1
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Dantas R, Brocchi M, Pacheco Fill T. Chemical-Biology and Metabolomics Studies in Phage-Host Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:71-100. [PMID: 37843806 DOI: 10.1007/978-3-031-41741-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
For many years, several studies have explored the molecular mechanisms involved in the infection of bacteria by their specific phages to understand the main infection strategies and the host defense strategies. The modulation of the mechanisms involved in the infection, as well as the expression of key substances in the development of the different life cycles of phages, function as a natural source of strategies capable of promoting the control of different pathogens that are harmful to human and animal health. Therefore, this chapter aims to provide an overview of the mechanisms involved in virus-bacteria interaction to explore the main compounds produced or altered as a chemical survival strategy and the metabolism modulation when occurring a host-phage interaction. In this context, emphasis will be given to the chemistry of peptides/proteins and enzymes encoded by bacteriophages in the control of pathogenic bacteria and the use of secondary metabolites recently reported as active participants in the mechanisms of phage-bacteria interaction. Finally, metabolomics strategies developed to gain new insights into the metabolism involved in the phage-host interaction and the metabolomics workflow in host-phage interaction will be presented.
Collapse
Affiliation(s)
- Rodolfo Dantas
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zhang B, Wang H, Zhao W, Shan C, Liu C, Gao L, Zhao R, Ao P, Xiao P, Lv L, Gao H. New insights into the construction of wild-type Saba pig-derived Escherichia coli irp2 gene deletion strains. 3 Biotech 2021; 11:408. [PMID: 34466347 PMCID: PMC8363713 DOI: 10.1007/s13205-021-02951-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/27/2021] [Indexed: 01/24/2023] Open
Abstract
To construct wild-type E. coli irp2 gene deletion strains, CRISPR/Cas9 gene editing technology was used, and the difficulty and key points of gene editing of wild-type strains were analyzed. Based on the resistance of the CRISPR/Cas9 system expression vector, 4 strains of 41 E. coli strains isolated from Saba pigs were selected as the target strains for the deletion of the irp2 gene, which were sensitive to both ampicillin and kanamycin. Then, CRISPR/Cas9 technology was combined with homologous recombination technology to construct recombinant vectors containing Cas9, sgRNA and donor sequences to knock out the irp2 gene. Finally, the absence of the irp2 gene in E. coli was further verified by iron uptake assays, iron carrier production assays and growth curve measurements. The results showed that three of the selected strains showed single base mutations and deletions (Δirp2-1, Δirp2-2 and Δirp2-3). The deletion of the irp2 gene reduced the ability of E. coli to take up iron ions and produce iron carriers, but not affect the growth characteristics of E. coli. It is shown that the CRISPR/Cas9 knock-out system constructed in this study can successfully knock out the irp2 gene of the wild-type E. coli. Our results providing new insights into genome editing in wild-type strains, which enable further functional studies of the irp2 gene in wild-type E. coli.
