1
|
Moura DMN, Soares AL, da Silva A, Ribeiro JLAB, Sunter JD, Assis LA, Carrington M, de Melo Neto OP. Distinct modes of interaction within eIF4F-like complexes and susceptibility to the RocA inhibitor for the Trypanosoma brucei EIF4AI translation initiation factor. PLoS One 2025; 20:e0322812. [PMID: 40343969 PMCID: PMC12063893 DOI: 10.1371/journal.pone.0322812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/27/2025] [Indexed: 05/11/2025] Open
Abstract
Trypanosomatids are parasitic protozoa responsible for major human diseases which are characterized by unique gene expression mechanisms. mRNA translation in these parasites is associated with multiple eIF4F-like complexes, required for mRNA recruitment and ribosome binding. The eukaryotic eIF4F is generally known to require the action of eIF4A, an ATP-dependent RNA helicase, in order to function properly, but not all trypanosomatid eIF4F complexes might require EIF4AI, their single eIF4A homologue. In mammals, eIF4A is known to be targeted by specific inhibitors and can thus be considered a potential target for a selective inhibition of translation in these parasites. Here, aiming to better define the EIF4AI functionality, we started by investigating its interactome in Trypanosoma brucei, confirming a strong interaction with only one of five eIF4F-like complexes found in trypanosomatids, based on the EIF4E4/EIF4G3 subunits. Nevertheless, when the interactome of a mutant EIF4AI (DEAD/DQAD), known to be impacted on its ATPase activity, was investigated, the only eIF4F-like complex found was based on the EIF4E3/EIF4G4 pair, with many translation-related and other proteins also found with the mutant protein. When both wild-type and mutant proteins were also investigated through a fluorescent-based tethering assay, a stimulatory effect on mRNA expression was confirmed for EIF4AI, but not for the mutant protein. Sensitivity to the Rocaglamide A (RocA) inhibitor, which targets the mammalian eIF4A, was also investigated, with the inhibitor blocking the stimulation seen on the tethering assay. Parasite susceptibility to RocA was further assessed in T. brucei and Leishmania infantum, with both, and specially T. brucei, being much less susceptible to the drug than mammalian cells. This phenotype correlates with changes in EIF4AI within the RocA binding pocket where, in comparison with the mammalian eIF4A, a phenylalanine to valine substitution in the T. brucei EIF4AI likely impairs RocA binding. Our results help better define the EIF4AI mode of action in T. brucei and provide relevant data which might support future searches for specific EIF4AI inhibitors.
Collapse
Affiliation(s)
- Danielle M. N. Moura
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Amanda L. Soares
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Adalúcia da Silva
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - João L. A. B. Ribeiro
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ludmila A. Assis
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Mark Carrington
- Department of Biochemistry - University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
2
|
Späth GF, Piel L, Pescher P. Leishmania genomic adaptation: more than just a 36-body problem. Trends Parasitol 2025:S1471-4922(25)00096-0. [PMID: 40316476 DOI: 10.1016/j.pt.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/04/2025]
Abstract
Genome instability has been identified as a major driver of adaptation in fast-growing, eukaryotic cells, including fungi, protists, or cancer. How these cells cope with the toxic effects caused by such copy number variations remains to be elucidated. In recent years, the protist parasites Leishmania spp. have emerged as interesting model pathogens to assess this open question and to study the role of its intrinsic genome instability in fitness gain in culture, experimental infection, and in the field. Here we summarize recent results on Leishmania genomic adaptation and propose thought-provoking evolutionary concepts new to the Leishmania field that need to be considered when mapping genotype-to-phenotype relationships in molecular and epidemiological studies.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France.
| | - Laura Piel
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France
| | - Pascale Pescher
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France
| |
Collapse
|
3
|
Gabiatti B, Freire E, Ferreira da Costa J, Ferrarini M, Reichert Assunção de Matos T, Preti H, Munhoz da Rocha I, Guimarães B, Kramer S, Zanchin N, Holetz F. Trypanosoma cruzi eIF4E3- and eIF4E4-containing complexes bind different mRNAs and may sequester inactive mRNAs during nutritional stress. Nucleic Acids Res 2025; 53:gkae1181. [PMID: 39658061 PMCID: PMC11754739 DOI: 10.1093/nar/gkae1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Many eIF4F and poly(A)-binding protein (PABP) paralogues are found in trypanosomes: six eIF4E, five eIF4G, one eIF4A and two PABPs. They are expressed simultaneously and assemble into different complexes, contrasting the situation in metazoans that use distinct complexes in different cell types/developmental stages. Each eIF4F complex has its own proteins, messenger RNAs (mRNAs) and, consequently, a distinct function. We set out to study the function and regulation of the two eIF4F complexes of the parasite Trypanosoma cruzi and identified the associated proteins and mRNAs of eIF4E3 and eIF4E4 in cells in exponential growth and in nutritional stress, an inducer of differentiation to an infective stage. Upon stress, eIF4G and PABP remain associated with the eIF4E, but the associations with other 43S pre-initiation factors decrease, indicating ribosome attachment is impaired. Most eIF4E3-associated mRNAs encode for proteins involved in anabolic metabolism, while eIF4E4 associate with mRNAs encoding ribosomal proteins as in Trypanosoma brucei. Interestingly, for both eIF4E3/4, more mRNAs were associated in stressed cells than in non-stressed cells, even though these have lower translational efficiencies in stress. In summary, trypanosomes have two co-existing eIF4F complexes associating to different mRNAs, but not stress/differentiation-associated mRNAs. Under stress, both complexes exit translation but remain bound to their mRNA targets.
