1
|
Ye X, Toyama T, Yinuo W, Kudo R, Stephanie S, Arisawa K, Saito Y. Inhibition of selenium supply function of selenoprotein p through adduct formation by sulforaphane. J Nutr Biochem 2025; 135:109781. [PMID: 39419192 DOI: 10.1016/j.jnutbio.2024.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Selenium is a potent nucleophile essential for selenoenzymes, such as glutathione peroxidase (also known as GSH-Px; GPX; GPx) and selenoprotein P (also known as SelP; SEPP1; SELENOP; SeP). SeP is predominantly secreted from the liver and functions as a selenium carrier in plasma. We previously found that sulforaphane (SFN), an electrophilic phytochemical, reduces SeP production in cultured hepatocytes and mouse liver, however, the effect of electrophilic modification of SeP by SFN on selenium transport and metabolism remains unclear. In the present study, we demonstrate that sulforaphane covalently modifies selenocysteine/cysteine residues of SeP using an acidic biotin PAEC5 maleimide labeling assay, which allows for focused-labeling of selenocysteine residues. Although the SFN-SeP adduct can be taken up by HepG2 cells and degraded by the lysosome, it was less effective in inducing GPx expression. Our findings indicate that SFN disrupts the selenium supply pathway through the formation of the SeP-SFN adduct.
Collapse
Affiliation(s)
- Xinying Ye
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| | - Wang Yinuo
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Runa Kudo
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Siu Stephanie
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Langlands HD, Shoemark DK, Toye AM. Modulation of Antioxidant Enzyme Expression of In Vitro Culture-Derived Reticulocytes. Antioxidants (Basel) 2024; 13:1070. [PMID: 39334729 PMCID: PMC11429491 DOI: 10.3390/antiox13091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The regulation of reactive oxygen species (ROS) in red blood cells (RBCs) is crucial for maintaining functionality and lifespan. Indeed, dysregulated ROS occurs in haematological diseases such as sickle cell disease and β-thalassaemia. In order to combat this, RBCs possess high levels of protective antioxidant enzymes. We aimed to further boost RBC antioxidant capacity by overexpressing peroxiredoxin (Prxs) and glutathione peroxidase (GPxs) enzymes. Multiple antioxidant enzyme cDNAs were individually overexpressed in expanding immortalised erythroblasts using lentivirus, including Prx isoforms 1, 2, and 6 and GPx isoforms 1 and 4. Enhancing Prx protein expression proved straightforward, but GPx overexpression required modifications. For GPx4, these modifications included adding a SECIS element in the 3'UTR, the removal of a mitochondrial-targeting sequence, and removing putative ubiquitination sites. Culture-derived reticulocytes exhibiting enhanced levels of Prx and GPx antioxidant proteins were successfully engineered, demonstrating a novel approach to improve RBC resilience to oxidative stress. Further work is needed to explore the activity of these proteins and their impact on RBC metabolism, but this strategy shows promise for improving RBC function in physiological and pathological contexts and during storage for transfusion. Enhancing the antioxidant capacity of reticulocytes has exciting promise for developing culture-derived RBCs with enhanced resistance to oxidative damage and offers new therapeutic interventions in diseases with elevated oxidative stress.
Collapse
Affiliation(s)
- Hannah D Langlands
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Parant F, Mure F, Maurin J, Beauvilliers L, Chorfa C, El Jamali C, Ohlmann T, Chavatte L. Selenium Discrepancies in Fetal Bovine Serum: Impact on Cellular Selenoprotein Expression. Int J Mol Sci 2024; 25:7261. [PMID: 39000368 PMCID: PMC11242189 DOI: 10.3390/ijms25137261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Selenium is an essential trace element in our diet, crucial for the composition of human selenoproteins, which include 25 genes such as glutathione peroxidases and thioredoxin reductases. The regulation of the selenoproteome primarily hinges on the bioavailability of selenium, either from dietary sources or cell culture media. This selenium-dependent control follows a specific hierarchy, with "housekeeping" selenoproteins maintaining constant expression while "stress-regulated" counterparts respond to selenium level fluctuations. This study investigates the variability in fetal bovine serum (FBS) selenium concentrations among commercial batches and its effects on the expression of specific stress-related cellular selenoproteins. Despite the limitations of our study, which exclusively used HEK293 cells and focused on a subset of selenoproteins, our findings highlight the substantial impact of serum selenium levels on selenoprotein expression, particularly for GPX1 and GPX4. The luciferase reporter assay emerged as a sensitive and precise method for evaluating selenium levels in cell culture environments. While not exhaustive, this analysis provides valuable insights into selenium-mediated selenoprotein regulation, emphasizing the importance of serum composition in cellular responses and offering guidance for researchers in the selenoprotein field.
Collapse
Affiliation(s)
- François Parant
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Hôpital Lyon-Sud-Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (F.P.); (J.M.); (L.B.)
| | - Fabrice Mure
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (F.M.); (C.C.); (C.E.J.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Julien Maurin
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Hôpital Lyon-Sud-Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (F.P.); (J.M.); (L.B.)
| | - Léana Beauvilliers
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Hôpital Lyon-Sud-Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (F.P.); (J.M.); (L.B.)
