1
|
Gao K, Chen Y, Wang P, Chang W, Cao B, Luo L. GATA4: Regulation of expression and functions in goat granulosa cells. Domest Anim Endocrinol 2024; 89:106859. [PMID: 38810369 DOI: 10.1016/j.domaniend.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
GATA4 plays a pivotal role in the reproductive processes of mammals. However, the research on GATA4 in goat ovary is limited. This study aimed to study the expression and function of GATA4 in goat ovary. Utilizing real-time PCR and western blot analysis, we studied the expression and regulatory mechanisms of GATA4 in goat ovary and granulosa cells (GCs). We found that GATA4 was expressed in all follicle types in the goat ovary, with significantly higher levels in GCs of larger follicles (>3 mm) compared to those in smaller follicles (<3 mm). Additionally, we demonstrated that human chorionic gonadotrophin (hCG) induced GATA4 mRNA expression via the activation of PKA, MEK, p38 MAPK, PKC, and PI3K pathways in vitro. Our study also showed that hCG suppressed the levels of miR-200b and miR-429, which in turn directly target GATA4, thereby modulating the basal and hCG-induced expression of GATA4. Functionally, we examined the effect of siRNA-mediated GATA4 knockdown on cell proliferation and hormone secretion in goat GCs. Our results revealed that knockdown of GATA4, miR-200b, and miR-429 suppressed cell proliferation. Moreover, knockdown of GATA4 decreased estradiol and progesterone production by inhibiting the promoter activities of CYP11A1, CYP19A1, HSD3B, and StAR. Collectively, our findings suggest a critical involvement of GATA4 in regulating goat GC survival and steroidogenesis.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Yeda Chen
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China.
| |
Collapse
|
2
|
Kazemi Shariat Panahi H, Dehhaghi M, Guillemin GJ, Peng W, Aghbashlo M, Tabatabaei M. Targeting microRNAs as a promising anti-cancer therapeutic strategy against traffic-related air pollution-mediated lung cancer. Cancer Metastasis Rev 2024; 43:657-672. [PMID: 37910296 DOI: 10.1007/s10555-023-10142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Air pollutants are increasingly emitted into the atmosphere because of the high dependency of humans on fossil-derived fuels. Wind speed and direction assisted high dispersibility and uncontrolled nature of air pollution across geo-/demographical borders, making it one of the major global concerns. Besides climate change, air pollution has been found to be associated with various diseases, such as cancer. Lung cancer, which is the world's most common type of cancer, has been found to be associated with traffic-related air pollution. Research and political efforts have been taken to explore green/renewable energy sources. However, these efforts at the current intensity cannot cope with the increasing need for fossil fuels. More specifically, political tensions such as the Russian-Ukraine war, economic tension (e.g., China-USA economic tensions), and other issues (e.g., pandemic, higher inflation rate, and poverty) significantly hindered phasing out fossil fuels. In this context, an increasing global population will be exposed to traffic-related air pollution, which justifies the current uptrend in the number of lung cancer patients. To combat this health burden, novel treatments with higher efficiency and specificity must be designed. One of the potential "life changer" options is microRNA (miRNA)-based therapy to target the expression of oncogenic genes. That said, this review discusses the association of traffic-related air pollution with lung cancer, the changes in indigenous miRNAs in the body during lung cancer, and the current status of miRNA therapeutics for lung cancer treatment. We believe that the article will significantly appeal to a broad readership of oncologists, environmentalists, and those who work in the field of (bio)energy. It may also gain the policymakers' attention to establish better health policies and regulations about air pollution, for example, by promoting (bio)fuel exploration, production, and consumption.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Biofuel Research Team (BRTeam), Kuala Terengganu, Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Biofuel Research Team (BRTeam), Kuala Terengganu, Terengganu, Malaysia
| | | | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
3
|
Kabłak-Ziembicka A, Badacz R, Okarski M, Wawak M, Przewłocki T, Podolec J. Cardiac microRNAs: diagnostic and therapeutic potential. Arch Med Sci 2023; 19:1360-1381. [PMID: 37732050 PMCID: PMC10507763 DOI: 10.5114/aoms/169775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 09/22/2023] Open
Abstract
MicroRNAs are small non-coding post-translational biomolecules which, when expressed, modify their target genes. It is estimated that microRNAs regulate production of approximately 60% of all human proteins and enzymes that are responsible for major physiological processes. In cardiovascular disease pathophysiology, there are several cells that produce microRNAs, including endothelial cells, vascular smooth muscle cells, macrophages, platelets, and cardiomyocytes. There is a constant crosstalk between microRNAs derived from various cell sources. Atherosclerosis initiation and progression are driven by many pro-inflammatory and pro-thrombotic microRNAs. Atherosclerotic plaque rupture is the leading cause of cardiovascular death resulting from acute coronary syndrome (ACS) and leads to cardiac remodeling and fibrosis following ACS. MicroRNAs are powerful modulators of plaque progression and transformation into a vulnerable state, which can eventually lead to plaque rupture. There is a growing body of evidence which demonstrates that following ACS, microRNAs might inhibit fibroblast proliferation and scarring, as well as harmful apoptosis of cardiomyocytes, and stimulate fibroblast reprogramming into induced cardiac progenitor cells. In this review, we focus on the role of cardiomyocyte-derived and cardiac fibroblast-derived microRNAs that are involved in the regulation of genes associated with cardiomyocyte and fibroblast function and in atherosclerosis-related cardiac ischemia. Understanding their mechanisms may lead to the development of microRNA cocktails that can potentially be used in regenerative cardiology.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Michał Okarski
- Student Scientific Group of Modern Cardiac Therapy at the Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Wawak
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Tadeusz Przewłocki
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Podolec
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| |
Collapse
|
4
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
5
|
Fiscon G, Funari A, Paci P. Circular RNA mediated gene regulation in human breast cancer: A bioinformatics analysis. PLoS One 2023; 18:e0289051. [PMID: 37494404 PMCID: PMC10370684 DOI: 10.1371/journal.pone.0289051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Circular RNAs (circRNAs) are a new acknowledged class of RNAs that has been shown to play a major role in several biological functions both in physiological and pathological conditions, operating as critical part of regulatory processes, like competing endogenous RNA (ceRNA) networks. The ceRNA hypothesis is a recently discovered molecular mechanism that adds a new key layer of post-transcriptional regulation, whereby various types of RNAs can reciprocally influence each other's expression competing for binding the same pool of microRNAs, even affecting disease development. In this study, we build a network of circRNA-miRNA-mRNA interactions in human breast cancer, called CERNOMA, that is a bipartite graph with one class of nodes corresponding to differentially expressed miRNAs (DEMs) and the other one corresponding to differentially expressed circRNAs (DEC) and mRNAs (DEGs). A link between a DEC (or DEG) and DEM is placed if it is predicted to be a target of the DEM and shows an opposite expression level trend with respect to the DEM. Within the CERNOMA, we highlighted an interesting deregulated circRNA-miRNA-mRNA triplet, including the up-regulated hsa_circRNA_102908 (BRCA1 associated RING domain 1), the down-regulated miR-410-3p, and the up-regulated ESM1, whose overexpression has been already shown to promote tumor dissemination and metastasis in breast cancer.