Collapse
Affiliation(s)
- Bo Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Hongdan Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Weiwei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Chaoying Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Libo Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Pingxing Ao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Longbao Lv
- Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| |
Collapse
|
5
|
Guerin E, Hill C. Shining Light on Human Gut Bacteriophages. Front Cell Infect Microbiol 2020; 10:481. [PMID: 33014897 PMCID: PMC7511551 DOI: 10.3389/fcimb.2020.00481] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut is a complex environment that contains a multitude of microorganisms that are collectively termed the microbiome. Multiple factors have a role to play in driving the composition of human gut bacterial communities either toward homeostasis or the instability that is associated with many disease states. One of the most important forces are likely to be bacteriophages, bacteria-infecting viruses that constitute by far the largest portion of the human gut virome. Despite this, bacteriophages (phages) are the one of the least studied residents of the gut. This is largely due to the challenges associated with studying these difficult to culture entities. Modern high throughput sequencing technologies have played an important role in improving our understanding of the human gut phageome but much of the generated sequencing data remains uncharacterised. Overcoming this requires database-independent bioinformatic pipelines and even those phages that are successfully characterized only provide limited insight into their associated biological properties, and thus most viral sequences have been characterized as “viral dark matter.” Fundamental to understanding the role of phages in shaping the human gut microbiome, and in turn perhaps influencing human health, is how they interact with their bacterial hosts. An essential aspect is the isolation of novel phage-bacteria host pairs by direct isolation through various screening methods, which can transform in silico phages into a biological reality. However, this is also beset with multiple challenges including culturing difficulties and the use of traditional methods, such as plaquing, which may bias which phage-host pairs that can be successfully isolated. Phage-bacteria interactions may be influenced by many aspects of complex human gut biology which can be difficult to reproduce under laboratory conditions. Here we discuss some of the main findings associated with the human gut phageome to date including composition, our understanding of phage-host interactions, particularly the observed persistence of virulent phages and their hosts, as well as factors that may influence these highly intricate relationships. We also discuss current methodologies and bottlenecks hindering progression in this field and identify potential steps that may be useful in overcoming these hurdles.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Wang J, Bai P, Li Q, Lin Y, Huo D, Ke F, Zhang Q, Li T, Zhao J. Interaction between cyanophage MaMV-DC and eight Microcystis strains, revealed by genetic defense systems. HARMFUL ALGAE 2019; 85:101699. [PMID: 31810530 DOI: 10.1016/j.hal.2019.101699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Cyanophage MaMV-DC is a member of Myoviridae that was reported to specifically infect and lyse Microcystis aeruginosa FACHB-524 among 21 selected cyanobacterial strains. We reidentified the infection specificity of MaMV-DC among seven other Microcystis strains of different species. In our experiments, MaMV-DC infected three Microcystis strains but did not form plaque in Microcystis lawns. This indicated that MaMV-DC is at least a genus- rather than strain-specific virus. Cyanophage MaMV-DC genes were transcribed in M. aeruginosa FACHB-524, M. flos-aquae TF09, M. aeruginosa TA09 and M. wesenbergii DW09, and the growth of these Microcystis strains was inhibited by the addition of MaMV-DC. The predicted defense of eight Microcystis strains by CRISPR-Cas systems has shown mixed consistency with the infection experiment results, suggesting other defense or anti-defense systems play roles during infection process. Restriction-modification (RM) system analysis revealed an abundance of four types of RM proteins that may play roles in defense against cyanophages.
Collapse
Affiliation(s)
- Juanping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Peng Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Da Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
8
|
Gholizadeh P, Aghazadeh M, Asgharzadeh M, Kafil HS. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis 2017; 36:2043-2051. [PMID: 28601970 DOI: 10.1007/s10096-017-3036-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) coupled with CRISPR-associated (Cas) proteins (CRISPR/Cas) are the adaptive immune system of eubacteria and archaebacteria. This system provides protection of bacteria against invading foreign DNA, such as transposons, bacteriophages and plasmids. Three-stage processes in this system for immunity against foreign DNAs are defined as adaptation, expression and interference. Recent studies suggested a correlation between the interfering of the CRISPR/Cas locus, acquisition of antibiotic resistance and pathogenicity island. In this review article, we demonstrate and discuss the CRISPR/Cas system's roles in interference with acquisition of antibiotic resistance and pathogenicity island in some eubacteria. Totally, these systems function as the adaptive immune system of bacteria against invading foreign DNA, blocking the acquisition of antibiotic resistance and virulence factor, detecting serotypes, indirect effects of CRISPR self-targeting, associating with physiological functions, associating with infections in humans at the transmission stage, interfering with natural transformation, a tool for genome editing in genome engineering, monitoring foodborne pathogens etc. These results showed that the CRISPR/Cas system might prevent the emergence of virulence both in vitro and in vivo. Moreover, this system was shown to be a strong selective pressure for the acquisition of antibiotic resistance and virulence factor in bacterial pathogens.
