1
|
Gaucherand L, Baldaccini M, Pfeffer S. Beyond RNAi: How the Dicer protein modulates the antiviral innate immune response in mammalian cells: Mammalian Dicer could regulate the innate immune response in an RNAi-independent manner as a result of losing long dsRNA processive activity. Bioessays 2024; 46:e2400173. [PMID: 39248656 DOI: 10.1002/bies.202400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
While Dicer plays an important antiviral role through the RNAi pathway in plants and invertebrates, its contribution to antiviral immunity in vertebrates and more specifically mammals is more controversial. The apparent limited RNAi activity in mammalian cells has been attributed to the reduced long dsRNA processive activity of mammalian Dicer, as well as a functional incompatibility between the RNAi and IFN pathways. Why Dicer has lost this antiviral activity in the profit of the IFN pathway is still unclear. We propose that the primary direct antiviral activity of Dicer has been functionally replaced by other sensors in the IFN pathway, leading to its specialization toward microRNA maturation. As a result, Dicer can regulate the innate immune response and prevent basal activation of the IFN pathway in mammals. Here, we discuss this hypothesis, highlighting how the adaptation of the helicase domain of mammalian Dicer may be key to this process.
Collapse
Affiliation(s)
- Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| |
Collapse
|
2
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. Caenorhabditis elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. eLife 2024; 13:RP93979. [PMID: 38747717 PMCID: PMC11095941 DOI: 10.7554/elife.93979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
- Claudia D Consalvo
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Helen M Donelick
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Debra M Eckert
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Peter S Shen
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
3
|
Karandashov I, Kachanov A, Dukich M, Ponomareva N, Brezgin S, Lukashev A, Pokrovsky VS, Chulanov V, Kostyusheva A, Kostyushev D. m 6A Methylation in Regulation of Antiviral Innate Immunity. Viruses 2024; 16:601. [PMID: 38675942 PMCID: PMC11054785 DOI: 10.3390/v16040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.
Collapse
Affiliation(s)
- Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Maria Dukich
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Faculty of Virology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Vadim S. Pokrovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Blokhin National Medical Research Center of Oncology, 117198 Moscow, Russia
- Faculty of Biochemistry, RUDN University, 117198 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Biotechnologies, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. C. elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558868. [PMID: 37790392 PMCID: PMC10542151 DOI: 10.1101/2023.09.21.558868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, C. elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
| | - Adedeji M. Aderounmu
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- These authors contributed equally
| | - Helen M. Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- These authors contributed equally
| | - P. Joe Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Debra M. Eckert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Peter S. Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- Lead Contact
| |
Collapse
|
5
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
6
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife 2023; 12:e85120. [PMID: 37068011 PMCID: PMC10159624 DOI: 10.7554/elife.85120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Antiviral defense in ecdysozoan invertebrates requires Dicer with a helicase domain capable of ATP hydrolysis. But despite well-conserved ATPase motifs, human Dicer is incapable of ATP hydrolysis, consistent with a muted role in antiviral defense. To investigate this enigma, we used ancestral protein reconstruction to resurrect Dicer's helicase in animals and trace the evolutionary trajectory of ATP hydrolysis. Biochemical assays indicated ancient Dicer possessed ATPase function, that like extant invertebrate Dicers, is stimulated by dsRNA. Analyses revealed that dsRNA stimulates ATPase activity by increasing ATP affinity, reflected in Michaelis constants. Deuterostome Dicer-1 ancestor, while exhibiting lower dsRNA affinity, retained some ATPase activity; importantly, ATPase activity was undetectable in the vertebrate Dicer-1 ancestor, which had even lower dsRNA affinity. Reverting residues in the ATP hydrolysis pocket was insufficient to rescue hydrolysis, but additional substitutions distant from the pocket rescued vertebrate Dicer-1's ATPase function. Our work suggests Dicer lost ATPase function in the vertebrate ancestor due to loss of ATP affinity, involving motifs distant from the active site, important for coupling dsRNA binding to the active conformation. By competing with Dicer for viral dsRNA, RIG-I-like receptors important for interferon signaling may have allowed or actively caused loss of ATPase function.
Collapse
Affiliation(s)
| | | | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of FloridaGainesvilleUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
8
|
Torrez RM, Ohi MD, Garner AL. Structural Insights into the Advances and Mechanistic Understanding of Human Dicer. Biochemistry 2023; 62:1-16. [PMID: 36534787 PMCID: PMC11467861 DOI: 10.1021/acs.biochem.2c00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNase III endoribonuclease Dicer was discovered to be associated with cleavage of double-stranded RNA in 2001. Since then, many advances in our understanding of Dicer function have revealed that the enzyme plays a major role not only in microRNA biology but also in multiple RNA interference-related pathways. Yet, there is still much to be learned regarding Dicer structure-function in relation to how Dicer and Dicer-like enzymes initiate their cleavage reaction and release the desired RNA product. This Perspective describes the latest advances in Dicer structural studies, expands on what we have learned from this data, and outlines key gaps in knowledge that remain to be addressed. More specifically, we focus on human Dicer and highlight the intermediate processing steps where there is a lack of structural data to understand how the enzyme traverses from pre-cleavage to cleavage-competent states. Understanding these details is necessary to model Dicer's function as well as develop more specific microRNA-targeted therapeutics for the treatment of human diseases.
Collapse
Affiliation(s)
- Rachel M. Torrez
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie D. Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Lei Y, Fei P, Song B, Shi W, Luo C, Luo D, Li D, Chen W, Zheng J. A loosened gating mechanism of RIG-I leads to autoimmune disorders. Nucleic Acids Res 2022; 50:5850-5863. [PMID: 35580046 PMCID: PMC9177982 DOI: 10.1093/nar/gkac361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
DDX58 encodes RIG-I, a cytosolic RNA sensor that ensures immune surveillance of nonself RNAs. Individuals with RIG-IE510V and RIG-IQ517H mutations have increased susceptibility to Singleton-Merten syndrome (SMS) defects, resulting in tissue-specific (mild) and classic (severe) phenotypes. The coupling between RNA recognition and conformational changes is central to RIG-I RNA proofreading, but the molecular determinants leading to dissociated disease phenotypes remain unknown. Herein, we employed hydrogen/deuterium exchange mass spectrometry (HDX-MS) and single molecule magnetic tweezers (MT) to precisely examine how subtle conformational changes in the helicase insertion domain (HEL2i) promote impaired ATPase and erroneous RNA proofreading activities. We showed that the mutations cause a loosened latch-gate engagement in apo RIG-I, which in turn gradually dampens its self RNA (Cap2 moiety:m7G cap and N1-2-2′-O-methylation RNA) proofreading ability, leading to increased immunopathy. These results reveal HEL2i as a unique checkpoint directing two specialized functions, i.e. stabilizing the CARD2-HEL2i interface and gating the helicase from incoming self RNAs; thus, these findings add new insights into the role of HEL2i in the control of antiviral innate immunity and autoimmunity diseases.