| | - Chaïma Chorfa
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (F.M.); (C.C.); (C.E.J.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Chaymae El Jamali
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (F.M.); (C.C.); (C.E.J.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (F.M.); (C.C.); (C.E.J.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (F.M.); (C.C.); (C.E.J.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| |
Collapse
|
4
|
Lee MY, Ojeda-Britez S, Ehrbar D, Samwer A, Begley TJ, Melendez JA. Selenoproteins and the senescence-associated epitranscriptome. Exp Biol Med (Maywood) 2022; 247:2090-2102. [PMID: 36036467 PMCID: PMC9837304 DOI: 10.1177/15353702221116592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Selenium is a naturally found trace element, which provides multiple benefits including antioxidant, anticancer, and antiaging, as well as boosting immunity. One unique feature of selenium is its incorporation as selenocysteine, a rare 21st amino acid, into selenoproteins. Twenty-five human selenoproteins have been discovered, and a majority of these serve as crucial antioxidant enzymes for redox homeostasis. Unlike other amino acids, incorporation of selenocysteine requires a distinctive UGA stop codon recoding mechanism. Although many studies correlating selenium, selenoproteins, aging, and senescence have been performed, it has not yet been explored if the upstream events regulating selenoprotein synthesis play a role in senescence-associated pathologies. The epitranscriptomic writer alkylation repair homolog 8 (ALKBH8) is critical for selenoprotein production, and its deficiency can significantly decrease levels of selenoproteins that are essential for reactive oxygen species (ROS) detoxification, and increase oxidative stress, one of the major drivers of cellular senescence. Here, we review the potential role of epitranscriptomic marks that govern selenocysteine utilization in regulating the senescence program.
Collapse
Affiliation(s)
- May Y Lee
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
- The RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Stephen Ojeda-Britez
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Dylan Ehrbar
- The RNA Institute, University at Albany, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | | | - Thomas J Begley
- The RNA Institute, University at Albany, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - J Andres Melendez
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
- The RNA Institute, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
5
|
Hussein RA, Ahmed M, Kuldyushev N, Schönherr R, Heinemann SH. Selenomethionine incorporation in proteins of individual mammalian cells determined with a genetically encoded fluorescent sensor. Free Radic Biol Med 2022; 192:191-199. [PMID: 36152916 DOI: 10.1016/j.freeradbiomed.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Selenomethionine (SeMet) randomly replaces methionine (Met) in protein translation. Because of strongly differing redox properties of SeMet and Met, SeMet mis-incorporation may have detrimental effects on protein function, possibly compromising the use of nutritional SeMet supplementation as an anti-oxidant. Studying the functional impact of SeMet in proteins on a cellular level is hampered by the lack of accurate and efficient methods for estimating the SeMet incorporation level in individual viable cells. Here we introduce and apply a method to measure the extent of SeMet incorporation in cellular proteins by utilizing a genetically encoded fluorescent methionine oxidation probe. Supplementation of SeMet in mammalian culture medium resulted in >84% incorporation of SeMet, and SeMet labeling as low as 5% was readily measured. Kinetics and extent of SeMet incorporation on the single-cell level under live-cell imaging conditions provided direct access to protein turn-over kinetics and SeMet redox properties in a cellular context. The method is furthermore suited for experiments utilizing high-throughput fluorescence microplate readers or fluorescence-activated cell sorting (FACS) analysis.
Collapse
Affiliation(s)
- Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany.
| |
Collapse
|
6
|
Hayek H, Eriani G, Allmang C. eIF3 Interacts with Selenoprotein mRNAs. Biomolecules 2022; 12:biom12091268. [PMID: 36139107 PMCID: PMC9496622 DOI: 10.3390/biom12091268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of selenoproteins requires the co-translational recoding of an in-frame UGASec codon. Interactions between the Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2) in the 3'untranslated region (3'UTR) of selenoprotein mRNAs enable the recruitment of the selenocysteine insertion machinery. Several selenoprotein mRNAs undergo unusual cap hypermethylation and are not recognized by the translation initiation factor 4E (eIF4E) but nevertheless translated. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), can selectively recruit several cellular mRNAs and plays roles in specialized translation initiation. Here, we analyzed the ability of eIF3 to interact with selenoprotein mRNAs. By combining ribonucleoprotein immunoprecipitation (RNP IP) in vivo and in vitro with cross-linking experiments, we found interactions between eIF3 and a subgroup of selenoprotein mRNAs. We showed that eIF3 preferentially interacts with hypermethylated capped selenoprotein mRNAs rather than m7G-capped mRNAs. We identified direct contacts between GPx1 mRNA and eIF3 c, d, and e subunits and showed the existence of common interaction patterns for all hypermethylated capped selenoprotein mRNAs. Differential interactions of eIF3 with selenoprotein mRNAs may trigger specific translation pathways independent of eIF4E. eIF3 could represent a new player in the translation regulation and hierarchy of selenoprotein expression.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Department of Microbiology, Immunology, and Inflammation, Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Gilbert Eriani
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Correspondence:
| |
Collapse
|
7
|
Kalimuthu K, Keerthana CK, Mohan M, Arivalagan J, Christyraj JRSS, Firer MA, Choudry MHA, Anto RJ, Lee YJ. The emerging role of selenium metabolic pathways in cancer: New therapeutic targets for cancer. J Cell Biochem 2022; 123:532-542. [PMID: 34935169 PMCID: PMC8940641 DOI: 10.1002/jcb.30196] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
Selenium (Se) is incorporated into the body via the selenocysteine (Sec) biosynthesis pathway, which is critical in the synthesis of selenoproteins, such as glutathione peroxidases and thioredoxin reductases. Selenoproteins, which play a key role in several biological processes, including ferroptosis, drug resistance, endoplasmic reticulum stress, and epigenetic processes, are guided by Se uptake. In this review, we critically analyze the molecular mechanisms of Se metabolism and its potential as a therapeutic target for cancer. Sec insertion sequence binding protein 2 (SECISBP2), which is a positive regulator for the expression of selenoproteins, would be a novel prognostic predictor and an alternate target for cancer. We highlight strategies that attempt to develop a novel Se metabolism-based approach to uncover a new metabolic drug target for cancer therapy. Moreover, we expect extensive clinical use of SECISBP2 as a specific biomarker in cancer therapy in the near future. Of note, scientists face additional challenges in conducting successful research, including investigations on anticancer peptides to target SECISBP2 intracellular protein.
