongation. Our results demonstrate that AtZP1 is highly expressed in root hairs and that AtZP1 inhibits transcriptional activity during root hair development. Plants overexpressing AtZP1 lacked root hairs, while loss-of-function mutants had longer and more numerous root hairs than the wild type. Transcriptome analysis indicated that AtZP1 downregulates genes encoding basic helix-loop-helix (bHLH) transcription factors associated with root hair cell differentiation and elongation. Mutation or deletion of the EAR motif substantially reduced the inhibitory activity of AtZP1. Chromatin immunoprecipitation assays, AtZP1:glucocorticoid receptor (GR) induction experiments, electrophoretic mobility shift assays, and yeast one-hybrid assays showed that AtZP1 directly targets the promoters of bHLH transcription factor genes, including the key root hair initiation gene ROOT HAIR DEFECTIVE6 (RHD6) and root hair elongation genes ROOT HAIR DEFECTIVE 6-LIKE 2 (RSL2) and RSL4, and suppresses root hair development. Our findings suggest that AtZP1 functions downstream of GL2 and negatively regulates root hair initiation and elongation, by suppressing RHD6, RSL4, and RSL2 transcription via the GL2/ZP1/RSL pathway.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Xiaocen Wei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Xinxiu Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, People's Republic of China
| | - Xuezhi Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin 53211
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, People's Republic of China
| |
Collapse
|
17
|
Doroshkov AV, Konstantinov DK, Afonnikov DA, Gunbin KV. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC PLANT BIOLOGY 2019; 19:53. [PMID: 30813891 PMCID: PMC6393967 DOI: 10.1186/s12870-019-1640-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The variation in structure and function of gene regulatory networks (GRNs) participating in organisms development is a key for understanding species-specific evolutionary strategies. Even the tiniest modification of developmental GRN might result in a substantial change of a complex morphogenetic pattern. Great variety of trichomes and their accessibility makes them a useful model for studying the molecular processes of cell fate determination, cell cycle control and cellular morphogenesis. Nowadays, a large number of genes regulating the morphogenesis of A. thaliana trichomes are described. Here we aimed at a study the evolution of the GRN defining the trichome formation, and evaluation its importance in other developmental processes. RESULTS In study of the evolution of trichomes formation GRN we combined classical phylogenetic analysis with information on the GRN topology and composition in major plants taxa. This approach allowed us to estimate both times of evolutionary emergence of the GRN components which are mainly proteins, and the relative rate of their molecular evolution. Various simplifications of protein structure (based on the position of amino acid residues in protein globula, secondary structure type, and structural disorder) allowed us to demonstrate the evolutionary associations between changes in protein globules and speciations/duplications events. We discussed their potential involvement in protein-protein interactions and GRN function. CONCLUSIONS We hypothesize that the divergence and/or the specialization of the trichome-forming GRN is linked to the emergence of plant taxa. Information about the structural targets of the protein evolution in the GRN may predict switching points in gene networks functioning in course of evolution. We also propose a list of candidate genes responsible for the development of trichomes in a wide range of plant species.
Collapse
Affiliation(s)
- Alexey V. Doroshkov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrii K. Konstantinov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrij A. Afonnikov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Konstantin V. Gunbin
- Novosibirsk State University (NSU), Novosibirsk, Russia
- School of Life Science, Immanuel Kant Federal Baltic University, Kaliningrad, Russia
- Center of Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
18
|
Liu Y, Liu D, Khan AR, Liu B, Wu M, Huang L, Wu J, Song G, Ni H, Ying H, Yu H, Gan Y. NbGIS regulates glandular trichome initiation through GA signaling in tobacco. PLANT MOLECULAR BIOLOGY 2018; 98:153-167. [PMID: 30171399 DOI: 10.1007/s11103-018-0772-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE A novel gene NbGIS positively regulates glandular trichome initiation through GA Signaling in tobacco. NbMYB123-like regulates glandular trichome initiation by acting downstream of NbGIS in tobacco. Glandular trichome is a specialized multicellular structure which has capability to synthesize and secrete secondary metabolites and protects plants from biotic and abiotic stresses. Our previous results revealed that a C2H2 zinc-finger transcription factor GIS and its sub-family genes act upstream of GL3/EGL3-GL1-TTG1 transcriptional activator complex to regulate trichome initiation in Arabidopsis. In this present study, we found that NbGIS could positively regulate glandular trichome development in Nicotiana benthamiana (tobacco). Our result demonstrated that 35S:NbGIS lines exhibited much higher densities of trichome on leaves, main stems, lateral branches and sepals than WT plants, while NbGIS:RNAi lines had the opposite phenotypes. Furthermore, our results also showed that NbGIS was required in response to GA signal to control glandular trichome initiation in Nicotiana benthamiana. In addition, our results also showed that NbGIS significantly influenced GA accumulation and expressions of marker genes of the GA biosynthesis, might result in the changes of growth and maturation in tobacco. Lastly, our results also showed that NbMYB123-like regulated glandular trichome initiation in tobacco by acting downstream of NbGIS. These findings provide new insights to discover the molecular mechanism by which C2H2 transcriptional factors regulates glandular trichome initiation through GA signaling pathway in tobacco.
