1
|
Chang Y, Sun W, Murchie AIH, Chen D. Genome-wide identification of Kanamycin B binding RNA in Escherichia coli. BMC Genomics 2023; 24:120. [PMID: 36927548 PMCID: PMC10018874 DOI: 10.1186/s12864-023-09234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to Escherichia coli RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq). RESULTS Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing. CONCLUSIONS The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in Escherichia coli.
Collapse
Affiliation(s)
- Yaowen Chang
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Serrano-Gutiérrez M, Merino E. Antisense-acting riboswitches: A poorly characterized yet important model of transcriptional regulation in prokaryotic organisms. PLoS One 2023; 18:e0281744. [PMID: 36809273 PMCID: PMC9943018 DOI: 10.1371/journal.pone.0281744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Riboswitches are RNA elements involved in regulating genes that participate in the biosynthesis or transport of essential metabolites. They are characterized by their ability to recognize their target molecules with high affinity and specificity. Riboswitches are commonly cotranscribed with their target genes and are located at the 5' end of their transcriptional units. To date, only two exceptional cases of riboswitches being situated at the 3' end and transcribing in the antisense direction of their regulated genes have been described. The first case involves a SAM riboswitch located at the 3' end of the ubiG-mccB-mccA operon in Clostridium acetobutylicum involved in converting methionine to cysteine. The second case concerns a Cobalamin riboswitch in Listeria monocytogenes that regulates the transcription factor PocR related to this organism's pathogenic process. In almost a decade since the first descriptions of antisense-acting riboswitches, no new examples have been described. In this work, we performed a computational analysis to identify new examples of antisense-acting riboswitches. We found 292 cases in which, according to the available information, we infer that the expected regulation of the riboswitch is consistent with the signaling molecule it senses and the metabolic function of the regulated gene. The metabolic implications of this novel type of regulation are thoroughly discussed.
Collapse
Affiliation(s)
- Mariela Serrano-Gutiérrez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
3
|
Chang Y, Zhang X, Murchie AIH, Chen D. Transcriptome profiling in response to Kanamycin B reveals its wider non-antibiotic cellular function in Escherichia coli. Front Microbiol 2022; 13:937827. [DOI: 10.3389/fmicb.2022.937827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Aminoglycosides are not only antibiotics but also have wider and diverse non-antibiotic cellular functions. To elucidate the understanding of non-antibiotic cellular functions, here we report transcriptome-profiling analysis of Escherichia coli in the absence or presence of 0.5 and 1 μM of Kanamycin B, concentrations that are neither lethal nor inhibit growth, and identified the differentially expressed genes (DEGs) at two given concentrations of Kanamycin B. Functional classification of the DEGs revealed that they were mainly related to microbial metabolism including two-component systems, biofilm formation, oxidative phosphorylation and nitrogen metabolism in diverse environments. We further showed that Kanamycin B and other aminoglycosides can induce reporter gene expression through the 5′ UTR of napF gene or narK gene (both identified as DEG) and Kanamycin B can directly bind to the RNA. The results provide new insights into a better understanding of the wider aminoglycosides cellular function in E. coli rather than its known antibiotics function.
Collapse
|
4
|
Cai X, Li X, Qin J, Zhang Y, Yan B, Cai J. Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis. Appl Microbiol Biotechnol 2022; 106:5687-5699. [PMID: 35906441 DOI: 10.1007/s00253-022-12090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance genes are usually tightly controlled by transcription factors and RNA regulatory elements including sRNAs, riboswitches, and attenuators, and their expression is activated to respond to antibiotic exposure. In previous work, we revealed that the rppA gene is regulated by attenuator LRR and two mistranslation products in Bacillus thuringiensis BMB171. However, its function and promoter regulation is still not precise. In this study, we demonstrated that the encoding product of the rppA gene acts as an ARE1 ABC-F protein and confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed. Besides the reported attenuator LRR, the expression of the rppA gene is controlled by the sigma factor SigA and a global transcription factor CcpA. Consequently, its promoter activity is mainly maintained at the stationary phase of cell growth and inhibited in the presence of glucose. Our study revealed the function and regulation of the rppA gene in detail. KEY POINTS: • The RppA protein acts as an ARE1 ABC-F protein • The rppA gene confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed • The expression of the rppA gene is regulated by the sigma factor SigA and the pleiotropic regulator CcpA.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaxin Qin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300071, China.