Collapse
Affiliation(s)
- Giulia Fiscon
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Roma, Italy
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Alessio Funari
- Department of Translational and Precision Medicine, Sapienza University of Rome, Roma, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Roma, Italy
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| |
Collapse
|
6
|
Zhang Z, Shayani G, Xu Y, Kim A, Hong Y, Feng H, Zhu H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023; 12:1652. [PMID: 37371122 PMCID: PMC10297635 DOI: 10.3390/cells12121652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts are a major source of cardiac fibrosis during heart repair processes in various heart diseases. Although it has been shown that cardiac fibroblasts become senescent in response to heart injury, it is unknown how the senescence of cardiac fibroblasts is regulated in vivo. Gata4, a cardiogenic transcription factor essential for heart development, is also expressed in cardiac fibroblasts. However, it remains elusive about the role of Gata4 in cardiac fibroblasts. To define the role of Gata4 in cardiac fibroblasts, we generated cardiac fibroblast-specific Gata4 knockout mice by cross-breeding Tcf21-MerCreMer mice with Gata4fl/fl mice. Using this mouse model, we could genetically ablate Gata4 in Tcf21 positive cardiac fibroblasts in an inducible manner upon tamoxifen administration. We found that cardiac fibroblast-specific deletion of Gata4 spontaneously induces senescence in cardiac fibroblasts in vivo and in vitro. We also found that Gata4 expression in both cardiomyocytes and non-myocytes significantly decreases in the aged heart. Interestingly, when αMHC-MerCreMer mice were bred with Gata4fl/fl mice to generate cardiomyocyte-specific Gata4 knockout mice, no senescent cells were detected in the hearts. Taken together, our results demonstrate that Gata4 deficiency in cardiac fibroblasts activates a program of cellular senescence, suggesting a novel molecular mechanism of cardiac fibroblast senescence.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Gabriella Shayani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Ashley Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yurim Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Haiyue Feng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
7
|
Joshua J, Caswell JL, Monné Rodriguez JM, Kipar A, O'Sullivan ML, Wood G, Fonfara S. MicroRNA profiling of the feline left heart identifies chamber-specific expression signatures in health and in advanced hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100037. [PMID: 39801693 PMCID: PMC11708362 DOI: 10.1016/j.jmccpl.2023.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heart disease in humans and cats, nonetheless, the disease pathogenesis is still poorly understood. MicroRNAs are suspected to be involved in the disease process but the myocardial microRNA expression pattern in cats has not been identified. We hypothesized that microRNA profiles differ between healthy cats and cats with HCM. Small RNA sequencing on left ventricle (LV) and left atria (LA) samples from healthy cats (8 LV, 8 LA) and cats with HCM (7 LV, 5 LA) was performed. We identified 1039 differentially expressed microRNAs (False Discovery Rate <0.01, fold change >2). Cats with HCM were found to have a distinct microRNA expression profile with apparent regional heterogeneity. Comparing the HCM and control hearts, we detected 80 differentially expressed microRNAs for the HCM LV, and 37 for the LA. These included LV and LA enriched miR-21, miR-146b, and reduced miR-122-5p, which were recently suggested as key microRNAs for the HCM pathogenesis, and miR-132, which might be of therapeutic interest. Several top enriched microRNAs: miR-3958, miR-382-5p, miR-487a-5p (HCM LV); miR-chrD4_30107-3p (HCM LA); miR-3548 (HCM LV and LA) have either not been reported in the heart or only little is known. We identified potentially relevant microRNAs and further investigations into their role are required. Genes known to be targeted by the differentially expressed microRNAs were associated with inflammation and growth pathways in the HCM LV and LA, cardioprotective pathways in the LV, and fibrosis and structural changes in the LA when compared to healthy hearts.
Collapse
Affiliation(s)
- Jessica Joshua
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph N1G 2W1, Ontario, Canada
| | - Jeff L. Caswell
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
| | - Josep M. Monné Rodriguez
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Pathology, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Anja Kipar
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Pathology, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - M. Lynne O'Sullivan
- University of Prince Edward Island, Department of Companion Animals, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Geoffrey Wood
- University of Guelph, Ontario Veterinary College, Department of Pathobiology, Guelph N1G 2W1, Ontario, Canada
| | - Sonja Fonfara
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
8
|
Shen J, Luo Y, Wang J, Hu J, Liu X, Li S, Hao Z, Li M, Zhao Z, Zhang Y, Yang S, Wang L, Gu Y. Integrated transcriptome analysis reveals roles of long non-coding RNAs (lncRNAs) in caprine skeletal muscle mass and meat quality. Funct Integr Genomics 2023; 23:63. [PMID: 36810929 DOI: 10.1007/s10142-023-00987-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the growth and development of skeletal muscle. However, there is limited information on goats. In this study, expression profiles of lncRNAs in Longissimus dorsi muscle from Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with divergent meat yield and meat quality were compared using RNA-sequencing. Based on our previous microRNA (miRNA) and mRNA profiles obtained from the same tissues, the target genes and binding miRNAs of differentially expressed lncRNAs were obtained. Subsequently, lncRNA-mRNA interaction networks and a ceRNA network of lncRNA-miRNA-mRNA were constructed. A total of 136 differentially expressed lncRNAs were identified between the two breeds. Fifteen cis target genes and 143 trans target genes were found for differentially expressed lncRNAs, and they were enriched in muscle contraction, muscle system process, muscle cell differentiation, and p53 signaling pathway. A total of 69 lncRNA-trans target gene pairs were constructed, with close relationship with muscle development, intramuscular fat deposition, and meat tenderness. A total of 16 lncRNA-miRNA-mRNA ceRNA pairs were identified, of which some reportedly associated with skeletal muscle development and fat deposition were found. The study will provide an improved understanding of the roles of lncRNAs in caprine meat yield and meat quality.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuting Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shutong Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Longbin Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuanhua Gu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
9
|
Ma CX, Wei ZR, Sun T, Yang MH, Sun YQ, Kai KL, Shi JC, Zhou MJ, Wang ZW, Chen J, Li W, Wang TQ, Zhang SF, Xue L, Zhang M, Yin Q, Zang MX. Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast-myofibroblast differentiation and myocardial fibrosis. Cell Mol Life Sci 2023; 80:50. [PMID: 36694058 PMCID: PMC11072806 DOI: 10.1007/s00018-023-04699-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Cai-Xia Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Ming-Hui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Yu-Qie Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Kun-Lun Kai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jia-Chen Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zi-Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Tian-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Shan-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China
| | - Min Zhang
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Qianqian Yin
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China.
| |
Collapse
|
10
|
Song YL, Yang MH, Zhang S, Wang H, Kai KL, Yao CX, Dai FF, Zhou MJ, Li JB, Wei ZR, Yin Z, Zhu WG, Xue L, Zang MX. A GRIP-1-EZH2 switch binding to GATA-4 is linked to the genesis of rhabdomyosarcoma through miR-29a. Oncogene 2022; 41:5223-5237. [PMID: 36309571 DOI: 10.1038/s41388-022-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Terminal differentiation failure is an important cause of rhabdomyosarcoma genesis, however, little is known about the epigenetic regulation of aberrant myogenic differentiation. Here, we show that GATA-4 recruits polycomb group proteins such as EZH2 to negatively regulate miR-29a in undifferentiated C2C12 myoblast cells, whereas recruitment of GRIP-1 to GATA-4 proteins displaces EZH2, resulting in the activation of miR-29a during myogenic differentiation of C2C12 cells. Moreover, in poorly differentiated rhabdomyosarcoma cells, EZH2 still binds to the miR-29a promoter with GATA-4 to mediate transcriptional repression of miR-29a. Interestingly, once re-differentiation of rhabdomyosarcoma cells toward skeletal muscle, EZH2 was dispelled from miR-29a promoter which is similar to that in myogenic differentiation of C2C12 cells. Eventually, this expression of miR-29a results in limited rhabdomyosarcoma cell proliferation and promotes myogenic differentiation. We thus establish that GATA-4 can function as a molecular switch in the up- and downregulation of miR-29a expression. We also demonstrate that GATA-4 acts as a tumor suppressor in rhabdomyosarcoma partly via miR-29a, which thus provides a potential therapeutic target for rhabdomyosarcoma.
Collapse
Affiliation(s)
- Yang-Liu Song
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming-Hui Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Si Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Kun-Lun Kai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chun-Xia Yao
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Dai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Biao Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongnan Yin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Cancer Center of Peking University Third Hospital, Peking University Third Hospital, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Shen J, Hao Z, Luo Y, Zhen H, Liu Y, Wang J, Hu J, Liu X, Li S, Zhao Z, Liu Y, Yang S, Wang L. Deep Small RNA Sequencing Reveals Important miRNAs Related to Muscle Development and Intramuscular Fat Deposition in Longissimus dorsi Muscle From Different Goat Breeds. Front Vet Sci 2022; 9:911166. [PMID: 35769318 PMCID: PMC9234576 DOI: 10.3389/fvets.2022.911166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been shown to play important post-transcriptional regulatory roles in the growth and development of skeletal muscle tissues. However, limited research into the effect of miRNAs on muscle development in goats has been reported. In this study, Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with significant phenotype difference in meat production performance were selected and the difference in Longissimus dorsi muscle tissue expression profile of miRNAs between the two goat breeds was then compared using small RNA sequencing. A total of 1,623 miRNAs were identified in Longissimus dorsi muscle tissues of the two goat breeds, including 410 known caprine miRNAs, 928 known species-conserved miRNAs and 285 novel miRNAs. Of these, 1,142 were co-expressed in both breeds, while 230 and 251 miRNAs were only expressed in LC and ZB goats, respectively. Compared with ZB goats, 24 up-regulated miRNAs and 135 miRNAs down-regulated were screened in LC goats. A miRNA-mRNA interaction network showed that the differentially expressed miRNAs would target important functional genes associated with muscle development and intramuscular fat deposition. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in Ras, Rap 1, FoxO, and Hippo signaling pathways. This study suggested that these differentially expressed miRNAs may be responsible for the phenotype differences in meat production performance between the two goat breeds, thereby providing an improved understanding of the roles of miRNAs in muscle tissue of goats.