Collapse
Affiliation(s)
- Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | | | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA, USA
- VAXIGEN International Research Center Private Limited, INDIA
| | - Jaison Arivalagan
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - Michael A Firer
- Dept. Chemical Engineering, Ariel University, 40700, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, 40700, Israel
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - M. Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Sonet J, Bulteau AL, Touat-Hamici Z, Mosca M, Bierla K, Mounicou S, Lobinski R, Chavatte L. Selenoproteome Expression Studied by Non-Radioactive Isotopic Selenium-Labeling in Human Cell Lines. Int J Mol Sci 2021; 22:ijms22147308. [PMID: 34298926 PMCID: PMC8306042 DOI: 10.3390/ijms22147308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Selenoproteins, in which the selenium atom is present in the rare amino acid selenocysteine, are vital components of cell homeostasis, antioxidant defense, and cell signaling in mammals. The expression of the selenoproteome, composed of 25 selenoprotein genes, is strongly controlled by the selenium status of the body, which is a corollary of selenium availability in the food diet. Here, we present an alternative strategy for the use of the radioactive 75Se isotope in order to characterize the selenoproteome regulation based on (i) the selective labeling of the cellular selenocompounds with non-radioactive selenium isotopes (76Se, 77Se) and (ii) the detection of the isotopic enrichment of the selenoproteins using size-exclusion chromatography followed by inductively coupled plasma mass spectrometry detection. The reliability of our strategy is further confirmed by western blots with distinct selenoprotein-specific antibodies. Using our strategy, we characterized the hierarchy of the selenoproteome regulation in dose–response and kinetic experiments.
Collapse
Affiliation(s)
- Jordan Sonet
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux (IPREM), Universite de Pau, CNRS, E2S, UMR 5254, Hélioparc, 64053 Pau, France; (J.S.); (M.M.); (K.B.); (S.M.); (R.L.)
| | - Anne-Laure Bulteau
- LVMH Recherche, Life Science Department, 185 Avenue de Verdun, 45800 Saint Jean de Braye, France;
| | - Zahia Touat-Hamici
- Centre de Génétique Moléculaire, CGM, CNRS, UPR3404, 91198 Gif-sur-Yvette, France;
| | - Maurine Mosca
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux (IPREM), Universite de Pau, CNRS, E2S, UMR 5254, Hélioparc, 64053 Pau, France; (J.S.); (M.M.); (K.B.); (S.M.); (R.L.)
| | - Katarzyna Bierla
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux (IPREM), Universite de Pau, CNRS, E2S, UMR 5254, Hélioparc, 64053 Pau, France; (J.S.); (M.M.); (K.B.); (S.M.); (R.L.)
| | - Sandra Mounicou
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux (IPREM), Universite de Pau, CNRS, E2S, UMR 5254, Hélioparc, 64053 Pau, France; (J.S.); (M.M.); (K.B.); (S.M.); (R.L.)
| | - Ryszard Lobinski
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux (IPREM), Universite de Pau, CNRS, E2S, UMR 5254, Hélioparc, 64053 Pau, France; (J.S.); (M.M.); (K.B.); (S.M.); (R.L.)
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 19945 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
- Correspondence: ; Tel.: +33-4-72-72-86-24
| |
Collapse
|
9
|
Jenkins T, Gouge J. Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants (Basel) 2021; 10:1030. [PMID: 34202320 PMCID: PMC8300779 DOI: 10.3390/antiox10071030] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in cell proliferation and differentiation. They are also by-products of aerobic living conditions. Their inherent reactivity poses a threat for all cellular components. Cells have, therefore, evolved complex pathways to sense and maintain the redox balance. Among them, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial role: it is activated under oxidative conditions and is responsible for the expression of the detoxification machinery and antiapoptotic factors. It is, however, a double edge sword: whilst it prevents tumorigenesis in healthy cells, its constitutive activation in cancer promotes tumour growth and metastasis. In addition, recent data have highlighted the importance of Nrf2 in evading programmed cell death. In this review, we will focus on the activation of the Nrf2 pathway in the cytoplasm, the molecular basis underlying Nrf2 binding to the DNA, and the dysregulation of this pathway in cancer, before discussing how Nrf2 contributes to the prevention of apoptosis and ferroptosis in cancer and how it is likely to be linked to detoxifying enzymes containing selenium.
Collapse
Affiliation(s)
- Tabitha Jenkins
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
10
|
Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr 2021; 8:685317. [PMID: 34150830 PMCID: PMC8211732 DOI: 10.3389/fnut.2021.685317] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.