Collapse
Affiliation(s)
- P Gholizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Aghazadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Asgharzadeh
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Proc Natl Acad Sci U S A 2017; 114:E5113-E5121. [PMID: 28438998 DOI: 10.1073/pnas.1616395114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The type I-F CRISPR adaptive immune system in Pseudomonas aeruginosa (PA14) consists of two CRISPR loci and six CRISPR-associated (cas) genes. Type I-F systems rely on a CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease (i.e., Cas2/3) for target degradation. In most type I systems, Cas2 and Cas3 are separate proteins involved in adaptation and interference, respectively. However, in I-F systems, these proteins are fused into a single polypeptide. Here we use biochemical and structural methods to show that two molecules of Cas2/3 assemble with four molecules of Cas1 (Cas2/32:Cas14) into a four-lobed propeller-shaped structure, where the two Cas2 domains form a central hub (twofold axis of symmetry) flanked by two Cas1 lobes and two Cas3 lobes. We show that the Cas1 subunits repress Cas2/3 nuclease activity and that foreign DNA recognition by the Csy complex activates Cas2/3, resulting in bidirectional degradation of DNA targets. Collectively, this work provides a structure of the Cas1-2/3 complex and explains how Cas1 and the target-bound Csy complex play opposing roles in the regulation of Cas2/3 nuclease activity.
Collapse
|
10
|
Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol 2016; 1:16085. [DOI: 10.1038/nmicrobiol.2016.85] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 12/26/2022]
|
11
|
Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE, Pougach K, Logacheva M, Wiedenheft B, Davidson AR, Severinov K, Semenova E. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res 2015; 43:10848-60. [PMID: 26586803 PMCID: PMC4678832 DOI: 10.1093/nar/gkv1261] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems.
Collapse
Affiliation(s)
- Daria Vorontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sofia Medvedeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Joseph Bondy-Denomy
- Department of Molecular Genetics and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ekaterina E Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia Pougach
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Alan R Davidson
- Department of Molecular Genetics and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Abstract
The biological arms race generally involves the rapid co-evolution of anti-virus systems in host organisms and of anti-anti-virus systems in their viral parasites. The CRISPR-Cas system is an example of a prokaryotic immune system in which such co-evolution occurs, as was recently demonstrated by the characterization of a set of viral anti-CRISPR proteins.
Collapse
Affiliation(s)
- John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein, 6703, HB, Wageningen, The Netherlands.
| | - Stan J J Brouns
- Laboratory of Microbiology, Wageningen University, Dreijenplein, 6703, HB, Wageningen, The Netherlands
| |
Collapse
|
13
|
Yang S, Liu J, Shao F, Wang P, Duan G, Yang H. Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus. Biochem Biophys Res Commun 2015; 464:894-900. [PMID: 26188514 DOI: 10.1016/j.bbrc.2015.07.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/13/2015] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause serious infections, even death. Because of the horizontal gene transfer (HGT) of antibiotic resistance genes, the drug resistant condition is becoming increasingly prevalent. Recently, an adaptive immunity system, named clustered regularly interspaced short palindromic repeats (CRISPR), was discovered and demonstrated to confer a defense against foreign invading elements that may carry the antibiotic resistance genes. In this study, we reveal the features of 45 identified CRISPR loci and the CRISPR associated gene (Cas) in 32 S. aureus strains from CRISPR database. Five spacers of S. aureus 08BA02176 and MSHR1132 were homologous with foreign genetic sequences from phages or plasmids, even containing a spacer sequence identical to part of some phages' genomes containing lukPV gene that encodes the PVL toxin. Many S. aureus strains with the same CRISPR type shared the same MLST type. CRISPR loci that had 3 or more similar protein loci mostly belonged to the same CRISPR type. We came to the conclusion that the CRISPR/Cas of strains 08BA02176 and MSHR1132 were inherited from a common ancestor or recombined from Staphylococcus lugdunensis. CRISPR loci can be mobilized and can transfer among different but closely related species, and the same types of MLST strains exhibit a higher affinity to the same types of CRISPR loci. Bacteriophages may be the predominant challenge facing S. aureus. The CRISPR/Cas structure may limit the transmission of bacterial virulence among S. aureus.