Collapse
Affiliation(s)
- Yixuan Lei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.,The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Panyu Fei
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Bin Song
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjia Shi
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Cheng Luo
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,The Chemical Biology Center, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, Zhejiang, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, NTU Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, 636921, Singapore
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jie Zheng
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
10
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
11
|
Jia J, Fu J, Tang H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front Microbiol 2022; 12:804511. [PMID: 34987495 PMCID: PMC8721196 DOI: 10.3389/fmicb.2021.804511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jiangan Fu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Abstract
One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA–activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.
Collapse
Affiliation(s)
- Morgane Baldaccini
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
- * E-mail:
| |
Collapse
|
13
|
Li K, Zheng J, Wirawan M, Trinh NM, Fedorova O, Griffin PR, Pyle AM, Luo D. Insights into the structure and RNA-binding specificity of Caenorhabditis elegans Dicer-related helicase 3 (DRH-3). Nucleic Acids Res 2021; 49:9978-9991. [PMID: 34403472 PMCID: PMC8464030 DOI: 10.1093/nar/gkab712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
DRH-3 is critically involved in germline development and RNA interference (RNAi) facilitated chromosome segregation via the 22G-siRNA pathway in Caenorhabditis elegans. DRH-3 has similar domain architecture to RIG-I-like receptors (RLRs) and belongs to the RIG-I-like RNA helicase family. The molecular understanding of DRH-3 and its function in endogenous RNAi pathways remains elusive. In this study, we solved the crystal structures of the DRH-3 N-terminal domain (NTD) and the C-terminal domains (CTDs) in complex with 5'-triphosphorylated RNAs. The NTD of DRH-3 adopts a distinct fold of tandem caspase activation and recruitment domains (CARDs) structurally similar to the CARDs of RIG-I and MDA5, suggesting a signaling function in the endogenous RNAi biogenesis. The CTD preferentially recognizes 5'-triphosphorylated double-stranded RNAs bearing the typical features of secondary siRNA transcripts. The full-length DRH-3 displays unique structural dynamics upon binding to RNA duplexes that differ from RIG-I or MDA5. These features of DRH-3 showcase the evolutionary divergence of the Dicer and RLR family of helicases.
Collapse
Affiliation(s)
- Kuohan Li
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Jie Zheng
- The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Melissa Wirawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Nguyen Mai Trinh
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Olga Fedorova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| |
Collapse
|
14
|
Thoresen D, Wang W, Galls D, Guo R, Xu L, Pyle AM. The molecular mechanism of RIG-I activation and signaling. Immunol Rev 2021; 304:154-168. [PMID: 34514601 PMCID: PMC9293153 DOI: 10.1111/imr.13022] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
RIG‐I is our first line of defense against RNA viruses, serving as a pattern recognition receptor that identifies molecular features common among dsRNA and ssRNA viral pathogens. RIG‐I is maintained in an inactive conformation as it samples the cellular space for pathogenic RNAs. Upon encounter with the triphosphorylated terminus of blunt‐ended viral RNA duplexes, the receptor changes conformation and releases a pair of signaling domains (CARDs) that are selectively modified and interact with an adapter protein (MAVS), thereby triggering a signaling cascade that stimulates transcription of interferons. Here, we describe the structural determinants for specific RIG‐I activation by viral RNA, and we describe the strategies by which RIG‐I remains inactivated in the presence of host RNAs. From the initial RNA triggering event to the final stages of interferon expression, we describe the experimental evidence underpinning our working knowledge of RIG‐I signaling. We draw parallels with behavior of related proteins MDA5 and LGP2, describing evolutionary implications of their collective surveillance of the cell. We conclude by describing the cell biology and immunological investigations that will be needed to accurately describe the role of RIG‐I in innate immunity and to provide the necessary foundation for pharmacological manipulation of this important receptor.
Collapse
Affiliation(s)
- Daniel Thoresen
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Wenshuai Wang
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Drew Galls
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rong Guo
- Chemistry, Yale University, New Haven, CT, USA
| | - Ling Xu
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anna Marie Pyle
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Chemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Batool M, Kim MS, Choi S. Structural insights into the distinctive RNA recognition and therapeutic potentials of RIG-I-like receptors. Med Res Rev 2021; 42:399-425. [PMID: 34287999 DOI: 10.1002/med.21845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
RNA viruses, including the coronavirus, develop a unique strategy to evade the host immune response by interrupting the normal function of cytosolic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). RLRs rapidly detect atypical nucleic acids, thereby triggering the antiviral innate immune signaling cascade and subsequently activates the interferons transcription and induction of other proinflammatory cytokines and chemokines. Nonetheless, these receptors are manipulated by viral proteins to subvert the host immune system and sustain the infectivity and replication potential of the virus. RIG-I senses the single-stranded, double-stranded, and short double-stranded RNAs and recognizes the key signature, a 5'-triphosphate moiety, at the blunt end of the viral RNA. Meanwhile, the melanoma differentiation-associated gene 5 (MDA5) is triggered by longer double stranded RNAs, messenger RNAs lacking 2'-O-methylation in their 5'-cap, and RNA aggregates. Therefore, structural insights into the nucleic-acid-sensing and downstream signaling mechanisms of these receptors hold great promise for developing effective antiviral therapeutic interventions. This review highlights the critical roles played by RLRs in viral infections as well as their ligand recognition mechanisms. In addition, we highlight the crosstalk between the toll-like receptors and RLRs and provide a comprehensive overview of RLR-associated diseases as well as the therapeutic potential of RLRs for the development of antiviral-drugs. Moreover, we believe that these RLR-based antivirals will serve as a step toward countering the recent coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| |
Collapse
|
16
|
Singh RK, Jonely M, Leslie E, Rejali NA, Noriega R, Bass BL. Transient kinetic studies of the antiviral Drosophila Dicer-2 reveal roles of ATP in self-nonself discrimination. eLife 2021; 10:65810. [PMID: 33787495 PMCID: PMC8079148 DOI: 10.7554/elife.65810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
Some RIG-I-like receptors (RLRs) discriminate viral and cellular dsRNA by their termini, and Drosophila melanogaster Dicer-2 (dmDcr-2) differentially processes dsRNA with blunt or 2 nucleotide 3’-overhanging termini. We investigated the transient kinetic mechanism of the dmDcr-2 reaction using a rapid reaction stopped-flow technique and time-resolved fluorescence spectroscopy. Indeed, we found that ATP binding to dmDcr-2’s helicase domain impacts association and dissociation kinetics of dsRNA in a termini-dependent manner, revealing termini-dependent discrimination of dsRNA on a biologically relevant time scale (seconds). ATP hydrolysis promotes transient unwinding of dsRNA termini followed by slow rewinding, and directional translocation of the enzyme to the cleavage site. Time-resolved fluorescence anisotropy reveals a nucleotide-dependent modulation in conformational fluctuations (nanoseconds) of the helicase and Platform–PAZ domains that is correlated with termini-dependent dsRNA cleavage. Our study offers a kinetic framework for comparison to other Dicers, as well as all members of the RLRs involved in innate immunity.