Collapse
Affiliation(s)
- Bernardo Papini Gabiatti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Eden Ribeiro Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Jimena Ferreira da Costa
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | | | - Henrique Preti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Isadora Munhoz da Rocha
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Nilson Ivo Tonin Zanchin
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Fabíola Barbieri Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| |
Collapse
|
4
|
Anuntasomboon P, Siripattanapipong S, Unajak S, Choowongkomon K, Burchmore R, Leelayoova S, Mungthin M, E-Kobon T. Genome alteration of Leishmania orientalis under Amphotericin B inhibiting conditions. PLoS Negl Trop Dis 2024; 18:e0012716. [PMID: 39689148 DOI: 10.1371/journal.pntd.0012716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Amphotericin B (AmB) is a potent antifungal and antiparasitic medication that exerts its action by disrupting the cell membrane of the leishmanial parasite, leading to its death. Understanding the genetic alterations induced by Amphotericin B is crucial for gaining insights into drug resistance mechanisms and developing more effective treatments against Leishmania infections. As a new Leishmania species, the molecular response of Leishmania orientalis to anti-leishmanial drugs has not been fully explored. In this study, Leishmania orientalis strain PCM2 culture was subjected to AmB exposure at a concentration of 0.03 uM over 72 hours compared to the control. The genomic alteration and transcriptomic changes were investigated by utilising the whole genome and RNA sequencing methods, followed by the analysis of single nucleotide polymorphisms (SNPs), differential gene expression, and chromosomal copy number variations (CNVs) assessed using read depth coverage (RDC) values across the entire genome. The chromosomal CNV analysis showed no significant difference between L. orientalis from the control and AmB-treated groups. The distribution of SNPs displayed notable variability, with higher SNP incidence in the control group compared to the AmB-treated group. Gene ontology analysis unveiled functions of the SNPs -associated genes involved in transporter function, genetic precursor synthesis, and purine nucleotide metabolism. Notably, the impact of AmB treatment on the L. orientalis gene expression profiles exhibited diverse expressional alterations, particularly the downregulation of pivotal genes such as the tubulin alpha chain gene. The intricate interplay between SNPs and gene expression alterations might underscore the complex regulatory networks underlying the AmB resistance of L. orientalis strain PCM2.
Collapse
Affiliation(s)
- Pornchai Anuntasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
5
|
Bezerra MJR, Moura DMN, Freire ER, Holetz FB, Reis CRS, Monteiro TTS, Pinto ARS, Zhang N, Rezende AM, Pereira-Neves A, Figueiredo RCBQ, Clayton C, Field MC, Carrington M, de Melo Neto OP. Distinct mRNA and protein interactomes highlight functional differentiation of major eIF4F-like complexes from Trypanosoma brucei. Front Mol Biosci 2022; 9:971811. [PMID: 36275617 PMCID: PMC9585242 DOI: 10.3389/fmolb.2022.971811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.
Collapse
Affiliation(s)
- Maria J. R. Bezerra
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Eden R. Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | | | | | - Adriana R. S. Pinto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | | | - Christine Clayton
- Heidelberg University Center for Molecular Biology, Heidelberg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Osvaldo P. de Melo Neto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- *Correspondence: Osvaldo P. de Melo Neto,
| |
Collapse
|
6
|
Falk F, Melo Palhares R, Waithaka A, Clayton C. Roles and interactions of the specialized initiation factors EIF4E2, EIF4E5 and EIF4E6 in Trypanosoma brucei: EIF4E2 maintains the abundances of S-phase mRNAs. Mol Microbiol 2022; 118:457-476. [PMID: 36056730 DOI: 10.1111/mmi.14978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei has six versions of the cap-binding translation initiation factor EIF4E. We investigated the functions of EIF4E2, EIF4E3, EIF4E5 and EIF4E6 in bloodstream forms. We confirmed the protein associations previously found in procyclic forms, and detected specific co-purification of some RNA-binding proteins. Bloodstream forms lacking EIF4E5 grew normally and differentiated to replication-incompetent procyclic forms. Depletion of EIF4E6 inhibited bloodstream-form trypanosome growth and translation. EIF4E2 co-purified only the putative RNA binding protein SLBP2. Bloodstream forms lacking EIF4E2 multiplied slowly, had a low maximal cell density, and expressed the stumpy-form marker PAD1, but showed no evidence for enhanced stumpy-form signalling. EIF4E2 knock-out cells differentiated readily to replication-competent procyclic forms. EIF4E2 was strongly associated with a subset of mRNAs that are maximally abundant in S-phase, and these all had decreased abundances in EIF4E2 knock-out cells. Three EIF4E2 target mRNAs are also bound and stabilized by the Pumilio domain protein PUF9. Yeast 2-hybrid results suggested that PUF9 interacts directly with SLBP2, but PUF9 was not detected in EIF4E2 pull-downs. We speculate that the EIF4E2-SLBP2 complex might interact with its target mRNAs, perhaps via PUF9, only early during G1/S, stabilizing the mRNAs in preparation for translation later in S-phase or in early G2.