Collapse
|
12
|
Physical Activity Modulates miRNAs Levels and Enhances MYOD Expression in Myoblasts. Stem Cell Rev Rep 2022; 18:1865-1874. [PMID: 35316486 PMCID: PMC9209351 DOI: 10.1007/s12015-022-10361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Stem cells functions are regulated by different factors and non-conding RNAs, such as microRNA. MiRNAsplay an important role in modulating the expression of genes involved in the commitment and differentiation of progenitor cells. MiRNAs are post transcriptional regulators which may be modulated by physical exercise. MiRNAs, by regulating different signaling pathways, play an important role in myogenesis as well as in muscle activity. MiRNAs quantification may be considered for evaluating physical performance or muscle recovery. With the aim to identify specific miRNAs potentially involved in myogenesis and modulated by physical activity, we investigated miRNAs expression following physical performance in Peripheral Blood Mononuclear Cells (PBMCs) and in sera of half marathon (HM) runnners. The effect of runners sera on Myogenesis in in vitro cellular models was also explored. Therefore, we performed Microarray Analysis and Real Time PCR assays, as well as in vitro cell cultures analysis to investigate myogenic differentiation. Our data demonstrated gender-specific expression patterns of PBMC miRNAs before physical performance. In particular, miR223-3p, miR26b-5p, miR150-5p and miR15-5p expression was higher, while miR7a-5p and miR7i-5p expression was lower in females compared to males. After HM, miR152-3p, miR143-3p, miR27a-3p levels increased while miR30b-3p decreased in both females and males: circulating miRNAs mirrored these modulations. Furthermore, we also observed that the addition of post-HM participants sera to cell cultures exerted a positive effect in stimulating myogenesis. In conclusion, our data suggest that physical activity induces the modulation of myogenesis-associated miRNAs in bothfemales and males, despite the gender-associated different expression of certain miRNAs, Noteworthy, these findings might be useful for evaluating potential targets for microRNA based-therapies in diseases affecting the myogenic stem cells population.
Collapse
|
13
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
14
|
Goes CP, Vieceli FM, De La Cruz SM, Simões-Costa M, Yan CYI. Scratch2, a Snail Superfamily Member, Is Regulated by miR-125b. Front Cell Dev Biol 2020; 8:769. [PMID: 32984310 PMCID: PMC7477046 DOI: 10.3389/fcell.2020.00769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Scratch2 is a transcription factor expressed in a very restricted population of vertebrate embryonic neural cell precursors involved in their survival, differentiation, and migration. The mechanisms that control its expression remain unknown and could contribute towards our understanding of gene regulation during neural differentiation and evolution. Here we investigate the role of microRNAs (miRNAs) in the Scrt2 post-transcriptional regulatory mechanism. We identified binding sites for miR-125b and -200b in the Scrt2 3′UTR in silico. We confirmed the repressive-mediated activity of the Scrt2 3′UTR through electroporation of luciferase constructs into chick embryos. Further, both CRISPR/Cas9-mediated deletion of miR-125b/-200b responsive elements from chicken Scrt2 3′UTR and expression of miRNAs sponges increased Scrt2 expression field, suggesting a role for these miRNAs as post-transcriptional regulators of Scrt2. The biological effect of miR-125b titration was much more pronounced than that of miR-200b. Therefore, we propose that, after transcription, miR-125b fine-tunes the Scrt2 expression domain.
Collapse
Affiliation(s)
- Carolina Purcell Goes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Felipe Monteleone Vieceli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shirley Mirna De La Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Simões-Costa
- Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Chao Yun Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
MiR-195 enhances cardiomyogenic differentiation of the proepicardium/septum transversum by Smurf1 and Foxp1 modulation. Sci Rep 2020; 10:9334. [PMID: 32518241 PMCID: PMC7283354 DOI: 10.1038/s41598-020-66325-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular development is a complex developmental process in which multiple cell lineages are involved, namely the deployment of first and second heart fields. Beside the contribution of these cardiogenic fields, extracardiac inputs to the developing heart are provided by the migrating cardiac neural crest cells and the proepicardial derived cells. The proepicardium (PE) is a transitory cauliflower-like structure located between the cardiac and hepatic primordia. The PE is constituted by an internal mesenchymal component surrounded by an external epithelial lining. With development, cells derived from the proepicardium migrate to the neighboring embryonic heart and progressive cover the most external surface, leading to the formation of the embryonic epicardium. Experimental evidence in chicken have nicely demonstrated that epicardial derived cells can distinctly contribute to fibroblasts, endothelial and smooth muscle cells. Surprisingly, isolation of the developing PE anlage and ex vivo culturing spontaneously lead to differentiation into beating cardiomyocytes, a process that is enhanced by Bmp but halted by Fgf administration. In this study we provide a comprehensive characterization of the developmental expression profile of multiple microRNAs during epicardial development in chicken. Subsequently, we identified that miR-125, miR-146, miR-195 and miR-223 selectively enhance cardiomyogenesis both in the PE/ST explants as well as in the embryonic epicardium, a Smurf1- and Foxp1-driven process. In addition we identified three novel long non-coding RNAs with enhanced expression in the PE/ST, that are complementary regulated by Bmp and Fgf administration and well as by microRNAs that selectively promote cardiomyogenesis, supporting a pivotal role of these long non coding RNAs in microRNA-mediated cardiomyogenesis of the PE/ST cells.
Collapse
|
16
|
Yu C, Chen F, Wang X, Cai Z, Yang M, Zhong Q, Feng J, Li J, Shen C, Wen Z. Pin2 telomeric repeat factor 1-interacting telomerase inhibitor 1 (PinX1) inhibits nasopharyngeal cancer cell stemness: implication for cancer progression and therapeutic targeting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:31. [PMID: 32028978 PMCID: PMC7006127 DOI: 10.1186/s13046-020-1530-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/20/2020] [Indexed: 12/22/2022]
Abstract
Background Recurrence and distant metastasis are still the main factors leading to treatment failure for malignant tumors including nasopharyngeal carcinoma (NPC). Therefore, elucidating the molecular mechanisms underlying nasopharyngeal carcinoma metastasis is of great clinical significance for targeted gene therapy and prognostic evaluation. PinX1, a tumor suppressor gene, was previously demonstrated to be a powerful tool for targeting telomerase in order to resist malignant tumor proliferation and migration. The aim of this study was to explore the mechanism through which PinX1 regulates epithelial–mesenchymal transition (EMT) and tumor metastasis in NPC and investigate its clinical significance and biological role with respect to disease progression. Methods Cell Counting Kit-8 (CCK8), Transwell assays, Colony formation analysis and Xenograft tumorigenicity assay were used to measure the nasopharyngeal CD133+ cancer stem cell proliferation, migration, and invasion abilities. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays were conducted to investigate the underlying mechanism that PinX1 inhibits cell proliferation, migration, and invasion via regulating EMT in nasopharyngeal CD133+ CSCs. Results We found that the overexpression of PinX1 and P53 inhibited cell proliferation, migration, and invasion, but that the inhibition of miR-200b blocked these effects, in nasopharyngeal CD133+ cancer stem cells (CSCs). Mechanistic investigations elucidated that PinX1 inhibits cell proliferation, migration, and invasion by regulating the P53/miR-200b-mediated transcriptional suppression of Snail1, Twist1, and Zeb1, consequently inhibiting EMT in nasopharyngeal CD133+ CSCs. Conclusions Our findings indicate that PinX1 inhibits cell proliferation, migration, and invasion via P53/miR-200b-regulated EMT in the malignant progression of human NPC, which might suggest novel clinical implications for disease treatment.