Collapse
Affiliation(s)
- Raushan K Singh
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - McKenzie Jonely
- Department of Chemistry, University of Utah, Salt Lake City, United States
| | - Evan Leslie
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Nick A Rejali
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, United States
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
17
|
Kato K, Ahmad S, Zhu Z, Young JM, Mu X, Park S, Malik HS, Hur S. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Mol Cell 2021; 81:599-613.e8. [PMID: 33373584 PMCID: PMC8183676 DOI: 10.1016/j.molcel.2020.11.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023]
Abstract
RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.
Collapse
MESH Headings
- Cryoelectron Microscopy
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- DEAD Box Protein 58/ultrastructure
- Epitopes
- Evolution, Molecular
- HEK293 Cells
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/ultrastructure
- Models, Molecular
- Phylogeny
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/ultrastructure
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tripartite Motif Proteins/ultrastructure
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/ultrastructure
Collapse
Affiliation(s)
- Kazuki Kato
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Donelick HM, Talide L, Bellet M, Aruscavage PJ, Lauret E, Aguiar ERGR, Marques JT, Meignin C, Bass BL. In vitro studies provide insight into effects of Dicer-2 helicase mutations in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2020; 26:1847-1861. [PMID: 32843367 PMCID: PMC7668257 DOI: 10.1261/rna.077289.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 05/03/2023]
Abstract
In vitro, Drosophila melanogaster Dicer-2 (Dcr-2) uses its helicase domain to initiate processing of dsRNA with blunt (BLT) termini, and its Platform•PAZ domain to initiate processing of dsRNA with 3' overhangs (ovrs). To understand the relationship of these in vitro observations to roles of Dcr-2 in vivo, we compared in vitro effects of two helicase mutations to their impact on production of endogenous and viral siRNAs in flies. Consistent with the importance of the helicase domain in processing BLT dsRNA, both point mutations eliminated processing of BLT, but not 3'ovr, dsRNA in vitro. However, the mutations had different effects in vivo. A point mutation in the Walker A motif of the Hel1 subdomain, G31R, largely eliminated production of siRNAs in vivo, while F225G, located in the Hel2 subdomain, showed reduced levels of endogenous siRNAs, but did not significantly affect virus-derived siRNAs. In vitro assays monitoring dsRNA cleavage, dsRNA binding, ATP hydrolysis, and binding of the accessory factor Loquacious-PD provided insight into the different effects of the mutations on processing of different sources of dsRNA in flies. Our in vitro studies suggest effects of the mutations in vivo relate to their effects on ATPase activity, dsRNA binding, and interactions with Loquacious-PD. Our studies emphasize the importance of future studies to characterize dsRNA termini as they exist in Drosophila and other animals.
Collapse
Affiliation(s)
- Helen M Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Loïc Talide
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Matthieu Bellet
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Emilie Lauret
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Eric R G R Aguiar
- Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Joao T Marques
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
19
|
Deng P, Khan A, Jacobson D, Sambrani N, McGurk L, Li X, Jayasree A, Hejatko J, Shohat-Ophir G, O'Connell MA, Li JB, Keegan LP. Adar RNA editing-dependent and -independent effects are required for brain and innate immune functions in Drosophila. Nat Commun 2020; 11:1580. [PMID: 32221286 PMCID: PMC7101428 DOI: 10.1038/s41467-020-15435-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila AdarE374A mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.
Collapse
Affiliation(s)
- Patricia Deng
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anzer Khan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Dionna Jacobson
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nagraj Sambrani
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Leeanne McGurk
- MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Xianghua Li
- MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Aswathy Jayasree
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Galit Shohat-Ophir
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
20
|
Hansen SR, Aderounmu AM, Donelick HM, Bass BL. Dicer's Helicase Domain: A Meeting Place for Regulatory Proteins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:185-193. [PMID: 32179591 PMCID: PMC7384945 DOI: 10.1101/sqb.2019.84.039750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The function of Dicer’s helicase domain has been enigmatic since its discovery. Why do only some Dicers require ATP, despite a high degree of sequence conservation in their helicase domains? We discuss evolutionary considerations based on differences between vertebrate and invertebrate antiviral defense, and how the helicase domain has been co-opted in extant organisms as the binding site for accessory proteins. Many accessory proteins are double-stranded RNA binding proteins, and we propose models for how they modulate Dicer function and catalysis.
Collapse
Affiliation(s)
- Sarah R Hansen
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Adedeji M Aderounmu
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Helen M Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| |
Collapse
|
21
|
Zhao Y, Karijolich J. Know Thyself: RIG-I-Like Receptor Sensing of DNA Virus Infection. J Virol 2019; 93:e01085-19. [PMID: 31511389 PMCID: PMC6854496 DOI: 10.1128/jvi.01085-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
The RIG-I-like receptors (RLRs) are double-stranded RNA-binding proteins that play a role in initiating and modulating cell intrinsic immunity through the recognition of RNA features typically absent from the host transcriptome. While they are initially characterized in the context of RNA virus infection, evidence has now accumulated establishing the role of RLRs in DNA virus infection. Here, we review recent advances in the RLR-mediated restriction of DNA virus infection with an emphasis on the RLR ligands sensed.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Chen J, Fang P, Wang M, Peng Q, Ren J, Wang D, Peng G, Fang L, Xiao S, Ding Z. Porcine deltacoronavirus nucleocapsid protein antagonizes IFN-β production by impairing dsRNA and PACT binding to RIG-I. Virus Genes 2019; 55:520-531. [PMID: 31129785 PMCID: PMC7088841 DOI: 10.1007/s11262-019-01673-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in newborn piglets. Previous studies have suggested that PDCoV infection antagonizes RIG-I-like receptor (RLR)-mediated IFN-β production to evade host innate immune defense, and PDCoV-encoded nonstructural protein nsp5 and accessory protein NS6 are associated with this process. However, whether the structural protein(s) of PDCoV also antagonize IFN-β production remains unclear. In this study, we found that PDCoV nucleocapsid (N) protein, the most abundant viral structural protein, suppressed Sendai virus (SEV)-induced IFN-β production and transcription factor IRF3 activation, but did not block IFN-β production induced by overexpressing RIG-I/MDA5. Furthermore, study revealed that PDCoV N protein interacted with RIG-I and MDA5 in an in vitro overexpression system and evident interactions between N protein and RIG-I could be detected in the context of PDCoV infection, which interfered with the binding of dsRNA and protein activator of protein kinase R (PACT) to RIG-I. Together, our results demonstrate that PDCoV N protein is an IFN antagonist and utilizes diverse strategies to attenuate RIG-I recognition and activation.