Collapse
Affiliation(s)
| | - Karine Cavalcanti Maurício Sena-Evangelista
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Francisco Irochima Pinheiro
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Ricardo Ney Cobucci
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
11
|
Taguchi T, Kurata M, Onishi I, Kinowaki Y, Sato Y, Shiono S, Ishibashi S, Ikeda M, Yamamoto M, Kitagawa M, Yamamoto K. SECISBP2 is a novel prognostic predictor that regulates selenoproteins in diffuse large B-cell lymphoma. J Transl Med 2021; 101:218-227. [PMID: 33077808 DOI: 10.1038/s41374-020-00495-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
The overexpression of glutathione peroxidase 4 (GPX4; an enzyme that suppresses peroxidation of membrane phospholipids) is considered a poor prognostic predictor of diffuse large B-cell lymphoma (DLBCL). However, the mechanisms employed in GPX4 overexpression remain unknown. GPX4 is translated as a complete protein upon the binding of SECISBP2 to the selenocysteine insertion sequence (SECIS) on the 3'UTR of GPX4 mRNA. In this study, we investigated the expression of SECISBP2 and its subsequent regulation of GPX4 and TXNRD1 in DLBCL patients. Moreover, we determined the significance of the expression of these selenoproteins in vitro using MD901 and Raji cells. SECISBP2 was positive in 45.5% (75/165 cases) of DLBCL samples. The SECISBP2-positive group was associated with low overall survival (OS) as compared to the SECISBP2-negative group (P = 0.006). Similarly, the SECISBP2 and GPX4 or TXNRD1 double-positive groups (P < 0.001), as well as the SECISBP2, GPX4, and TXNRD1 triple-positive group correlated with poor OS (P = 0.001), suggesting that SECISBP2 may serve as an independent prognostic predictor for DLBCL (hazard ratio (HR): 2.693, P = 0.008). In addition, western blotting showed a decrease in GPX4 and TXNRD1 levels in SECISBP2-knockout (KO) MD901 and Raji cells. Oxidative stress increased the accumulation of reactive oxygen species in SECISBP2-KO cells (MD901; P < 0.001, Raji; P = 0.020), and reduced cell proliferation (MD901; P = 0.001, Raji; P = 0.030), suggesting that SECISBP2-KO suppressed resistance to oxidative stress. Doxorubicin treatment increased the rate of cell death in SECISBP2-KO cells (MD901; P < 0.001, Raji; P = 0.048). Removal of oxidative stress inhibited the altered cell death rate. Taken together, our results suggest that SECISBP2 may be a novel therapeutic target in DLBCL.
Collapse
MESH Headings
- Aged
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Knockout Techniques
- Humans
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Middle Aged
- Oxidative Stress/genetics
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Prognosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Selenoproteins/genetics
- Selenoproteins/metabolism
- Thioredoxin Reductase 1/genetics
- Thioredoxin Reductase 1/metabolism
Collapse
Affiliation(s)
- Towako Taguchi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yunosuke Sato
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sayuri Shiono
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
12
|
The Interaction between Dietary Selenium Intake and Genetics in Determining Cancer Risk and Outcome. Nutrients 2020; 12:nu12082424. [PMID: 32806741 PMCID: PMC7468715 DOI: 10.3390/nu12082424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is considerable interest in the trace element selenium as a possible cancer chemopreventive dietary component, but supplementation trials have not indicated a clear benefit. Selenium is a critical component of selenium-containing proteins, or selenoproteins. Members of this protein family contain selenium in the form of selenocysteine. Selenocysteine is encoded by an in-frame UGA codon recognized as a selenocysteine codon by a regulatory element, the selenocysteine insertion sequence (SECIS), in the 3′-untranslated region of selenoprotein mRNAs. Epidemiological studies have implicated several selenoprotein genes in cancer risk or outcome based on associations between allelic variations and disease risk or mortality. These polymorphisms can be found in or near the SECIS or in the selenoprotein coding sequence. These variations both function to control protein synthesis and impact the efficiency of protein synthesis in response to the levels of available selenium. Thus, an individual’s genetic makeup and nutritional intake of selenium may interact to predispose them to acquiring cancer or affect cancer progression to lethality.
Collapse
|
13
|
Varlamova EG, Maltseva VN. Micronutrient Selenium: Uniqueness and Vital Functions. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019; 11:nu11092101. [PMID: 31487871 PMCID: PMC6769590 DOI: 10.3390/nu11092101] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle.
Collapse
Affiliation(s)
- Olivia M Guillin
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France.
| |
Collapse
|
15
|
Selenized Plant Oil Is an Efficient Source of Selenium for Selenoprotein Biosynthesis in Human Cell Lines. Nutrients 2019; 11:nu11071524. [PMID: 31277500 PMCID: PMC6682991 DOI: 10.3390/nu11071524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022] Open
Abstract
Selenium is an essential trace element which is incorporated in the form of a rare amino acid, the selenocysteine, into an important group of proteins, the selenoproteins. Among the twenty-five selenoprotein genes identified to date, several have important cellular functions in antioxidant defense, cell signaling and redox homeostasis. Many selenoproteins are regulated by the availability of selenium which mostly occurs in the form of water-soluble molecules, either organic (selenomethionine, selenocysteine, and selenoproteins) or inorganic (selenate or selenite). Recently, a mixture of selenitriglycerides, obtained by the reaction of selenite with sunflower oil at high temperature, referred to as Selol, was proposed as a novel non-toxic, highly bioavailable and active antioxidant and antineoplastic agent. Free selenite is not present in the final product since the two phases (water soluble and oil) are separated and the residual water-soluble selenite discarded. Here we compare the assimilation of selenium as Selol, selenite and selenate by various cancerous (LNCaP) or immortalized (HEK293 and PNT1A) cell lines. An approach combining analytical chemistry, molecular biology and biochemistry demonstrated that selenium from Selol was efficiently incorporated in selenoproteins in human cell lines, and thus produced the first ever evidence of the bioavailability of selenium from selenized lipids.