Collapse
Affiliation(s)
- Chaosheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510235, China
| | - Xiaoqi Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhimou Cai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Mengxue Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qingwen Zhong
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jialian Feng
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Junzheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510235, China.
| | - Congxiang Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Zhong Wen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
17
|
Circular RNA expression in isoproterenol hydrochloride-induced cardiac hypertrophy. Aging (Albany NY) 2020; 12:2530-2544. [PMID: 32023551 PMCID: PMC7041747 DOI: 10.18632/aging.102761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Circular RNA (circRNA) is a novel class of noncoding RNAs, and the roles of circRNAs in the development of cardiac hypertrophy remain to be explored. Here, we investigate the potential roles of circRNAs in cardiac hypertrophy. By circRNA sequencing in left ventricular specimens collected from 8-week-old mice with isoproterenol hydrochloride-induced cardiac hypertrophy, we found 401 out of 3323 total circRNAs were dysregulated in the hypertrophic hearts compared with the controls. Of these, 303 circRNAs were upregulated and 98 were downregulated. Moreover, the GO and KEGG analyses revealed that the majority of parental gene of differentially expressed circRNAs were not only related to biological process such as metabolic process and response to stimulus, but also related to pathway such as circulatory system and cardiovascular diseases. On the other hand, total 1974 miRNAs were predicted to binding to these differentially expressed circRNAs, and the possible target mRNAs of those miRNAs were also predicted and analyzed in terms of functional annotation. Finally, we identified that ANF and miR-23a are downstream targets of circRNA wwp1, suggesting that circRNA wwp1 exerts inhibitory roles of cardiac hypertrophy via down-regulation of ANF and miR-23a, which underlying the potential mechanisms whereby circRNA regulates cardiac hypertrophy.
Collapse
|
18
|
Poon ENY, Hao B, Guan D, Jun Li M, Lu J, Yang Y, Wu B, Wu SCM, Webb SE, Liang Y, Miller AL, Yao X, Wang J, Yan B, Boheler KR. Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc Res 2019; 114:894-906. [PMID: 29373717 DOI: 10.1093/cvr/cvy019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 11/12/2022] Open
Abstract
Aims MicroRNAs (miRNAs) are crucial for the post-transcriptional control of protein-encoding genes and together with transcription factors (TFs) regulate gene expression; however, the regulatory activities of miRNAs during cardiac development are only partially understood. In this study, we tested the hypothesis that integrative computational approaches could identify miRNAs that experimentally could be shown to regulate cardiomyogenesis. Methods and results We integrated expression profiles with bioinformatics analyses of miRNA and TF regulatory programs to identify candidate miRNAs involved with cardiac development. Expression profiling showed that miR-200c, which is not normally detected in adult heart, is progressively down-regulated both during cardiac development and in vitro differentiation of human embryonic stem cells (hESCs) to cardiomyocytes (CMs). We employed computational methodologies to predict target genes of both miR-200c and five key cardiac TFs to identify co-regulated gene networks. The inferred cardiac networks revealed that the cooperative action of miR-200c with these five key TFs, including three (GATA4, SRF and TBX5) targeted by miR-200c, should modulate key processes and pathways necessary for CM development and function. Experimentally, over-expression (OE) of miR-200c in hESC-CMs reduced the mRNA levels of GATA4, SRF and TBX5. Cardiac expression of Ca2+, K+ and Na+ ion channel genes (CACNA1C, KCNJ2 and SCN5A) were also significantly altered by knockdown or OE of miR-200c. Luciferase reporter assays validated miR-200c binding sites on the 3' untranslated region of CACNA1C. In hESC-CMs, elevated miR-200c increased beating frequency, and repressed both Ca2+ influx, mediated by the L-type Ca2+ channel and Ca2+ transients. Conclusions Our analyses demonstrate that miR-200c represses hESC-CM differentiation and maturation. The integrative computation and experimental approaches described here, when applied more broadly, will enhance our understanding of the interplays between miRNAs and TFs in controlling cardiac development and disease processes.
Collapse
Affiliation(s)
- Ellen Ngar-Yun Poon
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Daogang Guan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Mulin Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Centre of Genomics Sciences, LKS Faculty of Medicine, The University of Hong Kong. Hong Kong, China
| | - Jun Lu
- School of Biomedical Sciences, LSK Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Yang
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Binbin Wu
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Stanley Chun-Ming Wu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yan Liang
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Xiaoqiang Yao
- School of Biomedical Sciences, LSK Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Junwen Wang
- Centre of Genomics Sciences, LKS Faculty of Medicine, The University of Hong Kong. Hong Kong, China.,Center for Individualized Medicine, Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA and Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259, USA
| | - Bin Yan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre of Genomics Sciences, LKS Faculty of Medicine, The University of Hong Kong. Hong Kong, China.,Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave, Shenzhen, Guangdong 518055, China
| | - Kenneth R Boheler
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Inhibition of microRNA-429 attenuates oxygen-glucose deprivation/reoxygenation-induced neuronal injury by promoting expression of GATA-binding protein 4. Neuroreport 2019; 29:723-730. [PMID: 29624520 DOI: 10.1097/wnr.0000000000001023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have been documented as critical regulators in ischemia/reperfusion-induced neuronal death. A better understanding of miRNA-mediated molecular mechanisms in ischemia/reperfusion-induced neuronal death may provide therapeutic targets for cerebral ischemia/reperfusion injury. A growing body of evidence suggests that miR-429 is a apoptosis-related miRNA that is also induced by hypoxia. However, whether miR-429 is involved in regulating neuronal apoptosis during cerebral ischemia/reperfusion injury remains unclear. In this study, the effect of miR-429 on oxygen-glucose deprivation and reoxygenation (OGD/R)-induced neuronal injury was investigated in vitro. The results showed that miR-429 expression levels were upregulated in cultured neurons with OGD/R treatment. The downregulation of miR-429 significantly alleviated OGD/R-induced neuronal injury, whereas upregulation of miR-429 aggravated it. Bioinformatic analysis showed that miR-429 could directly target the 3'-untranslated region of GATA-binding protein 4 (GATA4), which was verified by dual-luciferase reporter assay. Moreover, we found that miR-429 negatively regulated GATA4 expression. Overexpression of GATA4 also significantly alleviated OGD/R-induced neuronal injury. However, knockdown of GATA4 partially reversed the protective effect induced by miR-429 downregulation. Overall, our data showed that downregulation of miR-429 protected neurons against OGD/R-induced injury by promoting GATA4 and suggested a potential therapeutic target for the treatment of cerebral ischemia/reperfusion injury.
Collapse
|
20
|
MiR-34 and MiR-200: Regulator of Cell Fate Plasticity and Neural Development. Neuromolecular Med 2019; 21:97-109. [DOI: 10.1007/s12017-019-08535-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023]
|
21
|
Fariyike B, Singleton Q, Hunter M, Hill WD, Isales CM, Hamrick MW, Fulzele S. Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mech Ageing Dev 2019; 178:9-15. [PMID: 30528652 PMCID: PMC6998035 DOI: 10.1016/j.mad.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
MicroRNA's are small non-coding RNAs that regulate the expression of genes by targeting the 3' UTR's of mRNA. Studies reveal that miRNAs play a pivotal role in normal musculoskeletal function such as mesenchymal stem cell differentiation, survivability and apoptosis, osteogenesis, and chondrogenesis. Changes in normal miRNA expression have been linked to a number of pathological disease processes. Additionally, with aging, it is noted that there is dysregulation in the normal function of stem cell differentiation, bone formation/degradation, chondrocyte function, and muscle degeneration. Due to the change in expression of miRNA in degenerative musculoskeletal pathology, it is believed that these molecules may be at least partially responsible for cellular dysfunction. A number of miRNAs have already been identified to play a role in osteoarthritis, osteoporosis and sarcopenia. One miRNA that has become of interest recently is miRNA 141. The purpose of this article is to review the current literature available on miRNA 141 and how it could play a role in osteoporosis, osteoarthritis and musculoskeletal pathology overall.