Collapse
Affiliation(s)
- Jun Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, China
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mohan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhen Ding
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, China.
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
23
|
Liu J, Swevers L, Kolliopoulou A, Smagghe G. Arboviruses and the Challenge to Establish Systemic and Persistent Infections in Competent Mosquito Vectors: The Interaction With the RNAi Mechanism. Front Physiol 2019; 10:890. [PMID: 31354527 PMCID: PMC6638189 DOI: 10.3389/fphys.2019.00890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Arboviruses are capable to establish long-term persistent infections in mosquitoes that do not affect significantly the physiology of the insect vectors. Arbovirus infections are controlled by the RNAi machinery via the production of viral siRNAs and the formation of RISC complexes targeting viral genomes and mRNAs. Engineered arboviruses that contain cellular gene sequences can therefore be transformed to "viral silencing vectors" for studies of gene function in reverse genetics approaches. More specifically, "ideal" viral silencing vectors must be competent to induce robust RNAi effects while other interactions with the host immune system should be kept at a minimum to reduce non-specific effects. Because of their inconspicuous nature, arboviruses may approach the "ideal" viral silencing vectors in insects and it is therefore worthwhile to study the mechanisms by which the interactions with the RNAi machinery occur. In this review, an analysis is presented of the antiviral RNAi response in mosquito vectors with respect to the major types of arboviruses (alphaviruses, flaviviruses, bunyaviruses, and others). With respect to antiviral defense, the exo-RNAi pathway constitutes the major mechanism while the contribution of both miRNAs and viral piRNAs remains a contentious issue. However, additional mechanisms exist in mosquitoes that are capable to enhance or restrict the efficiency of viral silencing vectors such as the amplification of RNAi effects by DNA forms, the existence of incorporated viral elements in the genome and the induction of a non-specific systemic response by Dicer-2. Of significance is the observation that no major "viral suppressors of RNAi" (VSRs) seem to be encoded by arboviral genomes, indicating that relatively tight control of the activity of the RNA-dependent RNA polymerase (RdRp) may be sufficient to maintain the persistent character of arbovirus infections. Major strategies for improvement of viral silencing vectors therefore are proposed to involve engineering of VSRs and modifying of the properties of the RdRp. Because of safety issues (pathogen status), however, arbovirus-based silencing vectors are not well suited for practical applications, such as RNAi-based mosquito control. In that case, related mosquito-specific viruses that also establish persistent infections and may cause similar RNAi responses may represent a valuable alternative solution.
Collapse
Affiliation(s)
- Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Luc Swevers
- Institute of Biosciences and Applications, National Centre of Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Institute of Biosciences and Applications, National Centre of Scientific Research “Demokritos”, Athens, Greece
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Pattabhi S, Knoll ML, Gale M, Loo YM. DHX15 Is a Coreceptor for RLR Signaling That Promotes Antiviral Defense Against RNA Virus Infection. J Interferon Cytokine Res 2019; 39:331-346. [PMID: 31090472 PMCID: PMC6590726 DOI: 10.1089/jir.2018.0163] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
RNA helicases play an important role in the response to microbial infection. Retinoic acid inducible gene-I (RIG-I) and members of the RIG-I-like receptor (RLR) family of helicases function as cytoplasmic pattern recognition receptors (PRRs) whose actions are essential for recognition of RNA viruses. RIG-I association with pathogen-associated molecular patterns (PAMPs) within viral RNA leads to its activation and signaling via the mitochondrial antiviral signaling (MAVS) adapter protein. This interaction mediates downstream signaling events that drive the innate immune response to virus infection. Here we identify the DEAH-box RNA helicase DHX15 as a RLR binding partner and signaling cofactor. In human cells, DHX15 is required for virus-induced RLR signaling of innate immune gene expression. Knockdown of DHX15 increased susceptibility to infection by RNA viruses of diverse genera, including Paramyxoviridae, Rhabdoviridae, and Picornaviridae. DHX15 associates with RIG-I caspase activation and recruitment domains (CARDs) through its amino terminus, in which the complex is recruited to MAVS on virus infection. Importantly, although DHX15 cannot substitute for RIG-I in innate immune signaling, DHX15 selectively binds PAMP RNA to promote RIG-I ATP hydrolysis and signaling activation in response to viral RNA. Our results define DHX15 as a coreceptor required for RLR innate immune responses to control RNA virus infection.
Collapse
Affiliation(s)
- Sowmya Pattabhi
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
| | - Megan L. Knoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - Michael Gale
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - Yueh-Ming Loo
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019; 11:v11050448. [PMID: 31100912 PMCID: PMC6563508 DOI: 10.3390/v11050448] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research.
Collapse
|
26
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Boudet J, Devillier JC, Wiegand T, Salmon L, Meier BH, Lipps G, Allain FHT. A Small Helical Bundle Prepares Primer Synthesis by Binding Two Nucleotides that Enhance Sequence-Specific Recognition of the DNA Template. Cell 2018; 176:154-166.e13. [PMID: 30595448 DOI: 10.1016/j.cell.2018.11.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/20/2018] [Accepted: 11/17/2018] [Indexed: 02/08/2023]
Abstract
Primases have a fundamental role in DNA replication. They synthesize a primer that is then extended by DNA polymerases. Archaeoeukaryotic primases require for synthesis a catalytic and an accessory domain, the exact contribution of the latter being unresolved. For the pRN1 archaeal primase, this domain is a 115-amino acid helix bundle domain (HBD). Our structural investigations of this small HBD by liquid- and solid-state nuclear magnetic resonance (NMR) revealed that only the HBD binds the DNA template. DNA binding becomes sequence-specific after a major allosteric change in the HBD, triggered by the binding of two nucleotide triphosphates. The spatial proximity of the two nucleotides and the DNA template in the quaternary structure of the HBD strongly suggests that this small domain brings together the substrates to prepare the first catalytic step of primer synthesis. This efficient mechanism is likely general for all archaeoeukaryotic primases.
Collapse
Affiliation(s)
- Julien Boudet
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| | - Jean-Christophe Devillier
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Loic Salmon
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Georg Lipps
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland.
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
28
|
Yong HY, Luo D. RIG-I-Like Receptors as Novel Targets for Pan-Antivirals and Vaccine Adjuvants Against Emerging and Re-Emerging Viral Infections. Front Immunol 2018; 9:1379. [PMID: 29973930 PMCID: PMC6019452 DOI: 10.3389/fimmu.2018.01379] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Emerging and re-emerging viruses pose a significant public health challenge around the world, among which RNA viruses are the cause of many major outbreaks of infectious diseases. As one of the early lines of defense in the human immune system, RIG-I-like receptors (RLRs) play an important role as sentinels to thwart the progression of virus infection. The activation of RLRs leads to an antiviral state in the host cells, which triggers the adaptive arm of immunity and ultimately the clearance of viral infections. Hence, RLRs are promising targets for the development of pan-antivirals and vaccine adjuvants. Here, we discuss the opportunities and challenges of developing RLR agonists into antiviral therapeutic agents and vaccine adjuvants against a broad range of viruses.