| |
Collapse
|
5
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
6
|
Zhang J, Liu G, Zhang X, Chang Y, Wang S, He W, Sun W, Chen D, Murchie AIH. Aminoglycoside riboswitch control of the expression of integron associated aminoglycoside resistance adenyltransferases. Virulence 2021; 11:1432-1442. [PMID: 33103573 PMCID: PMC7588185 DOI: 10.1080/21505594.2020.1836910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The proliferation of antibiotic resistance has its origins in horizontal gene transfer. The class 1 integrons mediate gene transfer by assimilating antibiotic-resistance genes through site-specific recombination. For the class 1 integrons the first assimilated gene normally encodes an aminoglycoside antibiotic resistance protein which is either an aminoglycoside acetyltransferase (AAC), nucleotidyltransferase - (ANT), or adenyl transferase (AAD). An aminoglycoside-sensing riboswitch RNA in the leader RNA of AAC/AAD that controls the expression of aminoglycoside resistance genes has been previously described. Here we explore the relationship between the recombinant products of integron recombination and a series of candidate riboswitch RNAs in the 5' UTR of aad (aminoglycoside adenyltransferases) genes. The RNA sequences from the 5' UTR of the aad genes from pathogenic strains that are the products of site-specific DNA recombination by class 1 integrons were investigated. Reporter assays, MicroScale Thermophoresis (MST) and covariance analysis revealed that a functional aminoglycoside-sensing riboswitch was selected at the DNA level through integron-mediated site-specific recombination. This study explains the close association between integron recombination and the aminoglycoside-sensing riboswitch RNA.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Getong Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Xuhui Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Yaowen Chang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Shasha Wang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Weizhi He
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Wenxia Sun
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Dongrong Chen
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Alastair I H Murchie
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| |
Collapse
|
7
|
Zhang J, Liu G, Sun W, Chen D, Murchie AIH. Aminoglycoside antibiotics can inhibit or activate twister ribozyme cleavage. FEBS J 2020; 288:1586-1598. [PMID: 32790122 DOI: 10.1111/febs.15517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/19/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Interactions between aminoglycoside antibiotics and the twister ribozyme were investigated in this study. An initial screen of 17 RNA-binding antibiotics showed that a number of aminoglycosides inhibit the ribozyme, while a subset of aminoglycosides enhances twister cleavage. Initial kinetic analysis of the twister ribozyme showed a sevenfold inhibition of ribozyme cleavage by paromomycin and a fivefold enhancement of cleavage by sisomicin. Direct binding between the twister ribozyme RNA and paromomycin or sisomicin was measured by microscale thermophoresis. Selective 2'-hydroxyl acylation analysed by primer extension shows that both paromomycin and sisomicin induce distinctive tertiary structure changes to the twister ribozyme. Published crystal structures and mechanistic analysis of the twister ribozyme have deduced a nucleobase-mediated general acid-base catalytic mechanism, in which a conserved guanine plays a key role. Here, we show that paromomycin binding induces a structural transition to the twister ribozyme such that a highly conserved guanine in the active site becomes displaced, leading to inhibition of cleavage. In contrast, sisomicin binding appears to change interactions between P3 and L2, inducing allosteric changes to the active site that enhance twister RNA cleavage. Therefore, we show that small-molecule binding can modulate twister ribozyme activity. These results suggest that aminoglycosides may be used as molecular tools to study this widely distributed ribozyme.
Collapse
Affiliation(s)
- Jun Zhang
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Getong Liu
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Cai X, Zhan Y, Cao Z, Yan B, Cai J. Expression of ribosomal protection protein RppA is regulated by a ribosome-dependent ribo-regulator and two mistranslation products. Environ Microbiol 2020; 23:696-712. [PMID: 32592275 DOI: 10.1111/1462-2920.15143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023]
Abstract
Gene expression is tightly controlled by transcription factors and RNA regulatory elements, including trans-acting small RNAs, cis-regulatory riboswitches and ribosome-dependent ribo-regulators. In the present study, we demonstrated that a ribosome-dependent ribo-regulator and two mistranslation products co-regulate rppA (encoding a ribosomal protection protein) expression in Bacillus thuringiensis BMB171. The leader RNA of the rppA gene controls rppA expression via translation of leader ORF1 resident in its sequence. In the presence of chloramphenicol, a +1 frameshift product (ORF2) and a stop codon readthrough product (ORF3) of ORF1 emerged. ORF3 exerted a negative effect on rppA expression. By contrast, the ORF2 promoted rppA expression. The regulation mode identified in the present study will lead to a deeper understanding of bacterial gene expression.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunda Zhan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhanglei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300071, China
| |
Collapse
|
9
|
Integron-Derived Aminoglycoside-Sensing Riboswitches Control Aminoglycoside Acetyltransferase Resistance Gene Expression. Antimicrob Agents Chemother 2019; 63:AAC.00236-19. [PMID: 30936094 DOI: 10.1128/aac.00236-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
Class 1 integrons accumulate antibiotic resistance genes by site-specific recombination at aatI-1 sites. Captured genes are transcribed from a promoter located within the integron; for class 1 integrons, the first gene to be transcribed and translated normally encodes an aminoglycoside antibiotic resistance protein (either an acetyltransferase [AAC] or adenyltransferase [AAD]). The leader RNA from the Pseudomonas fluorescens class 1 integron contains an aminoglycoside-sensing riboswitch RNA that controls the expression of the downstream aminoglycoside resistance gene. Here, we explore the relationship between integron-dependent DNA recombination and potential aminoglycoside-sensing riboswitch products of recombination derived from a series of aminoglycoside-resistant clinical strains. Sequence analysis of the clinical strains identified a series of sequence variants that were associated with class I integron-derived aminoglycoside-resistant (both aac and aad) recombinants. For the aac recombinants, representative sequences showed up to 6-fold aminoglycoside-dependent regulation of reporter gene expression. Microscale thermophoresis (MST) confirmed RNA binding. Covariance analysis generated a secondary-structure model for the RNA that is an independent verification of previous models that were derived from mutagenesis and chemical probing data and that was similar to that of the P. fluorescens riboswitch RNA. The aminoglycosides were among the first antibiotics to be used clinically, and the data suggest that in an aminoglycoside-rich environment, functional riboswitch recombinants were selected during integron-mediated recombination to regulate aminoglycoside resistance. The incorporation of a functional aminoglycoside-sensing riboswitch by integron recombination confers a selective advantage for the expression of resistance genes of diverse origins.