Collapse
Affiliation(s)
- Babatunde Fariyike
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Quante Singleton
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Monte Hunter
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - William D Hill
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Medicine, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
22
|
Zhang S, Yin Z, Dai F, Wang H, Zhou M, Yang M, Zhang S, Fu Z, Mei Y, Zang M, Xue L. miR‐29a attenuates cardiac hypertrophy through inhibition of PPARδ expression. J Cell Physiol 2018; 234:13252-13262. [PMID: 30580435 DOI: 10.1002/jcp.27997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Si Zhang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
- Department of Clinical Laboratory The Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Zhongnan Yin
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
| | - Fei‐Fei Dai
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Hao Wang
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| | - Meng‐Jiao Zhou
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Hui Yang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Shu‐Feng Zhang
- Department of Pediatrics, The People's Hospital of Henan Province Zhengzhou Henan Peoples's Republic of China
| | - Zhi‐Feng Fu
- Statistics and Actuarial Science Department, Faculty of Science The University of Hong Kong Pok Fu Lam Hong Kong SAR Peoples's Republic of China
| | - Ying‐Wu Mei
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Ming‐Xi Zang
- Department of Biochemistry & Molecular Biology School of Basic Medical Sciences, Zhengzhou University Zhengzhou City Henan Peoples's Republic of China
| | - Lixiang Xue
- Biobank, Peking University Third Hospital Beijing Peoples's Republic of China
- Medical Research Center Peking University Third Hospital Beijing Peoples's Republic of China
| |
Collapse
|
23
|
Kim Y, Kim H, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeon D, Jeoung D. The pentapeptide Gly-Thr-Gly-Lys-Thr confers sensitivity to anti-cancer drugs by inhibition of CAGE binding to GSK3β and decreasing the expression of cyclinD1. Oncotarget 2017; 8:13632-13651. [PMID: 28099142 PMCID: PMC5355126 DOI: 10.18632/oncotarget.14621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 01/03/2017] [Indexed: 12/27/2022] Open
Abstract
We previously reported the role of cancer/testis antigen CAGE in the response to anti-cancer drugs. CAGE increased the expression of cyclinD1, and pGSK3βSer9, an inactive GSK3β, while decreasing the expression of phospho-cyclinD1Thr286. CAGE showed binding to GSK3β and the domain of CAGE (amino acids 231-300) necessary for binding to GSK3β and for the expression regulation of cyclinD1 was determined. 269GTGKT273 peptide, corresponding to the DEAD box helicase domain of CAGE, decreased the expression of cyclinD1 and pGSK3βSer9 while increasing the expression of phospho-cyclinD1Thr286. GTGKT peptide showed the binding to CAGE and prevented CAGE from binding to GSK3β. GTGKT peptide changed the localization of CAGE and inhibited the binding of CAGE to the promoter sequences of cyclin D1. GTGKT peptide enhanced the apoptotic effects of anti-cancer drugs and decreased the migration, invasion, angiogenic, tumorigenic and metastatic potential of anti-cancer drug-resistant cancer cells. We found that Lys272 of GTGKT peptide was necessary for conferring anti-cancer activity. Peptides corresponding to the DEAD box helicase domain of CAGE, such as AQTGTGKT, QTGTGKT and TGTGKT, also showed anti-cancer activity by preventing CAGE from binding to GSK3β. GTGKT peptide showed ex vivo tumor homing potential. Thus, peptides corresponding to the DEAD box helicase domain of CAGE can be developed as anti-cancer drugs in cancer patients expressing CAGE.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Hansoo Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Yun Sil Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
24
|
Sun R, Zhu B, Xiong K, Sun Y, Shi D, Chen L, Zhang Y, Li Z, Xue L. Senescence as a novel mechanism involved in β-adrenergic receptor mediated cardiac hypertrophy. PLoS One 2017; 12:e0182668. [PMID: 28783759 PMCID: PMC5544424 DOI: 10.1371/journal.pone.0182668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Pathological cardiac hypertrophy used to be elucidated by biomechanical, stretch-sensitive or neurohumoral mechanisms. However, a series of hints have indicated that hypertrophy process simulates senescence program. However, further evidence need to be pursued. To verify this hypothesis and examine whether cardiac senescence is a novel mechanism of hypertrophy induced by isoproterenol, 2-month-old male Sprague Dawley rats were subjected to isoproterenol infusion (0.25mg/kg/day) for 7 days by subcutaneous injection). Key characteristics of senescence (senescence-associated β-galactosidase activity, lipofuscin, expression of cyclin-dependent kinase inhibitors) were examined in cardiac hypertrophy model. Senescence-like phenotype, such as increased senescence-associated β-galactosidase activity, accumulation of lipofuscin and high levels of cyclin-dependent kinase inhibitors (e.g. p16, p19, p21 and p53) was found along the process of cardiac hypertrophy. Cardiac-specific transcription factor GATA4 increased in isoproterenol-treated cardiomyocytes as well. We further found that myocardial hypertrophy could be inhibited by resveratrol, an anti-aging compound, in a dose-dependent manner. Our results showed for the first time that cardiac senescence is involved in the process of pathological cardiac hypertrophy induced by isoproterenol.
Collapse
Affiliation(s)
- Rongrong Sun
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Baoling Zhu
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Kai Xiong
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Sun
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Dandan Shi
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Li Chen
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- * E-mail: (LX); (ZL)
| | - Lixiang Xue
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- * E-mail: (LX); (ZL)
| |
Collapse
|
25
|
Chen Z, Zhang S, Guo C, Li J, Sang W. Downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4. Int J Mol Med 2017; 39:1589-1596. [PMID: 28440427 DOI: 10.3892/ijmm.2017.2959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/22/2017] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-induced cardiomyocyte apoptosis plays an important role in the development of ischemic heart disease. MicroRNAs (miRNAs or miRs) are emerging as critical regulators of hypoxia-induced cardiomyocyte apoptosis. miR-200c is an miRNA that has been reported to be related to apoptosis in various pathological processes; however, its role in hypoxia‑induced cardiomyocyte apoptosis remains unclear. In the present study, we aimed to investigate the potential role and underlying mechanism of miR-200c in regulating hypoxia‑induced cardiomyocyte apoptosis. We found that miR-200c was significantly upregulated by hypoxia in cardiomyocytes, as detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The lactate dehydrogenase, MTT, Annexin V/propidium iodide apoptosis and caspase-3 activity assays showed that downregulation of miR-200c markedly improved cell survival and suppressed the apoptosis of cardiomyocytes in response to hypoxia. Bioinformatics analysis and the dual-luciferase reporter assay demonstrated that miR-200c directly targeted the 3'-untranslated region of GATA-4, an important transcription factor for cardiomyocyte survival. RT-qPCR and western blot analysis showed that suppression of miR-200c significantly increased GATA-4 expression. Furthermore, downregulation of miR-200c upregulated the expression of the anti-apoptotic gene Bcl-2. However, the protective effects against hypoxia induced by the downregulation of miR‑200c were significantly abolished by GATA-4 knockdown. Taken together, our results suggest that downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4, providing a potential therapeutic molecular target for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Shaoli Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Changlei Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jianhua Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Wenfeng Sang
- Department of Internal Medicine Nursing, College of Nursing, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
26
|
Zhao Y, Ponnusamy M, Dong Y, Zhang L, Wang K, Li P. Effects of miRNAs on myocardial apoptosis by modulating mitochondria related proteins. Clin Exp Pharmacol Physiol 2017; 44:431-440. [DOI: 10.1111/1440-1681.12720] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanfang Zhao
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Murugavel Ponnusamy
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Yanhan Dong
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Lei Zhang
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Kun Wang
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Peifeng Li
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| |
Collapse
|
27
|
Li G, Chen J, Zhang X, He G, Tan W, Wu H, Li R, Chen Y, Gu R, Xie J, Xu B. Cardiac repair in a mouse model of acute myocardial infarction with trophoblast stem cells. Sci Rep 2017; 7:44376. [PMID: 28295048 PMCID: PMC5353648 DOI: 10.1038/srep44376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
Various stem cells have been explored for the purpose of cardiac repair. However, any individual stem cell population has not been considered as the ideal source. Recently, trophoblast stem cells (TSCs), a newly described stem cell type, have demonstrated extensive plasticity. The present study evaluated the therapeutic effect of TSCs transplantation for heart regeneration in a mouse model of myocardial infarction (MI) and made a direct comparison with the most commonly used mesenchymal stem cells (MSCs). Transplantation of TSCs and MSCs led to a remarkably improved cardiac function in contrast with the PBS control, but only the TSCs exhibited the potential of differentiation into cardiomyocytes in vivo. In addition, a significantly high proliferation level of both transplanted stem cells and resident cardiomyocytes was observed in the TSCs group. These findings primary revealed the therapeutic potential of TSCs in transplantation therapy for MI.