Collapse
Affiliation(s)
- Hui Yee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
29
|
Abstract
Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.
Collapse
Affiliation(s)
- Kwan T Chow
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Michael Gale
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Yueh-Ming Loo
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| |
Collapse
|
30
|
Poirier EZ, Goic B, Tomé-Poderti L, Frangeul L, Boussier J, Gausson V, Blanc H, Vallet T, Loyd H, Levi LI, Lanciano S, Baron C, Merkling SH, Lambrechts L, Mirouze M, Carpenter S, Vignuzzi M, Saleh MC. Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host Microbe 2018; 23:353-365.e8. [PMID: 29503180 PMCID: PMC5857290 DOI: 10.1016/j.chom.2018.02.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/08/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
The RNAi pathway confers antiviral immunity in insects. Virus-specific siRNA responses are amplified via the reverse transcription of viral RNA to viral DNA (vDNA). The nature, biogenesis, and regulation of vDNA are unclear. We find that vDNA produced during RNA virus infection of Drosophila and mosquitoes is present in both linear and circular forms. Circular vDNA (cvDNA) is sufficient to produce siRNAs that confer partially protective immunity when challenged with a cognate virus. cvDNAs bear homology to defective viral genomes (DVGs), and DVGs serve as templates for vDNA and cvDNA synthesis. Accordingly, DVGs promote the amplification of vDNA-mediated antiviral RNAi responses in infected Drosophila. Furthermore, vDNA synthesis is regulated by the DExD/H helicase domain of Dicer-2 in a mechanism distinct from its role in siRNA generation. We suggest that, analogous to mammalian RIG-I-like receptors, Dicer-2 functions like a pattern recognition receptor for DVGs to modulate antiviral immunity in insects.
Collapse
Affiliation(s)
- Enzo Z Poirier
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France; Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France; University of Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75013 Paris, France
| | - Bertsy Goic
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Lorena Tomé-Poderti
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Jérémy Boussier
- Institut Pasteur, Immunobiology of Dendritic Cells, Institut National de la Santé et de la Recherche Médicale, U1223, 75015 Paris, France
| | - Valérie Gausson
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France; Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Hyelee Loyd
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Laura I Levi
- Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Sophie Lanciano
- Institut de Recherche pour le Développement, DIADE, Université de Montpellier, Université de Perpignan, LGDP, 66860 Perpignan, France
| | - Chloé Baron
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Sarah H Merkling
- Institut Pasteur, Insect-Virus Interactions, Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Louis Lambrechts
- Institut Pasteur, Insect-Virus Interactions, Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Marie Mirouze
- Institut de Recherche pour le Développement, DIADE, Université de Montpellier, Université de Perpignan, LGDP, 66860 Perpignan, France
| | - Susan Carpenter
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France.
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France.
| |
Collapse
|
31
|
Caenorhabditis elegans RIG-I Homolog Mediates Antiviral RNA Interference Downstream of Dicer-Dependent Biogenesis of Viral Small Interfering RNAs. mBio 2017; 8:mBio.00264-17. [PMID: 28325765 PMCID: PMC5362034 DOI: 10.1128/mbio.00264-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dicer enzymes process virus-specific double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) to initiate specific antiviral defense by related RNA interference (RNAi) pathways in plants, insects, nematodes, and mammals. Antiviral RNAi in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), not found in plants and insects but highly homologous to mammalian retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), intracellular viral RNA sensors that trigger innate immunity against RNA virus infection. However, it remains unclear if DRH-1 acts analogously to initiate antiviral RNAi in C. elegans. Here, we performed a forward genetic screen to characterize antiviral RNAi in C. elegans. Using a mapping-by-sequencing strategy, we uncovered four loss-of-function alleles of drh-1, three of which caused mutations in the helicase and C-terminal domains conserved in RLRs. Deep sequencing of small RNAs revealed an abundant population of Dicer-dependent virus-derived small interfering RNAs (vsiRNAs) in drh-1 single and double mutant animals after infection with Orsay virus, a positive-strand RNA virus. These findings provide further genetic evidence for the antiviral function of DRH-1 and illustrate that DRH-1 is not essential for the sensing and Dicer-mediated processing of the viral dsRNA replicative intermediates. Interestingly, vsiRNAs produced by drh-1 mutants were mapped overwhelmingly to the terminal regions of the viral genomic RNAs, in contrast to random distribution of vsiRNA hot spots when DRH-1 is functional. As RIG-I translocates on long dsRNA and DRH-1 exists in a complex with Dicer, we propose that DRH-1 facilitates the biogenesis of vsiRNAs in nematodes by catalyzing translocation of the Dicer complex on the viral long dsRNA precursors. The helicase and C-terminal domains of mammalian RLRs sense intracellular viral RNAs to initiate the interferon-regulated innate immunity against RNA virus infection. Both of the domains from human RIG-I can substitute for the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans, suggesting an analogous role for DRH-1 as an intracellular dsRNA sensor to initiate antiviral RNAi. Here, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in C. elegans. Characterization of four distinct drh-1 mutants obtained from the screen revealed that DRH-1 did not function to initiate antiviral RNAi. We show that DRH-1 acted in a downstream step to enhance Dicer-dependent biogenesis of viral siRNAs in C. elegans. As mammals produce Dicer-dependent viral siRNAs to target RNA viruses, our findings suggest a possible role for mammalian RLRs and interferon signaling in the biogenesis of viral siRNAs.
Collapse
|
32
|
Fitzgerald ME, Rawling DC, Potapova O, Ren X, Kohlway A, Pyle AM. Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding. Nucleic Acids Res 2017; 45:1442-1454. [PMID: 28180316 PMCID: PMC5388420 DOI: 10.1093/nar/gkw816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/25/2022] Open
Abstract
RIG-I is an innate immune receptor that detects and responds to infection by deadly RNA viruses such as influenza, and Hepatitis C. In the cytoplasm, RIG-I is faced with a difficult challenge: it must sensitively detect viral RNA while ignoring the abundance of host RNA. It has been suggested that RIG-I has a ‘proof-reading’ mechanism for rejecting host RNA targets, and that disruptions of this selectivity filter give rise to autoimmune diseases. Here, we directly monitor RNA proof-reading by RIG-I and we show that it is controlled by a set of conserved amino acids that couple RNA and ATP binding to the protein (Motif III). Mutations of this motif directly modulate proof-reading by eliminating or enhancing selectivity for viral RNA, with major implications for autoimmune disease and cancer. More broadly, the results provide a physical explanation for the ATP-gated behavior of SF2 RNA helicases and receptor proteins.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/metabolism
- Amino Acid Substitution
- Autoimmunity
- Binding Sites/genetics
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- HEK293 Cells
- Humans
- Immunity, Innate
- Models, Molecular
- Mutagenesis, Site-Directed
- Neoplasms/genetics
- Neoplasms/metabolism
- Protein Interaction Domains and Motifs
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Viruses/genetics
- RNA Viruses/immunology
- RNA Viruses/pathogenicity
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Immunologic
- Receptors, Pattern Recognition/chemistry
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Megan E. Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - David C. Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Olga Potapova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Xiaoming Ren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
33
|
Abstract
Viruses have evolved a remarkable array of strategies to escape the host's innate immune responses. In this issue of Cell Host & Microbe, Zhao et al. (2016b) reveal a viral strategy to inactivate RIG-I signaling that relies on deamidation of RIG-I.