Collapse
Affiliation(s)
- Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongdong Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ge Song
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongwei Ni
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haiming Ying
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117543, Singapore
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Vadde BVL, Challa KR, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:259-269. [PMID: 29165850 DOI: 10.1111/tpj.13772] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 05/06/2023]
Abstract
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation.
Collapse
Affiliation(s)
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
20
|
Liu Y, Liu D, Hu R, Hua C, Ali I, Zhang A, Liu B, Wu M, Huang L, Gan Y. AtGIS, a C2H2 zinc-finger transcription factor from Arabidopsis regulates glandular trichome development through GA signaling in tobacco. Biochem Biophys Res Commun 2017; 483:209-215. [PMID: 28034756 DOI: 10.1016/j.bbrc.2016.12.164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 02/01/2023]
Abstract
Glandular trichome is specialized multicellular structures that have capability to synthesize and secrete secondary metabolites and protect plants from biotic and abiotic stresses. Our previous results revealed that the C2H2 zinc-finger transcription factors (GIS) acts upstream of GL3/EGL3-GL1-TTG1transcriptional activator complex to regulate trichome initiation through GA signal in Arabidopsis. In the present study, we are reporting that ectopic expression of AtGIS could regulate glandular trichome development through GA signaling in tobacco. X-gluc staining of various organs from transgenic plants showed that AtGIS expressed mainly in the glandular trichomes. Statistical analysis demonstrated that over expression of GIS increased significantly glandular trichome production on the leaf, stem, branch, and sepal in tobacco. After PAC treatment, reduction of glandular trichome production in transgenic plants was more severe with compared to wild type plants. Furthermore, GA treatment could induce expression of AtGIS. More importantly, our results also demonstrated that overexpressed AtGIS significantly affect the main components of trichome exudates, such as significantly increase the content of nicotine, Cembratriene-4, 6-diol. Taken together, these results suggest that ectopic expression of AtGIS regulates glandular trichome development and may play a key role in compounds secretion in tobacco.
Collapse
Affiliation(s)
- Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongdong Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Changmei Hua
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Aidong Zhang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Zhang A, Liu D, Hua C, Yan A, Liu B, Wu M, Liu Y, Huang L, Ali I, Gan Y. The Arabidopsis Gene zinc finger protein 3(ZFP3) Is Involved in Salt Stress and Osmotic Stress Response. PLoS One 2016; 11:e0168367. [PMID: 27977750 PMCID: PMC5158053 DOI: 10.1371/journal.pone.0168367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022] Open
Abstract
Plants are continuously challenged by various abiotic and biotic stresses. To tide over these adversities, plants evolved intricate regulatory networks to adapt these unfavorable environments. So far, many researchers have clarified the molecular and genetic pathways involved in regulation of stress responses. However, the mechanism through which these regulatory networks operate is largely unknown. In this study, we cloned a C2H2-type zinc finger protein gene ZFP3 from Arabidopsis thaliana and investigated its function in salt and osmotic stress response. Our results showed that the expression level of ZFP3 was highly suppressed by NaCl, mannitol and sucrose. Constitutive expression of ZFP3 enhanced tolerance of plants to salt and osmotic stress while the zfp3 mutant plants displays reduced tolerance in Arabidopsis. Gain- and Loss-of-function studies of ZFP3 showed that ZFP3 significantly changes proline accumulation and chlorophyll content. Furthermore, over-expression of ZFP3 induced the expressions of stress-related gene KIN1, RD22, RD29B and AtP5CS1. These results suggest that ZFP3 is involved in salt and osmotic stress response.