Collapse
Affiliation(s)
- Franziska Falk
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| | - Rafael Melo Palhares
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany.,Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Giessen, IFZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Albina Waithaka
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| | - Christine Clayton
- Heidelberg University Centre for Molecular Biology (ZMBH), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
7
|
Alonso A, Larraga J, Loayza FJ, Martínez E, Valladares B, Larraga V, Alcolea PJ. Stable Episomal Transfectant Leishmania infantum Promastigotes Over-Expressing the DEVH1 RNA Helicase Gene Down-Regulate Parasite Survival Genes. Pathogens 2022; 11:pathogens11070761. [PMID: 35890006 PMCID: PMC9323391 DOI: 10.3390/pathogens11070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The compartmentalization of untranslated mRNA molecules in granules occurring in many eukaryotic organisms including trypanosomatids involves the formation of complexes between mRNA molecules and RNA-binding proteins (RBPs). The putative ATP-dependent DEAD/H RNA helicase (DEVH1) from Leishmania infantum (Kinetoplastida: Trypanosomatidae) is one such proteins. The objective of this research is finding differentially expressed genes in a stable episomal transfectant L. infantum promastigote line over-expressing DEVH1 in the stationary phase of growth in axenic culture to get insight into the biological roles of this RNA helicase in the parasite. Interestingly, genes related to parasite survival and virulence factors, such as the hydrophilic surface protein/small hydrophilic endoplasmic reticulum protein (HASP/SHERP) gene cluster, an amastin, and genes related to reactive oxygen species detoxification are down-regulated in DEVH1 transfectant promastigotes.
Collapse
Affiliation(s)
- Ana Alonso
- Laboratory of Molecular Parasitology and Vaccines, Biological, Immunological, and Chemical Drug Development for Global Health Unit (BICS), Department of Cellular and Molecular Biology, Center for Biological Research Margarita Salas, Spanish Research Council (CIBMS-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.A.); (J.L.); (F.J.L.); (V.L.)
| | - Jaime Larraga
- Laboratory of Molecular Parasitology and Vaccines, Biological, Immunological, and Chemical Drug Development for Global Health Unit (BICS), Department of Cellular and Molecular Biology, Center for Biological Research Margarita Salas, Spanish Research Council (CIBMS-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.A.); (J.L.); (F.J.L.); (V.L.)
| | - Francisco Javier Loayza
- Laboratory of Molecular Parasitology and Vaccines, Biological, Immunological, and Chemical Drug Development for Global Health Unit (BICS), Department of Cellular and Molecular Biology, Center for Biological Research Margarita Salas, Spanish Research Council (CIBMS-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.A.); (J.L.); (F.J.L.); (V.L.)
| | - Enrique Martínez
- Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Faculty of Pharmacy, University Institute of Public Health of the Canary Islands (IUETSPC), University of La Laguna (ULL), Avda, Astrofísico Francisco, Sánchez s/n, Campus de Anchieta, 38207 La Laguna, Spain; (E.M.); (B.V.)
| | - Basilio Valladares
- Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Faculty of Pharmacy, University Institute of Public Health of the Canary Islands (IUETSPC), University of La Laguna (ULL), Avda, Astrofísico Francisco, Sánchez s/n, Campus de Anchieta, 38207 La Laguna, Spain; (E.M.); (B.V.)
| | - Vicente Larraga
- Laboratory of Molecular Parasitology and Vaccines, Biological, Immunological, and Chemical Drug Development for Global Health Unit (BICS), Department of Cellular and Molecular Biology, Center for Biological Research Margarita Salas, Spanish Research Council (CIBMS-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.A.); (J.L.); (F.J.L.); (V.L.)
| | - Pedro José Alcolea
- Laboratory of Molecular Parasitology and Vaccines, Biological, Immunological, and Chemical Drug Development for Global Health Unit (BICS), Department of Cellular and Molecular Biology, Center for Biological Research Margarita Salas, Spanish Research Council (CIBMS-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.A.); (J.L.); (F.J.L.); (V.L.)
- Correspondence: ; Tel.: +34-9-1837-3112; Fax: +34-9-1536-0432
| |
Collapse
|
8
|
Das S. Analysis of domain organization and functional signatures of trypanosomatid keIF4Gs. Mol Cell Biochem 2022; 477:2415-2431. [PMID: 35585276 DOI: 10.1007/s11010-022-04464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Translation initiation is the first step in three essential processes leading to protein synthesis. It is carried out by proteins called translation initiation factors and ribosomes on the mRNA. One of the critical translation initiation factors in eukaryotes is eIF4G which is a scaffold protein that helps assemble translation initiation complexes that carry out translation initiation which ultimately leads to polypeptide synthesis. Trypanosomatids are a large family of kinetoplastids, some of which are protozoan parasites that cause diseases in humans through transmission by vectors. While the protein translation mechanisms in eukaryotes and prokaryotes are well understood, the protein translation factors and mechanisms in trypanosomatids are poorly understood necessitating further studies. Unlike other eukaryotes, trypanosomatids contain five eIF4G orthologues with diversity in length and sequences. Here, I have used bioinformatics tools to look at trypanosomatid keIF4G orthologue sequences and report that there are similarities and considerable differences in their domains/motifs organization and signature amino acid sequences that are required for different functions as compared to human eIF4G. My analysis suggests that there is likely to be considerable diversity and complexity in trypanosomatid keIF4G functions as compared to other eukaryotes.