Collapse
Affiliation(s)
- Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
34
|
Zhao J, Zeng Y, Xu S, Chen J, Shen G, Yu C, Knipe D, Yuan W, Peng J, Xu W, Zhang C, Xia Z, Feng P. A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation. Cell Host Microbe 2016; 20:770-784. [PMID: 27866900 DOI: 10.1016/j.chom.2016.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/08/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
RIG-I detects double-stranded RNA (dsRNA) to trigger antiviral cytokine production. Protein deamidation is emerging as a post-translational modification that chiefly regulates protein function. We report here that UL37 of herpes simplex virus 1 (HSV-1) is a protein deamidase that targets RIG-I to block RNA-induced activation. Mass spectrometry analysis identified two asparagine residues in the helicase 2i domain of RIG-I that were deamidated upon UL37 expression or HSV-1 infection. Deamidation rendered RIG-I unable to sense viral dsRNA, thus blocking its ability to trigger antiviral immune responses and restrict viral replication. Purified full-length UL37 and its carboxyl-terminal fragment were sufficient to deamidate RIG-I in vitro. Uncoupling RIG-I deamidation from HSV-1 infection, by engineering deamidation-resistant RIG-I or introducing deamidase-deficient UL37 into the HSV-1 genome, restored RIG-I activation and antiviral immune signaling. Our work identifies a viral deamidase and extends the paradigm of deamidation-mediated suppression of innate immunity by microbial pathogens.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Yi Zeng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Simin Xu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Jie Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA; Division of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guobo Shen
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Caiqun Yu
- Department of Chemistry, Dornsife College of Arts, Letters, and Sciences, University of Southern California, LJS 369, 840 Downey Way, Los Angeles, CA 90089, USA
| | - David Knipe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Jian Peng
- Division of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Chao Zhang
- Department of Chemistry, Dornsife College of Arts, Letters, and Sciences, University of Southern California, LJS 369, 840 Downey Way, Los Angeles, CA 90089, USA
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
35
|
Ahmad S, Hur S. Helicases in Antiviral Immunity: Dual Properties as Sensors and Effectors. Trends Biochem Sci 2016; 40:576-585. [PMID: 26410598 DOI: 10.1016/j.tibs.2015.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023]
Abstract
Many helicases have a unique ability to couple cognate RNA binding to ATP hydrolysis, which can induce a large conformational change that affects its interaction with RNA, position along RNA, or oligomeric state. A growing number of these helicases contribute to the innate immune system, either as sensors that detect foreign nucleic acids and/or as effectors that directly participate in the clearance of such foreign species. In this review, we discuss a few examples, including retinoic acid-inducible gene-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and Dicer, focusing on their dual functions as both sensors and effectors. We will also discuss the closely related, but less understood, helicases, laboratory of genetics and physiology 2 (LGP2) and Dicer-related helicase-1 and -3 (DRH-1 and -3).
Collapse
Affiliation(s)
- Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
36
|
Zhang X, Yu H, Zhao J, Li X, Li J, He J, Xia Z, Zhao J. IKKϵ negatively regulates RIG-I via direct phosphorylation. J Med Virol 2016; 88:712-8. [PMID: 26354181 DOI: 10.1002/jmv.24376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2015] [Indexed: 02/01/2023]
Abstract
Inhibitor of nuclear factor kappa-B kinase Epsilon (IKKϵ) is an IKK-related kinase. Despite it was originally discovered as a kinase functionally related to TBK-1, studies entailing gene knockout mouse demonstrated that IKKϵ is dispensable for interferon induction by viral infection. In this study, we report that IKKϵ directly phosphorylates a key serine residue within the RNA-binding domain of RIG-I (retinoic acid-inducible gene 1) to inhibit RIG-I-mediate innate immune signaling. Using IKKϵ-deficient MEFs, we found that loss of IKKϵ resulted in increased cytokine production in response to the activation of cytosolic sensors. Biochemical analyses indicated that IKKϵ physically associated with and phosphorylated RIG-I. Mass spectrometry analysis identified that IKKϵ phosphorylated the serine 855 of the RNA-binding pocket of RIG-I carboxyl terminal domain, a residues known to impinge on RNA-binding via phosphorylation. Our findings collectively support the conclusion that IKKϵ modulates innate immune signaling cascades via phosphorylating the RIG-I cytosolic sensor, providing a feedback regulatory mechanism.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Haiyang Yu
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Jun Zhao
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Xiuqing Li
- Department of Medicine, University of Southern California, Los Angeles, California
| | - Jiada Li
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, P. R. China
| | - Jiantai He
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, P. R. China
| | - Jinfeng Zhao
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
37
|
Rawling DC, Fitzgerald ME, Pyle AM. Establishing the role of ATP for the function of the RIG-I innate immune sensor. eLife 2015; 4:e09391. [PMID: 26371557 PMCID: PMC4622095 DOI: 10.7554/elife.09391] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) initiates a rapid innate immune response upon detection and binding to viral ribonucleic acid (RNA). This signal activation occurs only when pathogenic RNA is identified, despite the ability of RIG-I to bind endogenous RNA while surveying the cytoplasm. Here we show that ATP binding and hydrolysis by RIG-I play a key role in the identification of viral targets and the activation of signaling. Using biochemical and cell-based assays together with mutagenesis, we show that ATP binding, and not hydrolysis, is required for RIG-I signaling on viral RNA. However, we show that ATP hydrolysis does provide an important function by recycling RIG-I and promoting its dissociation from non-pathogenic RNA. This activity provides a valuable proof-reading mechanism that enhances specificity and prevents an antiviral response upon encounter with host RNA molecules.