Collapse
Affiliation(s)
- Aidong Zhang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongdong Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Changmei Hua
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - An Yan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
22
|
Hillung J, García-García F, Dopazo J, Cuevas JM, Elena SF. The transcriptomics of an experimentally evolved plant-virus interaction. Sci Rep 2016; 6:24901. [PMID: 27113435 PMCID: PMC4845063 DOI: 10.1038/srep24901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/07/2016] [Indexed: 01/14/2023] Open
Abstract
Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogeneous responses among ecotypes, although significant parallelism existed among lineages evolved in the same ecotype. Although genes involved in immune responses were altered upon infection, other functional groups were also pervasively over-represented, suggesting that plant resistance genes were not the only drivers of viral adaptation. Finally, the transcriptomic consequences of infection with the generalist and specialist lineages were compared. Whilst the generalist induced very similar perturbations in the transcriptomes of the different ecotypes, the perturbations induced by the specialist were divergent. Plant defense mechanisms were activated when the infecting virus was specialist but they were down-regulated when infecting with generalist.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012 València, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), 46012 València, Spain
- Functional Genomics Node, INB at CIPF, 46012 València, Spain
| | - José M. Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
| |
Collapse
|
23
|
Sun L, Zhang A, Zhou Z, Zhao Y, Yan A, Bao S, Yu H, Gan Y. GLABROUS INFLORESCENCE STEMS3 (GIS3) regulates trichome initiation and development in Arabidopsis. THE NEW PHYTOLOGIST 2015; 206:220-230. [PMID: 25640859 DOI: 10.1111/nph.13218] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/07/2014] [Indexed: 05/24/2023]
Abstract
Arabidopsis trichome formation is an excellent model for studying various aspects of plant cell development and cell differentiation. Our previous works have demonstrated that several C2H2 zinc finger proteins, including GIS, GIS2, ZFP5, ZFP6 and ZFP8, control trichome cell development through GA and cytokinin signalling in Arabidopsis. We identified a novel C2H2 zinc finger protein, GLABROUS INFLORESCENCE STEMS 3 (GIS3), which is a key factor in regulating trichome development in Arabidopsis. In comparison with wild-type plants, loss-of-function of GIS3 mutants exhibited a significantly decreased number of trichomes in cauline leaves, lateral branches, sepals of flowers, and main stems. Overexpression of GIS3 resulted in increased trichome densities in sepal, cauline leaves, lateral branches, main inflorescence stems and in the appearance of ectopic trichomes on carpels. The molecular and genetic analyses show that GIS3 acts upstream of GIS, GIS2, ZFP8 and the key trichome initiation factors, GL1 and GL3. Steroid-inducible gene expression analyses and chromatin immunoprecipitation (ChIP) experiments suggest that GIS and GIS2 are the direct target genes of GIS3.
Collapse
Affiliation(s)
- Lili Sun
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Aidong Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Zhongjing Zhou
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Rd, Hangzhou, 310058, China
| | - Yongqin Zhao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - An Yan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Shengjie Bao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore, Singapore
| | - Yinbo Gan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| |
Collapse
|
24
|
Yan A, Wu M, Zhao Y, Zhang A, Liu B, Schiefelbein J, Gan Y. Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1112-7. [PMID: 24862531 DOI: 10.1111/jipb.12221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/21/2014] [Indexed: 05/20/2023]
Abstract
Cell fate determination is a basic developmental process during the growth of multicellular organisms. Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formation is a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and bHLH transcriptional factors. Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.