Collapse
Affiliation(s)
- Guannan Li
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jianzhou Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xinlin Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guixin He
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
- Department of Cardiology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, China
| | - Wei Tan
- Department of Cardiology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Ran Li
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yuhan Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Rong Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jun Xie
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
28
|
Zhang X, Shi H, Wang Y, Hu J, Sun Z, Xu S. Down-regulation of hsa-miR-148b inhibits vascular smooth muscle cells proliferation and migration by directly targeting HSP90 in atherosclerosis. Am J Transl Res 2017; 9:629-637. [PMID: 28337290 PMCID: PMC5340697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are crucial pathological processes that are involved in atherosclerosis. Growing evidence suggests that microRNAs (miRNAs) play critical roles in VSMCs functions. Here, we analyzed the expression of four atherosclerosis-related miRNAs and found that hsa-miR-148b was significantly down-regulated in plaques from atherosclerotic patients compared to a healthy control group. The restoration of hsa-miR-148b function in cells transfected with a hsa-miR-148b mimicmarkedly inhibited VSMCs proliferation and migration compared to a hsa-miR-148b mimic control. Furthermore, we discovered that heat shock protein 90 (HSP90) was a direct target of hsa-miR-148b in VSMCs. Hsa-miR-148b suppressed HSP90 expression by directly binding its 3'-untranslated region (UTR). In addition, the expression of hsa-miR-148b was negatively correlated with the HSP90 mRNA levels in plaques of atherosclerotic patients. Interestingly, the overexpression of HSP90 partly abrogated the hsa-miR-148b-mediated inhibition of VSMCs proliferation and migration. Our study provides the first evidence that hsa-miR-148b has anti-proliferative and migratory functions by targeting HSP90 in VSMCs and may aidin the development of new biomarkers and potential therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Xinqi Zhang
- Department of Emergency, General Hospital of Jinan Military RegionJinan 250031, P. R. China
| | - Hua Shi
- Department of Urology, Guizhou Provincial People’s HospitalGuiyang 550002, P. R. China
| | - Yuanlin Wang
- Department of Urology, Guizhou Provincial People’s HospitalGuiyang 550002, P. R. China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People’s HospitalGuiyang 550002, P. R. China
| | - Zhaolin Sun
- Department of Urology, Guizhou Provincial People’s HospitalGuiyang 550002, P. R. China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People’s HospitalGuiyang 550002, P. R. China
| |
Collapse
|
29
|
Abstract
Cancer is one of the most threatening diseases in the world and great interests have been paid to discover accurate and noninvasive methods for cancer diagnosis. The value of microRNA-200 (miRNA-200, miR-200) family has been revealed in many studies. However, the results from various studies were inconsistent, and thus a meta-analysis was designed and performed to assess the overall value of miRNA200 in cancer diagnosis. Relevant studies were searched electronically from the following databases: PubMed, Embase, Web of Science, the Cochrane Library, and Chinese National Knowledge Infrastructure. Keyword combined with “miR-200,” “cancer,” and “diagnosis” in any fields was used for searching relevant studies. Then, the pooled sensitivity, specificity, area under the curve (AUC), and partial AUC were calculated using the random-effects model. Heterogeneity among individual studies was also explored by subgroup analyses. A total of 28 studies from 18 articles with an overall sample size of 3676 subjects (2097 patients and 1579 controls) were included in this meta-analysis. The overall sensitivity and specificity with 95% confidence intervals (95% CIs) are 0.709 (95% CI: 0.657–0.755) and 0.667 (95% CI: 0.617–0.713), respectively. Additionally, AUC and partial AUC for the pooled data is 0.735 and 0.627, respectively. Subgroup analyses revealed that using miRNA-200 family for cancer diagnosis is more effective in white than in Asian ethnic groups. In addition, cancer diagnosis by miRNA using circulating specimen is more effective than that using noncirculating specimen. Finally, miRNA is more accurate in diagnosing endometrial cancer than other types of cancer, and some miRNA family members (miR-200b and miR-429) have superior diagnostic accuracy than other miR-200 family members. In conclusion, the profiling of miRNA-200 family is likely to be a valuable tool in cancer detection and diagnosis.
Collapse
|
30
|
Liang W, Guo J, Li J, Bai C, Dong Y. Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun 2016; 478:1416-22. [PMID: 27569279 DOI: 10.1016/j.bbrc.2016.08.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 01/28/2023]
Abstract
MicroRNA-122 has been reported to play a potential role in the apoptosis of myocardial cells. However, the effect of miR-122 in regulating myocardial ischemic injury has not been previously addressed. This study aimed to investigate the effect and the molecular basis of miR-122 on myocardial ischemic injury. Using the hypoxia/reoxygenation (H/R) model of rat cardiomyocytes H9C2 in vitro, we found that miR-122 was highly expressed in H9C2 cells after H/R treatment. Overexpression of miR-122 by recombinant adeno-associated viral vector infection markedly promoted the apoptosis of H9C2 cells induced by H/R treatment, whereas miR-122 inhibition significantly decreased cell apoptosis. Dual-luciferase reporter assay and western blot assay revealed that GATA-4 was a direct target gene of miR-122, and miR-122 suppressed the expression of GATA-4 via binding to its 3'-UTR. We further identified that overexpression of miR-122 inhibited the expression of GATA-4 at the mRNA and protein levels, whereas the inhibition of miR-122 upregulated the expression of GATA-4. Moreover, GATA-4 was poorly expressed in H/R H9C2 cells and the apoptosis induced by H/R was associated with the decrease in GATA-4 expression. Importantly, silencing of GATA-4 apparently abrogated the inhibitory effect of anti-miR-122 on H/R-induced cell apoptosis. In conclusion, these findings indicate that downregulation of miR-122 alleviates cardiomyocyte H/R injury through upregulation of GATA-4 expression, supplying a novel molecular target for myocardial ischemic injury.
Collapse
Affiliation(s)
- Wanqian Liang
- The Third Department of Cardiovascular Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China.
| | - Junxia Guo
- The Second Department of Cardiovascular Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Jianhua Li
- The Third Department of Cardiovascular Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Caiyan Bai
- The Third Department of Cardiovascular Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Yuan Dong
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| |
Collapse
|
31
|
The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 2016; 6:6472-98. [PMID: 25762624 PMCID: PMC4466628 DOI: 10.18632/oncotarget.3052] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a large family of small non-coding RNAs that negatively regulate protein-coding gene expression post-transcriptionally via base pairing between the 5′ seed region of a miRNA and the 3′ untranslated region (3′UTR) of a messenger RNA (mRNA). Recent evidence has supported the critical role that miRNAs play in many diseases including cancer. The miR-200 family consisting of 5 members (miR-200a, -200b, -200c, -141, -429) is an emerging miRNA family that has been shown to play crucial roles in cancer initiation and metastasis, and potentially be important for the diagnosis and treatment of cancer. While miR-200s were found to be critically involved in the metastatic colonization to the lungs in mouse mammary xenograft tumor models, a large number of studies demonstrated their strong suppressive effects on cell transformation, cancer cell proliferation, migration, invasion, tumor growth and metastasis. This review aims to discuss research findings about the role of the miR-200 family in cancer initiation, each step of cancer metastatic cascade, cancer diagnosis and treatment. A comprehensive summary of currently validated miR-200 targets is also presented. It is concluded that miR-200 family may serve as novel targets for the therapy of multiple types of cancer.