Collapse
Affiliation(s)
- Supratik Das
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
9
|
Characterization of an Atypical eIF4E Ortholog in Leishmania, LeishIF4E-6. Int J Mol Sci 2021; 22:ijms222312720. [PMID: 34884522 PMCID: PMC8657474 DOI: 10.3390/ijms222312720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Leishmania parasites are digenetic protists that shuffle between sand fly vectors and mammalian hosts, transforming from flagellated extracellular promastigotes that reside within the intestinal tract of female sand flies to the obligatory intracellular and non-motile amastigotes within mammalian macrophages. Stage differentiation is regulated mainly by post-transcriptional mechanisms, including translation regulation. Leishmania parasites encode six different cap-binding proteins, LeishIF4E1-6, that show poor conservation with their counterparts from higher eukaryotes and among themselves. In view of the changing host milieu encountered throughout their life cycle, we propose that each LeishIF4E has a unique role, although these functions may be difficult to determine. Here we characterize LeishIF4E-6, a unique eIF4E ortholog that does not readily associate with m7GTP cap in either of the tested life forms of the parasite. We discuss the potential effect of substituting two essential tryptophan residues in the cap-binding pocket, expected to be involved in the cap-binding activity, as judged from structural studies in the mammalian eIF4E. LeishIF4E-6 binds to LeishIF4G-5, one of the five eIF4G candidates in Leishmania. However, despite this binding, LeishIF4E-6 does not appear to function as a translation factor. Its episomal overexpression causes a general reduction in the global activity of protein synthesis, which was not observed in the hemizygous deletion mutant generated by CRISPR-Cas9. This genetic profile suggests that LeishIF4E-6 has a repressive role. The interactome of LeishIF4E-6 highlights proteins involved in RNA metabolism such as the P-body marker DHH1, PUF1 and an mRNA-decapping enzyme that is homologous to the TbALPH1.
Collapse
|
10
|
Shrivastava R, Tupperwar N, Schwartz B, Baron N, Shapira M. LeishIF4E-5 Is a Promastigote-Specific Cap-Binding Protein in Leishmania. Int J Mol Sci 2021; 22:3979. [PMID: 33921489 PMCID: PMC8069130 DOI: 10.3390/ijms22083979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Leishmania parasites cycle between sand fly vectors and mammalian hosts, transforming from extracellular promastigotes that reside in the vectors' alimentary canal to obligatory intracellular non-motile amastigotes that are harbored by macrophages of the mammalian hosts. The transition between vector and host exposes them to a broad range of environmental conditions that induces a developmental program of gene expression, with translation regulation playing a key role. The Leishmania genome encodes six paralogs of the cap-binding protein eIF4E. All six isoforms show a relatively low degree of conservation with eIF4Es of other eukaryotes, as well as among themselves. This variability could suggest that they have been assigned discrete roles that could contribute to their survival under the changing environmental conditions. Here, we describe LeishIF4E-5, a LeishIF4E paralog. Despite the low sequence conservation observed between LeishIF4E-5 and other LeishIF4Es, the three aromatic residues in its cap-binding pocket are conserved, in accordance with its cap-binding activity. However, the cap-binding activity of LeishIF4E-5 is restricted to the promastigote life form and not observed in amastigotes. The overexpression of LeishIF4E-5 shows a decline in cell proliferation and an overall reduction in global translation. Immuno-cytochemical analysis shows that LeishIF4E-5 is localized in the cytoplasm, with a non-uniform distribution. Mass spectrometry analysis of proteins that co-purify with LeishIF4E-5 highlighted proteins involved in RNA metabolism, along with two LeishIF4G paralogs, LeishIF4G-1 and LeishIF4G-2. These vary in their conserved eIF4E binding motif, possibly suggesting that they can form different complexes.
Collapse
Affiliation(s)
- Rohit Shrivastava
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| | - Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 50007, India
| | - Bar Schwartz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| | - Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (R.S.); (N.T.); (B.S.); (N.B.)
| |
Collapse
|
11
|
Batool W, Shabbir A, Lin L, Chen X, An Q, He X, Pan S, Chen S, Chen Q, Wang Z, Norvienyeku J. Translation Initiation Factor eIF4E Positively Modulates Conidiogenesis, Appressorium Formation, Host Invasion and Stress Homeostasis in the Filamentous Fungi Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2021; 12:646343. [PMID: 34220879 PMCID: PMC8244596 DOI: 10.3389/fpls.2021.646343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/21/2021] [Indexed: 05/14/2023]
Abstract
Translation initiation factor eIF4E generally mediates the recognition of the 5'cap structure of mRNA during the recruitment of the ribosomes to capped mRNA. Although the eIF4E has been shown to regulate stress response in Schizosaccharomyces pombe positively, there is no direct experimental evidence for the contributions of eIF4E to both physiological and pathogenic development of filamentous fungi. We generated Magnaporthe oryzae eIF4E (MoeIF4E3) gene deletion strains using homologous recombination strategies. Phenotypic and biochemical analyses of MoeIF4E3 defective strains showed that the deletion of MoeIF4E3 triggered a significant reduction in growth and conidiogenesis. We also showed that disruption of MoeIF4E3 partially impaired conidia germination, appressorium integrity and attenuated the pathogenicity of ΔMoeif4e3 strains. In summary, this study provides experimental insights into the contributions of the eIF4E3 to the development of filamentous fungi. Additionally, these observations underscored the need for a comprehensive evaluation of the translational regulatory machinery in phytopathogenic fungi during pathogen-host interaction progression.