Collapse
Affiliation(s)
- David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
- Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, United States
| |
Collapse
|
38
|
Sinha NK, Trettin KD, Aruscavage PJ, Bass BL. Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol Cell 2015; 58:406-17. [PMID: 25891075 DOI: 10.1016/j.molcel.2015.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
In previous studies we observed that the helicase domain of Drosophila Dicer-2 (dmDcr-2) governs substrate recognition and cleavage efficiency, and that dsRNA termini are key to this discrimination. We now provide a mechanistic basis for these observations. We show that discrimination of termini occurs during initial binding. Without ATP, dmDcr-2 binds 3' overhanging, but not blunt, termini. By contrast, with ATP, dmDcr-2 binds both types of termini, with highest-affinity binding observed with blunt dsRNA. In the presence of ATP, binding, cleavage, and ATP hydrolysis are optimal with BLT termini compared to 3'ovr termini. Limited proteolysis experiments suggest the optimal reactivity of BLT dsRNA is mediated by a conformational change that is dependent on ATP and the helicase domain. We find that dmDcr-2's partner protein, Loquacious-PD, alters termini dependence, enabling dmDcr-2 to cleave substrates normally refractory to cleavage, such as dsRNA with blocked, structured, or frayed ends.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle D Trettin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
39
|
Affiliation(s)
- Rick Russell
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Anchisi S, Guerra J, Garcin D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. mBio 2015; 6:e02349. [PMID: 25736886 PMCID: PMC4358010 DOI: 10.1128/mbio.02349-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Many RNA viruses are detected by retinoic acid-inducible gene i (RIG-I), a cytoplasmic sensor that triggers an antiviral response upon binding non-self-RNA that contains a stretch of double-stranded RNA (dsRNA) bearing a base-paired 5' ppp nucleotide. To gain insight into how RIG-I discriminates between self-RNA and non-self-RNA, we used duplexes whose complementary bottom strand contained both ribo- and deoxynucleotides. These duplexes were examined for their binding to RIG-I and their relative abilities to stimulate ATPase activity, to induce RIG-I dimerization on the duplex, and to induce beta interferon (IFN-β) expression. We show that the chemical nature of the bottom strand is not critical for RIG-I binding. However, two key ribonucleotides, at positions 2 and 5 on the bottom strand, are minimally required for the RIG-I ATPase activity, which is necessary but not sufficient for IFN-β stimulation. We find that duplexes with shorter stretches of dsRNA, as model self-RNAs, bind less stably to RIG-I but nevertheless have an enhanced ability to stimulate the ATPase. Moreover, ATPase activity promotes RIG-I recycling on RIG-I/dsRNA complexes. Since pseudo-self-RNAs bind to RIG-I less stably, they are preferentially recycled by ATP hydrolysis that weakens the helicase domain binding of dsRNA. Our results suggest that one function of the ATPase is to restrict RIG-I signaling to its interaction with non-self-RNA. A model of how this discrimination occurs as a function of dsRNA length is presented. IMPORTANCE The innate immune response to pathogens is based on the discrimination between self-RNA and non-self-RNA. The main determinants of this detection for RNA viruses are specific pathogen-associated molecular patterns (PAMPs) of RNA, which are detected by dedicated cytoplasmic pattern recognition receptors (PRRs). RIG-I is a PRR that specifically detects short viral dsRNAs amid a sea of cellular RNAs. Here we study the determinants of this discrimination and how RIG-I ATPase activity, the only enzymatic activity of this sensor, contributes to its activation in a manner restricted to its interaction with non-self-RNAs. We also show how the innate immune response evolves during infection via IFN expression, from a state in which discrimination of self-RNA from non-self-RNA is most important to one in which this discrimination is sacrificed for the effectiveness of the antiviral response.
Collapse
Affiliation(s)
- Stéphanie Anchisi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jessica Guerra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Epling LB, Grace CR, Lowe BR, Partridge JF, Enemark EJ. Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis. J Mol Biol 2015; 427:1779-1796. [PMID: 25724843 DOI: 10.1016/j.jmb.2015.02.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension ("ATP-binding loop", ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specifically with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. Taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.
Collapse
Affiliation(s)
- Leslie B Epling
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| | - Brandon R Lowe
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 350, Memphis, TN 38105, USA
- Program in Biomedical Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA
| | - Janet F Partridge
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 350, Memphis, TN 38105, USA
- Program in Biomedical Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
- Program in Biomedical Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA
| |
Collapse
|
42
|
Paro S, Imler JL, Meignin C. Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Curr Opin Immunol 2015; 32:106-13. [PMID: 25658360 DOI: 10.1016/j.coi.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 01/03/2023]
Abstract
Induction of antiviral immunity in vertebrates and invertebrates relies on members of the RIG-I-like receptor and Dicer families, respectively. Although these proteins have different size and domain composition, members of both families share a conserved DECH-box helicase domain. This helicase, also known as a duplex RNA activated ATPase, or DRA domain, plays an important role in viral RNA sensing. Crystallographic and electron microscopy studies of the RIG-I and Dicer DRA domains indicate a common structure and that similar conformational changes are induced by dsRNA binding. Genetic and biochemical studies on the function and regulation of DRAs reveal similarities, but also some differences, between viral RNA sensing mechanisms in nematodes, flies and mammals.
Collapse
Affiliation(s)
- Simona Paro
- Antiviral Immunity Group, CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Antiviral Immunity Group, CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- Antiviral Immunity Group, CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
43
|
Zheng J, Yong HY, Panutdaporn N, Liu C, Tang K, Luo D. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res 2015; 43:1216-30. [PMID: 25539915 PMCID: PMC4333383 DOI: 10.1093/nar/gku1329] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022] Open
Abstract
RIG-I and MDA5 are the major intracellular immune receptors that recognize viral RNA species and undergo a series of conformational transitions leading to the activation of the interferon-mediated antiviral response. However, to date, full-length RLRs have resisted crystallographic efforts and a molecular description of their activation pathways remains hypothetical. Here we employ hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to probe the apo states of RIG-I and MDA5 and to dissect the molecular details with respect to distinct RNA species recognition, ATP binding and hydrolysis and CARDs activation. We show that human RIG-I maintains an auto-inhibited resting state owing to the intra-molecular HEL2i-CARD2 interactions while apo MDA5 lacks the analogous intra-molecular interactions and therefore adopts an extended conformation. Our work demonstrates that RIG-I binds and responds differently to short triphosphorylated RNA and long duplex RNA and that sequential addition of RNA and ATP triggers specific allosteric effects leading to RIG-I CARDs activation. We also present a high-resolution protein surface mapping technique that refines the cooperative oligomerization model of neighboring MDA5 molecules on long duplex RNA. Taken together, our data provide a high-resolution view of RLR activation in solution and offer new evidence for the molecular mechanism of RLR activation.
Collapse
Affiliation(s)
- Jie Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, 138673, Singapore
| | - Nantika Panutdaporn
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chuanfa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kai Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, 138673, Singapore
| |
Collapse
|
44
|
Rawling DC, Kohlway AS, Luo D, Ding SC, Pyle AM. The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain. Nucleic Acids Res 2014; 42:11601-11. [PMID: 25217590 PMCID: PMC4191399 DOI: 10.1093/nar/gku817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/16/2014] [Accepted: 08/29/2014] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor expressed in metazoan cells that is responsible for eliciting the production of type I interferons and pro-inflammatory cytokines upon detection of intracellular, non-self RNA. Structural studies of RIG-I have identified a novel Pincer domain composed of two alpha helices that physically tethers the C-terminal domain to the SF2 helicase core. We find that the Pincer plays an important role in mediating the enzymatic and signaling activities of RIG-I. We identify a series of mutations that additively decouple the Pincer motif from the ATPase core and show that this decoupling results in impaired signaling. Through enzymological and biophysical analysis, we further show that the Pincer domain controls coupled enzymatic activity of the protein through allosteric control of the ATPase core. Further, we show that select regions of the HEL1 domain have evolved to potentiate interactions with the Pincer domain, resulting in an adapted ATPase cleft that is now responsive to adjacent domains that selectively bind viral RNA.