Collapse
|
16
|
Vindry C, Guillin O, Mangeot PE, Ohlmann T, Chavatte L. A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA [Ser]Sec Gene. Cells 2019; 8:cells8060574. [PMID: 31212706 PMCID: PMC6627462 DOI: 10.3390/cells8060574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023] Open
Abstract
The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3′ UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre National de la Recherche Scientifique (CNRS), 69007 Lyon, France.
| | - Olivia Guillin
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre National de la Recherche Scientifique (CNRS), 69007 Lyon, France.
| | - Philippe E Mangeot
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre National de la Recherche Scientifique (CNRS), 69007 Lyon, France.
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre National de la Recherche Scientifique (CNRS), 69007 Lyon, France.
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre National de la Recherche Scientifique (CNRS), 69007 Lyon, France.
| |
Collapse
|
17
|
Selenium-Related Transcriptional Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19092665. [PMID: 30205557 PMCID: PMC6163693 DOI: 10.3390/ijms19092665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
The selenium content of the body is known to control the expression levels of numerous genes, both so-called selenoproteins and non-selenoproteins. Selenium is a trace element essential to human health, and its deficiency is related to, for instance, cardiovascular and myodegenerative diseases, infertility and osteochondropathy called Kashin–Beck disease. It is incorporated as selenocysteine to the selenoproteins, which protect against reactive oxygen and nitrogen species. They also participate in the activation of the thyroid hormone, and play a role in immune system functioning. The synthesis and incorporation of selenocysteine occurs via a special mechanism, which differs from the one used for standard amino acids. The codon for selenocysteine is a regular in-frame stop codon, which can be passed by a specific complex machinery participating in translation elongation and termination. This includes a presence of selenocysteine insertion sequence (SECIS) in the 3′-untranslated part of the selenoprotein mRNAs. Nonsense-mediated decay is involved in the regulation of the selenoprotein mRNA levels, but other mechanisms are also possible. Recent transcriptional analyses of messenger RNAs, microRNAs and long non-coding RNAs combined with proteomic data of samples from Keshan and Kashin–Beck disease patients have identified new possible cellular pathways related to transcriptional regulation by selenium.
Collapse
|
18
|
Abstract
Selenium (Se) is an essential component of genetically encoded selenoproteins, in the form of a rare amino acid, namely the selenocysteine (Sec). Radioactive 75Se has been widely used to trace selenoproteins in vitro and in vivo (cell models and animals). Alternatively, its unique isotopic pattern can be used to detect and characterize nonradioactive Se-compounds in cellular extracts using molecular or elemental mass spectrometry at ppm levels. However, when studying trace levels of Se-compounds, such as selenoproteins (ppt levels), the distribution of the signal between its six naturally abundant isotopes reduces its sensitivity. Here, we describe the use of isotopically enriched forms of Se as an alternative strategy to radioactive 75Se, for the labeling and tracing of selenoproteins in cultured cell lines.
Collapse
|
19
|
Sonet J, Mounicou S, Chavatte L. Detection of Selenoproteins by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP MS) in Immobilized pH Gradient (IPG) Strips. Methods Mol Biol 2018; 1661:205-217. [PMID: 28917047 DOI: 10.1007/978-1-4939-7258-6_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In contrast to other trace elements that are cofactors of enzymes and removed from proteins under denaturing conditions, Se is covalently bound to proteins when incorporated into selenoproteins, since it is a component of selenocysteine aminoacid. It implies that selenoproteins can undergo several biochemical separation methods in stringent and chaotropic conditions and still maintain the presence of selenium in the primary sequence. This feature has been used to develop a method for the detection of trace levels of human selenoproteins in cell extracts without the use of radioactive isotopes. The selenoproteins are separated as a function of their isoelectric point (pI) using iso-electrofocusing (IEF) electrophoretic strips and detected by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS). This method, therefore referred to as IEF-LA-ICP MS, allowed the detection of several selenoproteins in human cell lines, including Gpx1, Gpx4, TXNRD1, TXNRD2, and SELENOF.
Collapse
Affiliation(s)
- Jordan Sonet
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, LCABIE, CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et Les Matériaux, UMR5254, Pau, 64000, France
| | - Sandra Mounicou
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, LCABIE, CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et Les Matériaux, UMR5254, Pau, 64000, France
| | - Laurent Chavatte
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, LCABIE, CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et Les Matériaux, UMR5254, Pau, 64000, France. .,Centre International de Recherche en Infectiologie, CIRI, Lyon, 69007, France. .,INSERM U1111, Lyon, 69007, France. .,CNRS/ENS/UCBL1 UMR5308, Lyon, 69007, France.
| |
Collapse
|
20
|
Translation regulation of mammalian selenoproteins. Biochim Biophys Acta Gen Subj 2018; 1862:2480-2492. [PMID: 29751099 DOI: 10.1016/j.bbagen.2018.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. SCOPE OF REVIEW The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA[Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. MAJOR CONCLUSIONS The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. GENERAL SIGNIFICANCE The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation.
Collapse
|
21
|
Touat-Hamici Z, Bulteau AL, Bianga J, Jean-Jacques H, Szpunar J, Lobinski R, Chavatte L. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines. Biochim Biophys Acta Gen Subj 2018; 1862:2493-2505. [PMID: 29660373 DOI: 10.1016/j.bbagen.2018.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. METHODS We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. RESULTS We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. CONCLUSIONS We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. GENERAL SIGNIFICANCE We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture.