Collapse
Affiliation(s)
- Wajjiha Batool
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ammarah Shabbir
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Lin
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Chen
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuli An
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiongjie He
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shu Pan
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuzun Chen
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinghe Chen
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Zonghua Wang,
| | - Justice Norvienyeku
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, The School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Justice Norvienyeku, ;
| |
Collapse
|
12
|
Das S. Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids. Mol Cell Biochem 2020; 476:1037-1049. [PMID: 33169189 DOI: 10.1007/s11010-020-03970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023]
Abstract
Protein translation leading to polypeptide synthesis involves three distinct events, namely, initiation, elongation, and termination. Translation initiation is a multi-step process that is carried out by ribosomes on the mRNA with the assistance of a large number of proteins called translation initiation factors. Trypanosomatids are kinetoplastidas (flagellated protozoans), some of which cause acute disease syndromes in humans. Vector-borne transmission of protozoan parasites like Leishmania and Trypanosoma causes diseases that affect a large section of the world population and lead to significant morbidity and mortality. The mechanisms of translation initiation in higher eukaryotes are relatively well understood. However, structural and functional conservation of initiation factors in trypanosomatids are only beginning to be understood. Studies carried out so far suggests that at least in Leishmania and Trypanosoma eIF4E function may not be restricted to canonical translation initiation and some of the homologues may have alternate/non-canonical functions. Nonetheless, all of them bind the cap analogs, albeit with different efficiencies, indicating that this property may play an important role in the functionality of eIF4Es. Here, I give a brief background of trypanosomatid eIF4Es and revisit the cap-binding signatures of eIF4E orthologues in trypanosomatids, whose genome sequences are available, in detail, in comparison to human eIF4E1 and Trypanosoma cruzi eIF4E5, with an expanded list of members of this group in light of newer findings. The group 1 and 2 eIF4Es may use either a variation of heIF4E1 or T. cruzi eIF4E5 cap-4-binding signatures, while eIF4E5 and eIF4E6 use distinct amino acid contacts.
Collapse
Affiliation(s)
- Supratik Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
13
|
Tupperwar N, Meleppattu S, Shrivastava R, Baron N, Gilad A, Wagner G, Léger-Abraham M, Shapira M. A newly identified Leishmania IF4E-interacting protein, Leish4E-IP2, modulates the activity of cap-binding protein paralogs. Nucleic Acids Res 2020; 48:4405-4417. [PMID: 32232353 PMCID: PMC7192595 DOI: 10.1093/nar/gkaa173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
Translation of most cellular mRNAs in eukaryotes proceeds through a cap-dependent pathway, whereby the cap-binding complex, eIF4F, anchors the preinitiation complex at the 5′ end of mRNAs and regulates translation initiation. The requirement of Leishmania to survive in changing environments can explain why they encode multiple eIF4E (LeishIF4Es) and eIF4G (LeishIF4Gs) paralogs, as each could be assigned a discrete role during their life cycle. Here we show that the expression and activity of different LeishIF4Es change during the growth of cultured promastigotes, urging a search for regulatory proteins. We describe a novel LeishIF4E-interacting protein, Leish4E-IP2, which contains a conserved Y(X)4LΦ IF4E-binding-motif. Despite its capacity to bind several LeishIF4Es, Leish4E-IP2 was not detected in m7GTP-eluted cap-binding complexes, suggesting that it could inhibit the cap-binding activity of LeishIF4Es. Using a functional assay, we show that a recombinant form of Leish4E-IP2 inhibits the cap-binding activity of LeishIF4E-1 and LeishIF4E-3. Furthermore, we show that transgenic parasites expressing a tagged version of Leish4E-IP2 also display reduced cap-binding activities of tested LeishIF4Es, and decreased global translation. Given its ability to bind more than a single LeishIF4E, we suggest that Leish4E-IP2 could serve as a broad-range repressor of Leishmania protein synthesis.
Collapse
Affiliation(s)
- Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shimi Meleppattu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Rohit Shrivastava
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet Gilad
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Mélissa Léger-Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
14
|
Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci 2020; 21:ijms21082981. [PMID: 32340274 PMCID: PMC7215931 DOI: 10.3390/ijms21082981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.
Collapse
|
15
|
eIF4E and Interactors from Unicellular Eukaryotes. Int J Mol Sci 2020; 21:ijms21062170. [PMID: 32245232 PMCID: PMC7139794 DOI: 10.3390/ijms21062170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
eIF4E, the mRNA cap-binding protein, is well known as a general initiation factor allowing for mRNA-ribosome interaction and cap-dependent translation in eukaryotic cells. In this review we focus on eIF4E and its interactors in unicellular organisms such as yeasts and protozoan eukaryotes. In a first part, we describe eIF4Es from yeast species such as Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe. In the second part, we will address eIF4E and interactors from parasite unicellular species—trypanosomatids and marine microorganisms—dinoflagellates. We propose that different strategies have evolved during evolution to accommodate cap-dependent translation to differing requirements. These evolutive “adjustments” involve various forms of eIF4E that are not encountered in all microorganismic species. In yeasts, eIF4E interactors, particularly p20 and Eap1 are found exclusively in Saccharomycotina species such as S. cerevisiae and C. albicans. For protozoan parasites of the Trypanosomatidae family beside a unique cap4-structure located at the 5′UTR of all mRNAs, different eIF4Es and eIF4Gs are active depending on the life cycle stage of the parasite. Additionally, an eIF4E-interacting protein has been identified in Leishmania major which is important for switching from promastigote to amastigote stages. For dinoflagellates, little is known about the structure and function of the multiple and diverse eIF4Es that have been identified thanks to widespread sequencing in recent years.