Collapse
Affiliation(s)
- David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Andrew S Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dahai Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Steve C Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
45
|
Fitzgerald ME, Rawling DC, Vela A, Pyle AM. An evolving arsenal: viral RNA detection by RIG-I-like receptors. Curr Opin Microbiol 2014; 20:76-81. [PMID: 24912143 PMCID: PMC7108371 DOI: 10.1016/j.mib.2014.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Abstract
RIG-I-like receptors (RLRs) utilize a specialized, multi-domain architecture to detect and respond to invasion by a diverse set of viruses. Structural similarities among these receptors provide a general mechanism for double strand RNA recognition and signal transduction. However, each RLR has developed unique strategies for sensing the specific molecular determinants on subgroups of viral RNAs. As a means to circumvent the antiviral response, viruses escape RLR detection by degrading, or sequestering or modifying their RNA. Patterns of variation in RLR sequence reveal a continuous evolution of the protein domains that contribute to RNA recognition and signaling.
Collapse
Affiliation(s)
- Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | - Adriana Vela
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States.
| |
Collapse
|
46
|
Affiliation(s)
- Jiaxi Wu
- Department of Molecular Biology and
| | - Zhijian J. Chen
- Department of Molecular Biology and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148; ,
| |
Collapse
|
47
|
Luo D. Toward a crystal-clear view of the viral RNA sensing and response by RIG-I-like receptors. RNA Biol 2014; 11:25-32. [PMID: 24457940 DOI: 10.4161/rna.27717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The RIG-I-like receptors (RLRs)--RIG-I, MDA5, and LGP2--detect intracellular pathogenic RNA and elicit an antiviral immune response during viral infection. The protein architecture of the RLR family consists of multiple functional domains, including N-terminal Caspase Activation and Recruitment Domains (CARDs) for signaling initiation, a central RNA helicase core, and a C-terminal domain for RNA sensing. With these specialized sensing-and-responding modules, RLRs are able to selectively bind non-self RNA species and trigger downstream signaling events leading to interferon production. This article summarizes the recent progress toward defining the precise mechanisms of RNA recognition and subsequent signal induction by RLRs.
Collapse
Affiliation(s)
- Dahai Luo
- Lee Kong Chian School of Medicine; Nanyang Technological University; Singapore
| |
Collapse
|
48
|
Fitzgerald ME, Vela A, Pyle AM. Dicer-related helicase 3 forms an obligate dimer for recognizing 22G-RNA. Nucleic Acids Res 2014; 42:3919-30. [PMID: 24435798 PMCID: PMC3973318 DOI: 10.1093/nar/gkt1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dicer is a specialized nuclease that produces RNA molecules of specific lengths for use in gene silencing pathways. Dicer relies on the correct measurement of RNA target duplexes to generate products of specific lengths. It is thought that Dicer uses its multidomain architecture to calibrate RNA product length. However, this measurement model is derived from structural information from a protozoan Dicer, and does not account for the helicase domain present in higher organisms. The Caenorhabditis elegans Dicer-related helicase 3 (DRH-3) is an ortholog of the Dicer and RIG-I family of double-strand RNA activated ATPases essential for secondary siRNA production. We find that DRH-3 specifies 22 bp RNAs by dimerization of the helicase domain, a process mediated by ATPase activity and the N-terminal domain. This mechanism for RNA length discrimination by a Dicer family protein suggests an alternative model for RNA length measurement by Dicer, with implications for recognition of siRNA and miRNA targets.
Collapse
Affiliation(s)
- Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
49
|
Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang QX. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 2014; 3:e01489. [PMID: 24569476 PMCID: PMC3932521 DOI: 10.7554/elife.01489] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI:http://dx.doi.org/10.7554/eLife.01489.001 When infected by a virus, the body will generally launch an immune response to eliminate the infectious agent. Activation of the innate immune system–the first line of defense against infection—requires the host cells to recognize the presence of a pathogen and to sound the alarm once the invader is detected. Viruses can contain DNA or RNA, and when a virus containing double stranded RNA enters a cell, or starts replicating within the cytoplasm, proteins called RIG-I-like receptors (RLRs) will detect these RNA molecules. This will trigger a signaling cascade that results in the production of type I interferons, the proteins that activate cells of the innate immune system. Members of the RLR family of receptors, including RIG-I and MDA5, initiate the signaling cascade by interacting with the mitochondrial antiviral-signaling (MAVS) protein. Recent work revealed that upon activation by RIG-I or MDA5, MAVS proteins aggregate on the surface of mitochondria and form protein filaments. These filaments then activate inactive MAVS proteins, leading to the formation of more filaments. While a region of the MAVS protein called caspase activation and recruitment domain (CARD) is known to be involved in the formation of the filaments, the chemical interactions that govern the formation process have yet to be described. Now, using cryo-electron microscopy, Xu et al. have shown that these filaments are comprised of three-stranded helixes. This came as something of a surprise because other similar filaments known as prions are made of tightly packed beta sheets. Xu et al. went on to visualize full-length MAVS filaments in virus-infected cells, and to verify that mutations that impair the assembly of MAVS filaments also prevent RNA viruses from triggering the production of interferon. These results have the potential to inform future studies of the innate immune response, as well as investigations into the assembly of proteins to form prion-like filaments. DOI:http://dx.doi.org/10.7554/eLife.01489.002
Collapse
Affiliation(s)
- Hui Xu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Parts, assembly and operation of the RIG-I family of motors. Curr Opin Struct Biol 2013; 25:25-33. [PMID: 24878341 DOI: 10.1016/j.sbi.2013.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/21/2022]
Abstract
Host cell invasion is monitored by a series of pattern recognition receptors (PRRs) that activate the innate immune machinery upon detection of a cognate pathogen associated molecular pattern (PAMP). The RIG-I like receptor (RLR) family of PRRs includes three proteins--RIG-I, MDA5, and LGP2--responsible for the detection of intracellular pathogenic RNA. All RLR proteins are built around an ATPase core homologous to those found in canonical Superfamily 2 (SF2) RNA helicases, which has been modified through the addition of novel accessory domains to recognize duplex RNA. This review focuses on the structural bases for pathogen-specific dsRNA binding and ATPase activation in RLRs, differential RNA recognition by RLR family members, and implications for other duplex RNA activated ATPases, such as Dicer.
Collapse
|