Collapse
Affiliation(s)
- An Yan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Xue XY, Zhao B, Chao LM, Chen DY, Cui WR, Mao YB, Wang LJ, Chen XY. Interaction between two timing microRNAs controls trichome distribution in Arabidopsis. PLoS Genet 2014; 10:e1004266. [PMID: 24699192 PMCID: PMC3974651 DOI: 10.1371/journal.pgen.1004266] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/11/2014] [Indexed: 12/18/2022] Open
Abstract
The miR156-targeted squamosa promoter binding protein like (SPL) transcription factors function as an endogenous age cue in regulating plant phase transition and phase-dependent morphogenesis, but the control of SPL output remains poorly understood. In Arabidopsis thaliana the spatial pattern of trichome is a hallmark of phase transition and governed by SPLs. Here, by dissecting the regulatory network controlling trichome formation on stem, we show that the miR171-targeted lost meristems 1 (LOM1), LOM2 and LOM3, encoding GRAS family members previously known to maintain meristem cell polarity, are involved in regulating the SPL activity. Reduced LOM abundance by overexpression of miR171 led to decreased trichome density on stems and floral organs, and conversely, constitutive expression of the miR171-resistant LOM (rLOM) genes promoted trichome production, indicating that LOMs enhance trichome initiation at reproductive stage. Genetic analysis demonstrated LOMs shaping trichome distribution is dependent on SPLs, which positively regulate trichome repressor genes TRICHOMELESS 1 (TCL1) and TRIPTYCHON (TRY). Physical interaction between the N-terminus of LOMs and SPLs underpins the repression of SPL activity. Importantly, other growth and developmental events, such as flowering, are also modulated by LOM-SPL interaction, indicating a broad effect of the LOM-SPL interplay. Furthermore, we provide evidence that MIR171 gene expression is regulated by its targeted LOMs, forming a homeostatic feedback loop. Our data uncover an antagonistic interplay between the two timing miRNAs in controlling plant growth, phase transition and morphogenesis through direct interaction of their targets.
Collapse
Affiliation(s)
- Xue-Yi Xue
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Men Chao
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dian-Yang Chen
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Rui Cui
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Pattanaik S, Patra B, Singh SK, Yuan L. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:259. [PMID: 25018756 PMCID: PMC4071814 DOI: 10.3389/fpls.2014.00259] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/21/2014] [Indexed: 05/03/2023]
Abstract
Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors (TFs): the R2R3 MYB, basic helix-loop-helix (bHLH), and WD40 repeat (WDR) protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS), highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay controlling trichome development in Arabidopsis.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- *Correspondence: Sitakanta Pattanaik and Ling Yuan, Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA e-mail: ;
| | | | | | - Ling Yuan
- *Correspondence: Sitakanta Pattanaik and Ling Yuan, Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA e-mail: ;
| |
Collapse
|
27
|
Characterization and Fine Mapping of GLABROUS RICE 2 in Rice. J Genet Genomics 2013; 40:579-82. [DOI: 10.1016/j.jgg.2013.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 11/21/2022]
|
28
|
Zhou Z, Sun L, Zhao Y, An L, Yan A, Meng X, Gan Y. Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 198:699-708. [PMID: 23506479 DOI: 10.1111/nph.12211] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/24/2013] [Indexed: 05/20/2023]
Abstract
The Arabidopsis trichome is a model system for studying cell development, cell differentiation and the cell cycle in plants. Our previous studies have shown that the ZINC FINGER PROTEIN5 (ZFP5) controls shoot maturation and epidermal cell fate through GA signaling in Arabidopsis. We have identified a novel C2H2 zinc finger protein ZINC FINGER PROTEIN 6 (ZFP6) which plays a key role in regulating trichome development in Arabidopsis. Overexpression of ZFP6 results in ectopic trichomes on carpels and other inflorescence organs. Gain- and loss-of-function analyses have shown that the zfp6 mutant exhibits a reduced number of trichomes in sepals of flowers, cauline leaves, lateral branch and main inflorescence stems in comparison to wild-type plants. Molecular and genetic analyses suggest that ZFP6 functions upstream of GIS, GIS2, ZFP8, ZFP5 and key trichome initiation regulators GL1 and GL3.We reveal that ZFP6 and ZFP5 mediate the regulation of trichome initiation by integrating GA and cytokinin signaling in Arabidopsis. These findings provide new insights into the molecular mechanism of plant hormone control of epidermal trichome patterning through C2H2 transcriptional factors.
Collapse
Affiliation(s)
- Zhongjing Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Lili Sun
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Yongqin Zhao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Lijun An
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - An Yan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Xiaofang Meng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Yinbo Gan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| |
Collapse
|
29
|
Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, Loraine A, Kieber JJ. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:272-94. [PMID: 23524861 PMCID: PMC3641208 DOI: 10.1104/pp.113.217026] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/21/2013] [Indexed: 05/17/2023]
Abstract
Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.
Collapse
|