Collapse
|
16
|
Abstract
Leishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania. Leishmania parasites cycle between sand-fly vectors and mammalian hosts, adapting to changing environmental conditions by driving a stage-specific program of gene expression, which is tightly regulated by translation processes. Leishmania encodes six eIF4E orthologs (LeishIF4Es) and five eIF4G candidates, forming different cap-binding complexes with potentially varying functions. Most LeishIF4E paralogs display temperature sensitivity in their cap-binding activity, except for LeishIF4E1, which maintains its cap-binding activity under all conditions. We used the CRISPR-Cas9 system to successfully generate a null mutant of LeishIF4E1 and examine how its elimination affected parasite physiology. Although the LeishIF4E1–/– null mutant was viable, its growth was impaired, in line with a reduction in global translation. As a result of the mutation, the null LeishIF4E1–/– mutant had a defective morphology, as the cells were round and unable to grow a normal flagellum. This was further emphasized when the LeishIF4E1–/– cells failed to develop the promastigote morphology once they shifted from conditions that generate axenic amastigotes (33°C, pH 5.5) back to neutral pH and 25°C, and they maintained their short flagellum and circular structure. Finally, the LeishIF4E1–/– null mutant displayed difficulty in infecting cultured macrophages. The morphological changes and reduced infectivity of the mutant may be related to differences in the proteomic profile of LeishIF4E1–/– cells from that of controls. All defects monitored in the LeishIF4E1–/– null mutant were reversed in the add-back strain, in which expression of LeishIF4E1 was reconstituted, establishing a strong link between the cellular defects and the absence of LeishIF4E1 expression. IMPORTANCELeishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania.
Collapse
|
17
|
Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania. mSphere 2019; 4:4/5/e00450-19. [PMID: 31484740 PMCID: PMC6731530 DOI: 10.1128/msphere.00450-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Leishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined. The genomes of Leishmania and trypanosomes encode six paralogs of the eIF4E cap-binding protein, known in other eukaryotes to anchor the translation initiation complex. In line with the heteroxenous nature of these parasites, the different LeishIF4E paralogs vary in their biophysical features and their biological behavior. We therefore hypothesize that each has a specialized function, not limited to protein synthesis. Of the six paralogs, LeishIF4E-3 has a weak cap-binding activity. It participates in the assembly of granules that store inactive transcripts and ribosomal proteins during nutritional stress that is experienced in the sand fly. We investigated the role of LeishIF4E-3 in Leishmania mexicana promastigotes using the CRISPR-Cas9 system. We deleted one of the two LeishIF4E-3 alleles, generating a heterologous deletion mutant with reduced LeishIF4E-3 expression. The mutant showed a decline in de novo protein synthesis and growth kinetics, altered morphology, and impaired infectivity. The mutant cells were rounded and failed to transform into the nectomonad-like form, in response to purine starvation. Furthermore, the infectivity of macrophage cells by the LeishIF4E-3(+/−) mutant was severely reduced. These phenotypic features were not observed in the addback cells, in which expression of LeishIF4E-3 was restored. The observed phenotypic changes correlated with the profile of transcripts associated with LeishIF4E-3. These were enriched for cytoskeleton- and flagellum-encoding genes, along with genes for RNA binding proteins. Our data illustrate the importance of LeishIF4E-3 in translation and in the parasite virulence. IMPORTANCELeishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined.
Collapse
|
18
|
Shrivastava R, Drory-Retwitzer M, Shapira M. Nutritional stress targets LeishIF4E-3 to storage granules that contain RNA and ribosome components in Leishmania. PLoS Negl Trop Dis 2019; 13:e0007237. [PMID: 30870425 PMCID: PMC6435199 DOI: 10.1371/journal.pntd.0007237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/26/2019] [Accepted: 02/12/2019] [Indexed: 12/02/2022] Open
Abstract
Leishmania parasites lack pathways for de novo purine biosynthesis. The depletion of purines induces differentiation into virulent metacyclic forms. In vitro, the parasites can survive prolonged periods of purine withdrawal changing their morphology to long and slender cells with an extended flagellum, and decreasing their translation rates. Reduced translation leads to the appearance of discrete granules that contain LeishIF4E-3, one of the six eIF4E paralogs encoded by the Leishmania genome. We hypothesize that each is responsible for a different function during the life cycle. LeishIF4E-3 is a weak cap-binding protein paralog, but its involvement in translation under normal conditions cannot be excluded. However, in response to nutritional stress, LeishIF4E-3 concentrates in specific cytoplasmic granules. LeishIF4E-3 granulation can be induced by the independent elimination of purines, amino acids and glucose. As these granules contain mature mRNAs, we propose that these bodies store inactive transcripts until recovery from stress occurs. In attempt to examine the content of the nutritional stress-induced granules, they were concentrated over sucrose gradients and further pulled-down by targeting in vivo tagged LeishIF4E-3. Proteomic analysis highlighted granule enrichment with multiple ribosomal proteins, suggesting that ribosome particles are abundant in these foci, as expected in case of translation inhibition. RNA-binding proteins, RNA helicases and metabolic enzymes were also enriched in the granules, whereas no degradation enzymes or P-body markers were detected. The starvation-induced LeishIF4E-3-containing granules, therefore, appear to store stalled ribosomes and ribosomal subunits, along with their associated mRNAs. Following nutritional stress, LeishIF4E-3 becomes phosphorylated at position S75, located in its less-conserved N-terminal extension. The ability of the S75A mutant to form granules was reduced, indicating that cellular signaling regulates LeishIF4E-3 function. Cells respond to cellular stress by decreasing protein translation, to prevent the formation of partially folded or misfolded new polypeptides whose accumulation can be detrimental to living cells. Under such conditions, the cells benefit from storing inactive mRNAs and stalled ribosomal particles, to maintain their availability once conditions improve; dedicated granules offer a solution for such storage. Leishmania parasites are exposed to a variety of stress conditions as a natural part of their life cycle, including the nutritional stress that the parasites experience within the gut of the sandfly. Thus, Leishmania and related trypanosomatids serve as a good model system to investigate RNA fate during different stress conditions. Various granules appear in Leishmania and related organisms in response to different stress conditions. Here, we investigated how nutritional stress, in particular elimination of purines, induced the formation of granules that harbor a specific cap-binding protein, LeishIF4E-3. The starvation-induced LeishIF4E-3 containing granules consist of a variety of ribosomal proteins, along with RNA-binding proteins and mature mRNAs. We thus propose that Leishmania modulates the assembly of LeishIF4E-3-containing granules for transient storage of stalled ribosomal particles and inactive mRNAs. Following renewal of nutrient availability, as occurs during the parasite’s life cycle, the granules disappear. Although their fate is yet unclear, they could be recycled in the cell. Unlike other granules described in trypanosomes, the LeishIF4E-3-containing granules did not contain RNA degradation enzymes, suggesting that their function is mainly for storage until conditions improve.