Collapse
Affiliation(s)
- Zahia Touat-Hamici
- From the Centre de Génétique Moléculaire, CGM, CNRS, UPR3404, Gif-sur-Yvette 91198, France
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, IGFL, CNRS/ENS UMR5242, 69007 Lyon, France
| | - Juliusz Bianga
- CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM-UMR5254, 64000 Pau, France
| | - Hélène Jean-Jacques
- Institut de Biologie Intégrative de la Cellule, I2BC, 91198 Gif-sur-Yvette, France
| | - Joanna Szpunar
- CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM-UMR5254, 64000 Pau, France
| | - Ryszard Lobinski
- CNRS/Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM-UMR5254, 64000 Pau, France
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France; INSERM U1111, 69007 Lyon, France; CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France.
| |
Collapse
|
22
|
Sonet J, Bierla K, Bulteau AL, Lobinski R, Chavatte L. Comparison of analytical methods using enzymatic activity, immunoaffinity and selenium-specific mass spectrometric detection for the quantitation of glutathione peroxidase 1. Anal Chim Acta 2018; 1011:11-19. [PMID: 29475480 DOI: 10.1016/j.aca.2018.01.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 01/28/2023]
Abstract
Glutathione peroxidase 1 (Gpx1), one of the most responsive selenoproteins to the variation of selenium concentration, is often used to evaluate "selenium status" at a cellular or organismal level. The four major types of analytical methodologies to quantify Gpx1 were revisited. They include (i) an enzymatic assay, (ii, iii) polyacrylamide gel electrophoresis (PAGE) with (ii) western blot detection of protein or (iii) inductively coupled plasma mass spectrometry (ICP MS) detection of selenium, and (iv) size-exclusion chromatography with ICP MS detection. Each of the four methods was optimized for the quantification of Gpx1 with maximum sensitivity. The methods based on the enzymatic and immunodetection offer a much higher sensitivity but their accuracy is compromised by the limited selectivity and limited dynamic range. The advantages, drawbacks and sources of error of each technique are critically discussed and the need for the cross-validation of the results using the different techniques to assure the quality assurance of quantitative analysis is emphasized.
Collapse
Affiliation(s)
- Jordan Sonet
- CNRS/UPPA, Institut of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, F-64053, Pau, France
| | - Katarzyna Bierla
- CNRS/UPPA, Institut of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, F-64053, Pau, France
| | - Anne-Laure Bulteau
- CNRS/UPPA, Institut of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, F-64053, Pau, France; Institut de Génomique Fonctionnelle de Lyon, IGFL, CNRS/ENS UMR5242, 69007 Lyon, France
| | - Ryszard Lobinski
- CNRS/UPPA, Institut of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, F-64053, Pau, France
| | - Laurent Chavatte
- CNRS/UPPA, Institut of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, F-64053, Pau, France; Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France; INSERM U1111, 69007 Lyon, France; CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France.
| |
Collapse
|
23
|
Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach. Antioxidants (Basel) 2018; 7:antiox7010019. [PMID: 29361692 PMCID: PMC5789329 DOI: 10.3390/antiox7010019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 02/02/2023] Open
Abstract
Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.
Collapse
|
24
|
Gribling-Burrer AS, Leichter M, Wurth L, Huttin A, Schlotter F, Troffer-Charlier N, Cura V, Barkats M, Cavarelli J, Massenet S, Allmang C. SECIS-binding protein 2 interacts with the SMN complex and the methylosome for selenoprotein mRNP assembly and translation. Nucleic Acids Res 2017; 45:5399-5413. [PMID: 28115638 PMCID: PMC5605228 DOI: 10.1093/nar/gkx031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
Selenoprotein synthesis requires the co-translational recoding of a UGASec codon. This process involves an RNA structural element, called Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2). Several selenoprotein mRNAs undergo unusual cap hypermethylation by the trimethylguanosine synthase 1 (Tgs1), which is recruited by the ubiquitous Survival of MotoNeurons (SMN) protein. SMN, the protein involved in spinal muscular atrophy, is part of a chaperone complex that collaborates with the methylosome for RNP assembly. Here, we analyze the role of individual SMN and methylosome components in selenoprotein mRNP assembly and translation. We show that SBP2 interacts directly with four proteins of the SMN complex and the methylosome core proteins. Nevertheless, SBP2 is not a methylation substrate of the methylosome. We found that both SMN and methylosome complexes are required for efficient translation of the selenoprotein GPx1 in vivo. We establish that the steady-state level of several selenoprotein mRNAs, major regulators of oxidative stress damage in neurons, is specifically reduced in the spinal cord of SMN-deficient mice and that cap hypermethylation of GPx1 mRNA is affected. Altogether we identified a new function of the SMN complex and the methylosome in selenoprotein mRNP assembly and expression.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Michael Leichter
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Laurence Wurth
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Alexandra Huttin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Martine Barkats
- Université Pierre et Marie Curie, UMRS 974, INSERM, FRE3617, Institut de Myologie, 75013 Paris, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 67404 Illkirch, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Centre National de la Recherche Scientifique, UMR 7365, Faculté de Médecine, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Christine Allmang
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France,To whom correspondence should be addressed. Tel : +33 3 88 41 70 80; Fax : +33 3 88 60 22 18;
| |
Collapse
|
25
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
26
|
Martitz J, Hofmann PJ, Johannes J, Köhrle J, Schomburg L, Renko K. Factors impacting the aminoglycoside-induced UGA stop codon readthrough in selenoprotein translation. J Trace Elem Med Biol 2016; 37:104-110. [PMID: 27157664 DOI: 10.1016/j.jtemb.2016.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023]
Abstract
Aminoglycosides (AG) are oligosaccharide antibiotics that interfere with the small ribosomal subunit in aerobic, Gram-negative bacteria, causing pathogen-destructing error rates in their protein biosynthesis. Aminoglycosides also induce mRNA misinterpretation in eukaryotic cells, especially of the UGA (Opal)-stop codon, albeit to a lower extent. UGA recoding is essentially required for the incorporation of selenocysteine (Sec) into growing selenoproteins during translation. Selenocysteine incorporation requires the presence of a selenoprotein-specific stem-loop structure within the 3'-untranslated region of the mRNA, the so-called Sec-insertion sequence (SECIS) element. Interestingly, selenoprotein genes differ in their SECIS-element sequence and in their UGA base context. We hypothesized that the SECIS-element and the specific codon context synergize in controlling the effects of AG on stop codon readthrough. To this end, the SECIS-elements of glutathione peroxidase 1, glutathione peroxidase 4 and selenoprotein P transcripts were cloned into a reporter system and analyzed in combination with different UGA codon contexts. Our results indicate that a cytosine in position 4 (directly downstream of UGA) confers strongest effects on both the Se- and AG-dependent readthrough. Overall selenoprotein biosynthesis rate depends on the Se-status, AG concentration and the specific SECIS-element present in the transcript. These findings help to get a better understanding for the susceptibility of different transcripts towards AG-mediated interference with the biosynthesis of functional Se-containing selenoproteins, and highlight the importance of the Se-status for successful selenoprotein biosynthesis under antibiotic therapy.