Collapse
|
32
|
Jing J, Xiong S, Li Z, Wu J, Zhou L, Gui JF, Mei J. A feedback regulatory loop involving p53/miR-200 and growth hormone endocrine axis controls embryo size of zebrafish. Sci Rep 2015; 5:15906. [PMID: 26507500 PMCID: PMC4623745 DOI: 10.1038/srep15906] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/05/2015] [Indexed: 12/26/2022] Open
Abstract
In vertebrates, growth hormone/insulin-like growth factor (GH/IGF) axis signaling plays a critical role in regulating somatic growth. Understanding the direct upstream regulators of GH/IGF axis remains a major challenge. Our studies of the zebrafish reveal that the conserved miR-200 family members are critical regulators of embryo size by targeting several GH/IGF axis genes, including GH, GHRa, GHRb and IGF2a. Overexpression of miR-200s led to cell cycle arrest in the G1 phase and induced apoptotic responses during embryo development, thereby inhibiting somatic growth of zebrafish embryos. Intriguingly, GH induced expression of both p53 and miR-200s, and miR-200s is a potential p53 transcriptional target, thus forming a negative feedback loop. Significantly, the up-regulation of miR-200s associated with GH activation is abolished in embryos with p53 mutation. By integrating these studies, we conclude that p53/miR-200 and GH/IGF signaling pathway form a negative regulatory loop to control embryo size, that provide critical insights into the long-standing puzzle of how body growth is determined during early development of teleosts.
Collapse
Affiliation(s)
- Jing Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuting Xiong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
33
|
Yao CX, Shi JC, Ma CX, Xiong CJ, Song YL, Zhang SF, Zhang SF, Zang MX, Xue LX. EGF Protects Cells Against Dox-Induced Growth Arrest Through Activating Cyclin D1 Expression. J Cell Biochem 2015; 116:1755-65. [DOI: 10.1002/jcb.25134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/06/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Chun-Xia Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Zhengzhou University; Zhengzhou City Henan 450001 China
| | - Jia-Chen Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Zhengzhou University; Zhengzhou City Henan 450001 China
| | - Cai-Xia Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Zhengzhou University; Zhengzhou City Henan 450001 China
| | - Cheng-Juan Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Zhengzhou University; Zhengzhou City Henan 450001 China
| | - Yang-Liu Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Zhengzhou University; Zhengzhou City Henan 450001 China
| | - Shu-Feng Zhang
- The People's Hospital of Henan Province; Zhengzhou University; Zhengzhou Henan 450001 China
| | - Shan-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Zhengzhou University; Zhengzhou City Henan 450001 China
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Zhengzhou University; Zhengzhou City Henan 450001 China
| | - Li-Xiang Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|
34
|
Sinha M, Ghatak S, Roy S, Sen CK. microRNA-200b as a Switch for Inducible Adult Angiogenesis. Antioxid Redox Signal 2015; 22:1257-72. [PMID: 25761972 PMCID: PMC4410303 DOI: 10.1089/ars.2014.6065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. RECENT ADVANCES Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. CRITICAL ISSUES In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. FUTURE DIRECTIONS New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257-1272.
Collapse
Affiliation(s)
- Mithun Sinha
- Center for Regenerative Medicine and Cell Based Therapies, Davis Heart and Lung Research Institute, Ohio State University , Columbus, Ohio
| | | | | | | |
Collapse
|
35
|
Ma CX, Song YL, Xiao L, Xue LX, Li WJ, Laforest B, Komati H, Wang WP, Jia ZQ, Zhou CY, Zou Y, Nemer M, Zhang SF, Bai X, Wu H, Zang MX. EGF is required for cardiac differentiation of P19CL6 cells through interaction with GATA-4 in a time- and dose-dependent manner. Cell Mol Life Sci 2015; 72:2005-22. [PMID: 25504289 PMCID: PMC11113121 DOI: 10.1007/s00018-014-1795-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/15/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
The regulation of cardiac differentiation is critical for maintaining normal cardiac development and function. The precise mechanisms whereby cardiac differentiation is regulated remain uncertain. Here, we have identified a GATA-4 target, EGF, which is essential for cardiogenesis and regulates cardiac differentiation in a dose- and time-dependent manner. Moreover, EGF demonstrates functional interaction with GATA-4 in inducing the cardiac differentiation of P19CL6 cells in a time- and dose-dependent manner. Biochemically, GATA-4 forms a complex with STAT3 to bind to the EGF promoter in response to EGF stimulation and cooperatively activate the EGF promoter. Functionally, the cooperation during EGF activation results in the subsequent activation of cyclin D1 expression, which partly accounts for the lack of additional induction of cardiac differentiation by the GATA-4/STAT3 complex. Thus, we propose a model in which the regulatory cascade of cardiac differentiation involves GATA-4, EGF, and cyclin D1.
Collapse
Affiliation(s)
- Cai-Xia Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zhengzhou, 450001 Henan China
| | - Yang-Liu Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zhengzhou, 450001 Henan China
| | - Liyun Xiao
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024 China
| | - Li-Xiang Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Wen-Juan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China
| | - Brigitte Laforest
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Hiba Komati
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Wei-Ping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Zhu-Qing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Chun-Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Mona Nemer
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Shan-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zhengzhou, 450001 Henan China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024 China
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zhengzhou, 450001 Henan China
| |
Collapse
|
36
|
Perdigão-Henriques R, Petrocca F, Altschuler G, Thomas MP, Le MTN, Tan SM, Hide W, Lieberman J. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 2015; 35:158-72. [PMID: 25798844 DOI: 10.1038/onc.2015.69] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
The miR-200 family promotes the epithelial state by suppressing the Zeb1/Zeb2 epithelial gene transcriptional repressors. To identify other miR-200-regulated genes, we isolated mRNAs bound to transfected biotinylated miR-200c in mouse breast cancer cells. In all, 520 mRNAs were significantly enriched in miR-200c binding at least twofold. Putative miR-200-regulated genes included Zeb2, enriched 3.5-fold in the pull down. However, Zeb2 knockdown does not fully recapitulate miR-200c overexpression, suggesting that regulating other miR-200 targets contributes to miR-200's enhancement of epithelial gene expression. Candidate genes were highly enriched for miR-200c seed pairing in their 3'UTR and coding sequence and for genes that were downregulated by miR-200c overexpression. Epidermal growth factor receptor and downstream MAPK signaling pathways were the most enriched pathways. Genes whose products mediate transforming growth factor (TGF)-β signaling were also significantly overrepresented, and miR-200 counteracted the suppressive effects of TGF-β and bone morphogenic protein 2 (BMP-2) on epithelial gene expression. miR-200c regulated the 3'UTRs of 12 of 14 putative miR-200c-binding mRNAs tested. The extent of mRNA binding to miR-200c strongly correlated with gene suppression. Twelve targets of miR-200c (Crtap, Fhod1, Smad2, Map3k1, Tob1, Ywhag/14-3-3γ, Ywhab/14-3-3β, Smad5, Zfp36, Xbp1, Mapk12, Snail1) were experimentally validated by identifying their 3'UTR miR-200 recognition elements. Smad2 and Smad5 form a complex with Zeb2 and Ywhab/14-3-3β and Ywhag/14-3-3γ form a complex with Snail1. These complexes that repress transcription assemble on epithelial gene promoters. miR-200 overexpression induced RNA polymerase II localization and reduced Zeb2 and Snail1 binding to epithelial gene promoters. Expression of miR-200-resistant Smad5 modestly, but significantly, reduced epithelial gene induction by miR-200. miR-200 expression and Zeb2 knockdown are known to inhibit cell invasion in in vitro assays. Knockdown of each of three novel miR-200 target genes identified here, Smad5, Ywhag and Crtap, also profoundly suppressed cell invasion. Thus, miR-200 suppresses TGF-β/BMP signaling, promotes epithelial gene expression and suppresses cell invasion by regulating a network of genes.
Collapse
Affiliation(s)
- R Perdigão-Henriques
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
| | - F Petrocca
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - G Altschuler
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - M P Thomas
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - M T N Le
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - S M Tan
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - W Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Paci P, Colombo T, Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC SYSTEMS BIOLOGY 2014; 8:83. [PMID: 25033876 PMCID: PMC4113672 DOI: 10.1186/1752-0509-8-83] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Background Non-coding RNAs (ncRNAs) are emerging as key regulators of many cellular processes in both physiological and pathological states. Moreover, the constant discovery of new non-coding RNA species suggests that the study of their complex functions is still in its very early stages. This variegated class of RNA species encompasses the well-known microRNAs (miRNAs) and the most recently acknowledged long non-coding RNAs (lncRNAs). Interestingly, in the last couple of years, a few studies have shown that some lncRNAs can act as miRNA sponges, i.e. as competing endogenous RNAs (ceRNAs), able to reduce the amount of miRNAs available to target messenger RNAs (mRNAs). Results We propose a computational approach to explore the ability of lncRNAs to act as ceRNAs by protecting mRNAs from miRNA repression. A seed match analysis was performed to validate the underlying regression model. We built normal and cancer networks of miRNA-mediated sponge interactions (MMI-networks) using breast cancer expression data provided by The Cancer Genome Atlas. Conclusions Our study highlights a marked rewiring in the ceRNA program between normal and pathological breast tissue, documented by its “on/off” switch from normal to cancer, and vice-versa. This mutually exclusive activation confers an interesting character to ceRNAs as potential oncosuppressive, or oncogenic, protagonists in cancer. At the heart of this phenomenon is the lncRNA PVT1, as illustrated by both the width of its antagonist mRNAs in normal-MMI-network, and the relevance of the latter in breast cancer. Interestingly, PVT1 revealed a net binding preference towards the mir-200 family as the bone of contention with its rival mRNAs.