Collapse
Affiliation(s)
- Rohit Shrivastava
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matan Drory-Retwitzer
- Department of Computer Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
19
|
de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol 2018; 15:739-755. [PMID: 29569995 DOI: 10.1080/15476286.2018.1445958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.
Collapse
Affiliation(s)
| | | | - Kleison C Merlo
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | - Tatiany P Romão
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Ludmila A Assis
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Camila C Xavier
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | | | - Barbara Papadopoulou
- c CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology , Laval University , Quebec , QC , Canada
| |
Collapse
|
20
|
Freire ER, Moura DMN, Bezerra MJR, Xavier CC, Morais-Sobral MC, Vashisht AA, Rezende AM, Wohlschlegel JA, Sturm NR, de Melo Neto OP, Campbell DA. Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr Genet 2017; 64:821-839. [DOI: 10.1007/s00294-017-0795-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
21
|
The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Pathogens 2017; 6:pathogens6040055. [PMID: 29077018 PMCID: PMC5750579 DOI: 10.3390/pathogens6040055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatid protozoa are unusual eukaryotes that are well known for having unusual ways of controlling their gene expression. The lack of a refined mode of transcriptional control in these organisms is compensated by several post-transcriptional control mechanisms, such as control of mRNA turnover and selection of mRNA for translation, that may modulate protein synthesis in response to several environmental conditions found in different hosts. In other eukaryotes, selection of mRNA for translation is mediated by the complex eIF4F, a heterotrimeric protein complex composed by the subunits eIF4E, eIF4G, and eIF4A, where the eIF4E binds to the 5'-cap structure of mature mRNAs. In this review, we present and discuss the characteristics of six trypanosomatid eIF4E homologs and their associated proteins that form multiple eIF4F complexes. The existence of multiple eIF4F complexes in trypanosomatids evokes exquisite mechanisms for differential mRNA recognition for translation.
Collapse
|
22
|
Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. J Biosci 2017; 42:189-207. [PMID: 28229978 DOI: 10.1007/s12038-016-9660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.
Collapse
|
23
|
Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006245. [PMID: 28257521 PMCID: PMC5352147 DOI: 10.1371/journal.ppat.1006245] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. Trypanosomes are the causative agent of major parasitic diseases such as African sleeping sickness, leishmaniosis and Chagas' disease that affect millions of people. These parasites cycle between an insect and a mammalian host. Communication between the parasites and the host must be essential for executing a productive infection and for cycling of the parasite between its hosts. Exosomes are 40-100nm vesicles of endocytic origin, and were shown to affect a variety of biological processes and human diseases. Exosomes were also shown to help pathogens evade the immune system. In this study, we demonstrate that exosomes are secreted from Trypanosoma brucei parasites when trans-splicing is inhibited. These exosomes contain, among many other constituents, a type of RNA known as spliced leader RNA (SL RNA), which is essential in these parasites for formation of all mature mRNA. These exosomes are able to enter neighboring trypanosomes, and only intact exosomes affect the social motility of these parasites. We propose that exosomes can potentially control parasite migration in the insect host by acting as a repellent that drives the fit parasites away from either damaged cells or an unfavorable environment. This mechanism could secure a productive infection.
Collapse
|
24
|
Doehl JSP, Sádlová J, Aslan H, Pružinová K, Metangmo S, Votýpka J, Kamhawi S, Volf P, Smith DF. Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host. PLoS Pathog 2017; 13:e1006130. [PMID: 28095465 PMCID: PMC5271408 DOI: 10.1371/journal.ppat.1006130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/27/2017] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.
Collapse
Affiliation(s)
- Johannes S. P. Doehl
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hamide Aslan
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kateřina Pružinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sonia Metangmo
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
25
|
Moura DMN, Reis CRS, Xavier CC, da Costa Lima TD, Lima RP, Carrington M, de Melo Neto OP. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biol 2015; 12:305-19. [PMID: 25826663 DOI: 10.1080/15476286.2015.1017233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.