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fuye Shao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengfei Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Rollins MF, Schuman JT, Paulus K, Bukhari HS, Wiedenheft B. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Res 2015; 43:2216-22. [PMID: 25662606 PMCID: PMC4344526 DOI: 10.1093/nar/gkv094] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Type I-F CRISPR-mediated (clustered regularly interspaced short palindromic repeats) adaptive immune system in Pseudomonas aeruginosa consists of two CRISPR loci and six CRISPR-associated (cas) genes. Foreign DNA surveillance is performed by a complex of Cas proteins (Csy1–4) that assemble with a CRISPR RNA (crRNA) into a 350-kDa ribonucleoprotein called the Csy complex. Here, we show that foreign nucleic acid recognition by the Csy complex proceeds through sequential steps, initiated by detection of two consecutive guanine–cytosine base pairs (G–C/G–C) located adjacent to the complementary DNA target. We show that this motif, called the PAM (protospacer adjacent motif), must be double-stranded and that single-stranded PAMs do not provide significant discriminating power. Binding assays performed with G–C/G–C-rich competitor sequences indicate that the Csy complex interacts directly with this dinucleotide motif, and kinetic analyses reveal that recognition of a G–C/G–C motif is a prerequisite for crRNA-guided binding to a target sequence. Together, these data indicate that the Csy complex first interacts with G–C/G–C base pairs and then samples adjacent target sequences for complementarity to the crRNA guide.
Collapse
Affiliation(s)
- MaryClare F. Rollins
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Kirra Paulus
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Habib S.T. Bukhari
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- To whom correspondence should be addressed. Tel: +1 406 994 5009; Fax: +1 406 994 4926;
| |
Collapse
|
15
|
Zhao Y, Dai Z, Liang Y, Yin M, Ma K, He M, Ouyang H, Teng CB. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep 2014; 4:3943. [PMID: 24487629 PMCID: PMC3909901 DOI: 10.1038/srep03943] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/13/2014] [Indexed: 02/06/2023] Open
Abstract
Here, we report a convenient and efficient miRNA inhibition strategy employing the CRISPR system. Using specifically designed gRNAs, miRNA gene has been cut at a single site by Cas9, resulting in knockdown of the miRNA in murine cells. Using a modified CRISPR interference system (CRISPRi), inactive Cas9 can reversibly prevent the expression of both monocistronic miRNAs and polycistronic miRNA clusters. Furthermore, CRISPR/CRISPRi is also capable of suppressing genes in porcine cells.
Collapse
Affiliation(s)
- Yicheng Zhao
- College of life science, Northeast Forestry University, Harbin, China
- Department of Biochemistry, College of Animal Sciences, Jilin University, China
- These authors contributed equally to this work
| | - Zhen Dai
- Department of Biochemistry, College of Animal Sciences, Jilin University, China
- These authors contributed equally to this work
| | - Yang Liang
- College of life science, Northeast Forestry University, Harbin, China
- These authors contributed equally to this work
| | - Ming Yin
- College of Veterinary Medicine, Jilin University, China
| | - Kuiying Ma
- College of Veterinary Medicine, Jilin University, China
| | - Mei He
- College of life science, Northeast Forestry University, Harbin, China
| | - Hongsheng Ouyang
- Department of Biochemistry, College of Animal Sciences, Jilin University, China
| | - Chun-Bo Teng
- College of life science, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems that protect bacteria and archaea from infection by viruses are now being routinely repurposed for genome engineering in a wide variety of cell types and multicellular organisms.
Collapse
Affiliation(s)
- Royce Wilkinson
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| | - Blake Wiedenheft
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| |
Collapse
|
17
|
Abstract
Bacteria and their viral predators (bacteriophages) are locked in a constant battle. In order to proliferate in phage-rich environments, bacteria have an impressive arsenal of defence mechanisms, and in response, phages have evolved counter-strategies to evade these antiviral systems. In this Review, we describe the various tactics that are used by phages to overcome bacterial resistance mechanisms, including adsorption inhibition, restriction-modification, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems and abortive infection. Furthermore, we consider how these observations have enhanced our knowledge of phage biology, evolution and phage-host interactions.
Collapse
|
18
|
|