Collapse
Affiliation(s)
- Janine Martitz
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D - 13353 Berlin, Germany
| | - Peter Josef Hofmann
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D - 13353 Berlin, Germany
| | - Jörg Johannes
- Rheinische Friedrich-Wilhelms-Universität, Institut für Biochemie und Molekularbiologie, Bonn, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D - 13353 Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D - 13353 Berlin, Germany
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D - 13353 Berlin, Germany.
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Selenium is an essential trace element that is incorporated in the small but vital family of proteins, namely the selenoproteins, as the selenocysteine amino acid residue. In humans, 25 selenoprotein genes have been characterized. The most remarkable trait of selenoprotein biosynthesis is the cotranslational insertion of selenocysteine by the recoding of a UGA codon, normally decoded as a stop signal. RECENT ADVANCES In eukaryotes, a set of dedicated cis- and trans-acting factors have been identified as well as a variety of regulatory mechanisms, factors, or elements that control the selenoprotein expression at the level of the UGA-selenocysteine recoding process, offering a fascinating playground in the field of translational control. It appeared that the central players are two RNA molecules: the selenocysteine insertion sequence (SECIS) element within selenoprotein mRNA and the selenocysteine-tRNA([Ser]Sec); and their interacting partners. CRITICAL ISSUES After a couple of decades, despite many advances in the field and the discovery of many essential and regulatory components, the precise mechanism of UGA-selenocysteine recoding remains elusive and more complex than anticipated, with many layers of control. This review offers an update of selenoproteome biosynthesis and regulation in eukaryotes. FUTURE DIRECTIONS The regulation of selenoproteins in response to a variety of pathophysiological conditions and cellular stressors, including selenium levels, oxidative stress, replicative senescence, or cancer, awaits further detailed investigation. Clearly, the efficiency of UGA-selenocysteine recoding is the limiting stage of selenoprotein synthesis. The sequence of events leading Sec-tRNA([Ser]Sec) delivery to ribosomal A site awaits further analysis, notably at the level of a three-dimensional structure.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| | - Laurent Chavatte
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| |
Collapse
|
28
|
Abstract
Selenium is regulated in the body to maintain vital selenoproteins and to avoid toxicity. When selenium is limiting, cells utilize it to synthesize the selenoproteins most important to them, creating a selenoprotein hierarchy in the cell. The liver is the central organ for selenium regulation and produces excretory selenium forms to regulate whole-body selenium. It responds to selenium deficiency by curtailing excretion and secreting selenoprotein P (Sepp1) into the plasma at the expense of its intracellular selenoproteins. Plasma Sepp1 is distributed to tissues in relation to their expression of the Sepp1 receptor apolipoprotein E receptor-2, creating a tissue selenium hierarchy. N-terminal Sepp1 forms are taken up in the renal proximal tubule by another receptor, megalin. Thus, the regulated whole-body pool of selenium is shifted to needy cells and then to vital selenoproteins in them to supply selenium where it is needed, creating a whole-body selenoprotein hierarchy.
Collapse
Affiliation(s)
- Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0252; ,
| | | |
Collapse
|
29
|
Wurth L, Gribling-Burrer AS, Verheggen C, Leichter M, Takeuchi A, Baudrey S, Martin F, Krol A, Bertrand E, Allmang C. Hypermethylated-capped selenoprotein mRNAs in mammals. Nucleic Acids Res 2014; 42:8663-77. [PMID: 25013170 PMCID: PMC4117793 DOI: 10.1093/nar/gku580] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian mRNAs are generated by complex and coordinated biogenesis pathways and acquire 5′-end m7G caps that play fundamental roles in processing and translation. Here we show that several selenoprotein mRNAs are not recognized efficiently by translation initiation factor eIF4E because they bear a hypermethylated cap. This cap modification is acquired via a 5′-end maturation pathway similar to that of the small nucle(ol)ar RNAs (sn- and snoRNAs). Our findings also establish that the trimethylguanosine synthase 1 (Tgs1) interacts with selenoprotein mRNAs for cap hypermethylation and that assembly chaperones and core proteins devoted to sn- and snoRNP maturation contribute to recruiting Tgs1 to selenoprotein mRNPs. We further demonstrate that the hypermethylated-capped selenoprotein mRNAs localize to the cytoplasm, are associated with polysomes and thus translated. Moreover, we found that the activity of Tgs1, but not of eIF4E, is required for the synthesis of the GPx1 selenoprotein in vivo.