Collapse
Affiliation(s)
- Danielle M N Moura
- a Centro de Pesquisas Aggeu Magalhães; Fundação Oswaldo Cruz ; Campus UFPE; Recife , PE , Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
de Melo Neto OP, da Costa Lima TDC, Xavier CC, Nascimento LM, Romão TP, Assis LA, Pereira MMC, Reis CRS, Papadopoulou B. The unique Leishmania EIF4E4 N-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation. RNA Biol 2015; 12:1209-21. [PMID: 26338184 DOI: 10.1080/15476286.2015.1086865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation. Here, we provide novel insights on the Leishmania infantum EIF4E4 function and regulation. We show that EIF4E4 is constitutively expressed throughout the parasite development but is preferentially phosphorylated in exponentially grown promastigote and amastigote life stages, hence correlating with high levels of translation. Phosphorylation targets multiple serine-proline or threonine-proline residues within the N-terminal extension of EIF4E4 but does not require binding to the EIF4E4's partner, EIF4G3, or to the cap structure. We also report that EIF4E4 interacts with PABP1 through 3 conserved boxes at the EIF4E4 N-terminus and that this interaction is a prerequisite for efficient EIF4E4 phosphorylation. EIF4E4 is essential for Leishmania growth and an EIF4E4 null mutant was only obtained in the presence of an ectopically provided wild type gene. Complementation for the loss of EIF4E4 with several EIF4E4 mutant proteins affecting either phosphorylation or binding to mRNA or to EIF4E4 protein partners revealed that, in contrast to other eukaryotes, only the EIF4E4-PABP1 interaction but neither the binding to EIF4G3 nor phosphorylation is essential for translation. These studies also demonstrated that the lack of both EIF4E4 phosphorylation and EIF4G3 binding leads to a non-functional protein. Altogether, these findings further highlight the unique features of the translation initiation process in trypanosomatid protozoa.
Collapse
Affiliation(s)
- Osvaldo P de Melo Neto
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Tamara D C da Costa Lima
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Camila C Xavier
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Larissa M Nascimento
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil.,b CHU de Quebec Research Center and Department of Microbiology ; Infectious Disease and Immunology; Laval University ; Quebec, QC , Canada
| | - Tatiany P Romão
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Ludmila A Assis
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Mariana M C Pereira
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Christian R S Reis
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Barbara Papadopoulou
- b CHU de Quebec Research Center and Department of Microbiology ; Infectious Disease and Immunology; Laval University ; Quebec, QC , Canada
| |
Collapse
|
27
|
Afonso-Lehmann RN, Thomas MC, Santana-Morales MA, Déniz D, López MC, Valladares B, Martínez-Carretero E. A DEVH-box RNA Helicase from Leishmania braziliensis is Associated to mRNA Cytoplasmic Granules. Protist 2015; 166:457-67. [PMID: 26284493 DOI: 10.1016/j.protis.2015.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022]
Abstract
RNA helicases are ubiquitous enzymes that participate in almost all aspects of RNA processing, including RNA and RNA-protein complex remodelling. In trypanosomatids, which post-transcriptionally regulate gene expression, the formation of different kinds of ribonucleoprotein granules under stress conditions modulates the parasite's RNA metabolism. This paper describes the isolation of a putative DEVH-box RNA helicase produced by promastigotes of Leishmania braziliensis. Using a Cy3-labelled dT30 oligo, FISH showed the localization of this protein to mRNA granules under starvation stress conditions. The central region of the protein was shown to be responsible for this behaviour.
Collapse
Affiliation(s)
- Raquel N Afonso-Lehmann
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain; Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Maria C Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Maria A Santana-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain
| | - Daniel Déniz
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain
| | - Manuel C López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain
| | - Enrique Martínez-Carretero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain.
| |
Collapse
|
28
|
Meleppattu S, Kamus-Elimeleh D, Zinoviev A, Cohen-Mor S, Orr I, Shapira M. The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucleic Acids Res 2015; 43:6222-35. [PMID: 26092695 PMCID: PMC4513851 DOI: 10.1093/nar/gkv564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic initiation factor 3 (eIF3) is a multi-protein complex and a key participant in the assembly of the translation initiation machinery. In mammals, eIF3 comprises 13 subunits, most of which are characterized by conserved structural domains. The trypanosomatid eIF3 subunits are poorly conserved. Here, we identify 12 subunits that comprise the Leishmania eIF3 complex (LeishIF3a-l) by combining bioinformatics with affinity purification and mass spectrometry analyses. These results highlight the strong association of LeishIF3 with LeishIF1, LeishIF2 and LeishIF5, suggesting the existence of a multi-factor complex. In trypanosomatids, the translation machinery is tightly regulated in the different life stages of these organisms as part of their adaptation and survival in changing environments. We, therefore, addressed the mechanism by which LeishIF3 is recruited to different mRNA cap-binding complexes. A direct interaction was observed in vitro between the fully assembled LeishIF3 complex and recombinant LeishIF4G3, the canonical scaffolding protein of the cap-binding complex in Leishmania promastigotes. We further highlight a novel interaction between the C-terminus of LeishIF3a and LeishIF4E1, the only cap-binding protein that efficiently binds the cap structure under heat shock conditions, anchoring a complex that is deficient of any MIF4G-based scaffolding subunit.
Collapse
Affiliation(s)
- Shimi Meleppattu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dikla Kamus-Elimeleh
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alexandra Zinoviev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shahar Cohen-Mor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irit Orr
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
29
|
Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel TN, Subota I, Schlosser A, Carrington M, Kramer S. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Res 2015; 43:8013-32. [PMID: 26187993 PMCID: PMC4652759 DOI: 10.1093/nar/gkv731] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/07/2015] [Indexed: 02/07/2023] Open
Abstract
RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function.
Collapse
Affiliation(s)
- Melanie Fritz
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Vanselow
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nadja Sauer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stephanie Lamer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Carina Goos
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ines Subota
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Mark Carrington
- Department of Biochemistry, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
30
|
Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, Nascimento JDF, Stepinski J, Darzynkiewicz E, Hill K, De Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2014; 20:1272-86. [PMID: 24962368 PMCID: PMC4105752 DOI: 10.1261/rna.045534.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.
Collapse
Affiliation(s)
- Eden R Freire
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Amaranta M Malvezzi
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edwin A Saada
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Janaína De F Nascimento
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Kent Hill
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Osvaldo P De Melo Neto
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - David A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|