Collapse
Affiliation(s)
- Paola Paci
- Institute for System Analysis and Computer Science "Antonio Ruberti", National Research Council, Viale Manzoni 30, 00185 Rome, Italy.
| | | | | |
Collapse
|
38
|
Xiong CJ, Li PF, Song YL, Xue LX, Jia ZQ, Yao CX, Wei QX, Zhang SF, Zhang SF, Zhang YY, Zhao JM, Wang TQ, Guo MF, Zang MX. Insulin induces C2C12 cell proliferation and apoptosis through regulation of cyclin D1 and BAD expression. J Cell Biochem 2014; 114:2708-17. [PMID: 23794242 DOI: 10.1002/jcb.24619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 06/17/2013] [Indexed: 11/06/2022]
Abstract
Insulin is a secreted peptide hormone identified in human pancreas to promote glucose utilization. Insulin has been observed to induce cell proliferation and myogenesis in C2C12 cells. The precise mechanisms underlying the proliferation of C2C12 cells induced by insulin remain unclear. In this study, we observed for the first time that 10 nM insulin treatment promotes C2C12 cell proliferation. Additionally, 50 and 100 nM insulin treatment induces C2C12 cell apoptosis. By utilizing real-time PCR and Western blotting analysis, we found that the mRNA levels of cyclinD1 and BAD are induced upon 10 and 50 nM/100 nM insulin treatment, respectively. The similar results were observed in C2C12 cells expressing GATA-6 or PPARα. Our results identify for the first time the downstream targets of insulin, cyclin D1, and BAD, elucidate a new molecular mechanism of insulin in promoting cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Cheng-Juan Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou City, Henan, 450001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu Q, Tang H, Liu X, Liao Y, Li H, Zhao Z, Yuan X, Jiang W. miR-200b as a prognostic factor targets multiple members of RAB family in glioma. Med Oncol 2014; 31:859. [DOI: 10.1007/s12032-014-0859-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/22/2014] [Indexed: 12/23/2022]
|
40
|
Ye F, Tang H, Liu Q, Xie X, Wu M, Liu X, Chen B, Xie X. miR-200b as a prognostic factor in breast cancer targets multiple members of RAB family. J Transl Med 2014; 12:17. [PMID: 24447584 PMCID: PMC3898994 DOI: 10.1186/1479-5876-12-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND miR-200b has been reported to be a tumor suppressor and a promising therapeutic target in cancer. miR-200b has been associated with epithelial-mesenchymal transition and chemo-resistance in cancer. The aim of this study is to investigate the expression of miR-200b, its prognostic roles and its potential targets in breast cancer. METHODS qRT-PCR was used to detect miR-200b expression in breast cancer tissues and cell lines. In situ hybridization of miR-200b on tissue microarray including 134 breast cancer samples was used to evaluate its prognostic role. Novel targets of miR-200b in breast cancer were predicted and confirmed by luciferase reporter assay and western bloting. Immunohistochemical staining was used for protein detection. The biological effects of miR-200b in breast cancer cells were further confirmed by ectopic expression of its mimics followed by MTT assay and invasion test. RESULTS miR-200b was downregulated in breast cancer tissues and cell lines and its low-expression correlated with poor outcome in breast cancer patients. Members of RAB family, RAB21, RAB23, RAB18 and RAB3B were predicted to be the targets of miR-200b. The luciferase reporter assay was performed to certificate this prediction. The expressions of RAB21, RAB23, RAB18 and RAB3B were suppressed by transfection of miR-200b in breast cancer cells. Over-expression of miR-200b or knock-down of RAB21, RAB23, RAB18 and RAB3B inhibited breast cancer cell proliferation and invasion in vitro. CONCLUSIONS Our study provides evidence that miR-200b is a prognostic factor in breast cancer targeting multiple members of RAB family. MiR-200b could be a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Feng Ye
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative innovation center for cancer medicine, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative innovation center for cancer medicine, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Qing Liu
- The Center for Skull Base Surgery and Neurooncology, Changsha, Hunan, People’s Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative innovation center for cancer medicine, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Minqing Wu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative innovation center for cancer medicine, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative innovation center for cancer medicine, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Bo Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative innovation center for cancer medicine, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative innovation center for cancer medicine, 651 East Dongfeng Road, Guangzhou, Guangdong 510060, People’s Republic of China
| |
Collapse
|
41
|
Feng X, Wang Z, Fillmore R, Xi Y. MiR-200, a new star miRNA in human cancer. Cancer Lett 2013; 344:166-73. [PMID: 24262661 DOI: 10.1016/j.canlet.2013.11.004] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a set of non-coding small RNA molecules in control of gene expression at posttranscriptional/translational level. They not only play crucial roles in normal developmental progress, but also are commonly dysregulated in human diseases, including cancer. MiR-200 is a family of tumor suppressor miRNAs consisting of five members, which are significantly involved in inhibition of epithelial-to-mesenchymal transition (EMT), repression of cancer stem cells (CSCs) self-renewal and differentiation, modulation of cell division and apoptosis, and reversal of chemoresistance. In this article, we summarize the latest findings with regard to the tumor suppressor signatures of miR-200 and the regulatory mechanisms of miR-200 expression. The collected evidence supports that miR-200 is becoming a new star miRNA in study of human cancer.
Collapse
Affiliation(s)
- Xiangling Feng
- Mitchell Cancer Institute, University of South Alabama, United States
| | - Zhengming Wang
- Mitchell Cancer Institute, University of South Alabama, United States
| | - Rebecca Fillmore
- Department of Biological Sciences, University of Southern Mississippi Gulf Coast, United States
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, United States.
| |
Collapse
|
42
|
Li WY, Song YL, Xiong CJ, Lu PQ, Xue LX, Yao CX, Wang WP, Zhang SF, Zhang SF, Wei QX, Zhang YY, Zhao JM, Zang MX. Insulin induces proliferation and cardiac differentiation of P19CL6 cells in a dose-dependent manner. Dev Growth Differ 2013; 55:676-86. [PMID: 24020834 DOI: 10.1111/dgd.12075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/27/2013] [Accepted: 08/04/2013] [Indexed: 12/29/2022]
Abstract
Insulin is a peptide hormone produced by beta cells of the pancreas. The roles of insulin in energy metabolism have been well studied, with most of the attention focused on glucose utilization, but the roles of insulin in cell proliferation and differentiation remain unclear. In this study, we observed for the first time that 10 nmol/L insulin treatment induces cell proliferation and cardiac differentiation of P19CL6 cells, whereas 50 and 100 nmol/L insulin treatment induces P19CL6 cell apoptosis and blocks cardiac differentiation of P19CL6 cells. By using real-time polymerase chain reaction (PCR) and Western blotting analysis, we found that the mRNA levels of cyclin D1 and α myosin heavy chain (α-MHC) are induced upon 10 nmol/L insulin stimulation and inhibited upon 50/100 nmol/L insulin treatment, whereas the mRNA levels of BCL-2-antagonist of cell death (BAD) exists a reverse trend. The similar results were observed in P19CL6 cells expressing GATA-6 or peroxisome proliferator-activated receptor α (PPARα). Our results identified the downstream targets of insulin, cyclin D1, BAD, α-MHC, and GATA-4, elucidate a novel molecular mechanism of insulin in promoting cell proliferation and differentiation.
Collapse
Affiliation(s)
- Wen-Yan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|