Collapse
Affiliation(s)
- Laurence Wurth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Anne-Sophie Gribling-Burrer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Céline Verheggen
- Equipe labélisée Ligue contre le cancer, Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, UMR 5535, 34293 Montpellier, France
| | - Michael Leichter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Akiko Takeuchi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Stéphanie Baudrey
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Alain Krol
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Edouard Bertrand
- Equipe labélisée Ligue contre le cancer, Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, UMR 5535, 34293 Montpellier, France
| | - Christine Allmang
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| |
Collapse
|
30
|
Touat-Hamici Z, Legrain Y, Bulteau AL, Chavatte L. Selective up-regulation of human selenoproteins in response to oxidative stress. J Biol Chem 2014; 289:14750-61. [PMID: 24706762 DOI: 10.1074/jbc.m114.551994] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3' UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Zahia Touat-Hamici
- From the Centre de Génétique Moléculaire, CNRS, UPR3404, 91198 Gif-sur-Yvette, France
| | - Yona Legrain
- From the Centre de Génétique Moléculaire, CNRS, UPR3404, 91198 Gif-sur-Yvette, France
| | - Anne-Laure Bulteau
- the Centre de Recherche Institut Cochin, INSERM U567, CNRS UMR 8104, 75005 Paris, France, and the Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS/UPPA, UMR5254, 64000 Pau, France
| | - Laurent Chavatte
- From the Centre de Génétique Moléculaire, CNRS, UPR3404, 91198 Gif-sur-Yvette, France, the Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS/UPPA, UMR5254, 64000 Pau, France
| |
Collapse
|
31
|
Guo X, Yu Y, Liu X, Zhang Y, Guan T, Xie G, Wei J. Heterologous expression and characterization of human cellular glutathione peroxidase mutants. IUBMB Life 2014; 66:212-219. [PMID: 24659529 DOI: 10.1002/iub.1255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 01/27/2023]
Abstract
Cellular glutathione peroxidase (GPx1; EC1.11.1.9) is a major intracellular antioxidant selenoenzyme in mammals. However, the complicated expression mechanism of selenocysteine (Sec)-containing protein increases the difficulty of expressing human GPx1 (hGPx1) in Escherichia coli (E. coli). In this study, hGPx1 gene was cloned from a cDNA library of the human hepatoma cell line HepG2. The codon UGA encoding Sec49 of hGPx1 was first mutated to UGC encoding cysteine (Cys) and then biosynthetically converted to Sec during expression in an E. coli BL21(DE3)cys auxotrophic system. Seleno-GPx1Sec displayed a low GPx activity of 522 U/μmol. To improve the activity, the other five Cys residues (C2, C78, C115, C156, C202) were mutated to serine (Ser) in one hGPx1 molecule. The mutant seleno-hGPx1Ser showed a high activity of 5278 U/μmol, which was more than 10-fold enhanced as compared with seleno-GPx1Sec . The activity was the highest among all of those seleno-proteins obtained by this method so far. Kinetic analysis of seleno-hGPx1Ser showed a typical ping-pong mechanism, which was similar to those of natural GPxs. This research will be of value in overcoming the problem of limited sources of natural GPx and substantially promotes the research of the characterization of GPx. © 2014 IUBMB Life, 66(3):212-219, 2014.
Collapse
Affiliation(s)
- Xiao Guo
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yang Yu
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xixi Liu
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yinlong Zhang
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Tuchen Guan
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Guiqiu Xie
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun, China
| |
Collapse
|
32
|
Legrain Y, Touat-Hamici Z, Chavatte L. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts. J Biol Chem 2014; 289:6299-310. [PMID: 24425862 DOI: 10.1074/jbc.m113.526863] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.
Collapse
Affiliation(s)
- Yona Legrain
- From the Centre de Génétique Moléculaire, CNRS, UPR3404, Gif-sur-Yvette 91198 Cedex, France and
| | | | | |
Collapse
|
33
|
Turanov AA, Lobanov AV, Hatfield DL, Gladyshev VN. UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins. Nucleic Acids Res 2013; 41:6952-9. [PMID: 23716634 PMCID: PMC3737529 DOI: 10.1093/nar/gkt409] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
It is thought that the SelenoCysteine Insertion Sequence (SECIS) element and UGA codon are sufficient for selenocysteine (Sec) insertion. However, we found that UGA supported Sec insertion only at its natural position or in its close proximity in mammalian thioredoxin reductase 1 (TR1). In contrast, Sec could be inserted at any tested position in mammalian TR3. Replacement of the 3'-UTR of TR3 with the corresponding segment of a Euplotes crassus TR restricted Sec insertion into the C-terminal region, whereas the 3'-UTR of TR3 conferred unrestricted Sec insertion into E. crassus TR, in which Sec insertion is normally limited to the C-terminal region. Exchanges of 3'-UTRs between mammalian TR1 and E. crassus TR had no effect, as both proteins restricted Sec insertion. We further found that these effects could be explained by the use of selenoprotein-specific SECIS elements. Examination of Sec insertion into other selenoproteins was consistent with this model. The data indicate that mammals evolved the ability to limit Sec insertion into natural positions within selenoproteins, but do so in a selenoprotein-specific manner, and that this process is controlled by the SECIS element in the 3'-UTR.
Collapse
Affiliation(s)
- Anton A. Turanov
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115, USA and Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexei V. Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115, USA and Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dolph L. Hatfield
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115, USA and Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115, USA and Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|