Collapse
|
10
|
Nshogozabahizi J, Aubrey K, Ross J, Thakor N. Applications and limitations of regulatory
RNA
elements in synthetic biology and biotechnology. J Appl Microbiol 2019; 127:968-984. [DOI: 10.1111/jam.14270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- J.C. Nshogozabahizi
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - K.L. Aubrey
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - J.A. Ross
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - N. Thakor
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| |
Collapse
|
11
|
Chan H, Ho J, Liu X, Zhang L, Wong SH, Chan MT, Wu WK. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review. Infect Drug Resist 2017; 10:521-532. [PMID: 29290689 PMCID: PMC5736357 DOI: 10.2147/idr.s148444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. Methods Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Results Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. Conclusion Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Hung Chan
- Department of Anesthesia and Intensive Care
| | - Jeffery Ho
- Department of Anesthesia and Intensive Care
| | | | - Lin Zhang
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,School of Biomedical Sciences, Faculty of Medicine
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - William Kk Wu
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences
| |
Collapse
|
12
|
Jaimee G, Halami P. Conjugal transfer of aac(6′)Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR. Microb Pathog 2017; 110:546-553. [DOI: 10.1016/j.micpath.2017.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
13
|
Dersch P, Khan MA, Mühlen S, Görke B. Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets. Front Microbiol 2017; 8:803. [PMID: 28529506 PMCID: PMC5418344 DOI: 10.3389/fmicb.2017.00803] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/23/2023] Open
Abstract
The emergence of antibiotic resistance mechanisms among bacterial pathogens increases the demand for novel treatment strategies. Lately, the contribution of non-coding RNAs to antibiotic resistance and their potential value as drug targets became evident. RNA attenuator elements in mRNA leader regions couple expression of resistance genes to the presence of the cognate antibiotic. Trans-encoded small RNAs (sRNAs) modulate antibiotic tolerance by base-pairing with mRNAs encoding functions important for resistance such as metabolic enzymes, drug efflux pumps, or transport proteins. Bacteria respond with extensive changes of their sRNA repertoire to antibiotics. Each antibiotic generates a unique sRNA profile possibly causing downstream effects that may help to overcome the antibiotic challenge. In consequence, regulatory RNAs including sRNAs and their protein interaction partners such as Hfq may prove useful as targets for antimicrobial chemotherapy. Indeed, several compounds have been developed that kill bacteria by mimicking ligands for riboswitches controlling essential genes, demonstrating that regulatory RNA elements are druggable targets. Drugs acting on sRNAs are considered for combined therapies to treat infections. In this review, we address how regulatory RNAs respond to and establish resistance to antibiotics in bacteria. Approaches to target RNAs involved in intrinsic antibiotic resistance or virulence for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Muna A. Khan
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of ViennaVienna, Austria
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of ViennaVienna, Austria
| |
Collapse
|
14
|
Dar D, Sorek R. Regulation of antibiotic-resistance by non-coding RNAs in bacteria. Curr Opin Microbiol 2017; 36:111-117. [PMID: 28414973 DOI: 10.1016/j.mib.2017.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 11/17/2022]
Abstract
Antibiotic resistance genes are commonly regulated by sophisticated mechanisms that activate gene expression in response to antibiotic exposure. Growing evidence suggest that cis-acting non-coding RNAs play a major role in regulating the expression of many resistance genes, specifically those which counteract the effects of translation-inhibiting antibiotics. These ncRNAs reside in the 5'UTR of the regulated gene, and sense the presence of the antibiotics by recruiting translating ribosomes onto short upstream open reading frames (uORFs) embedded in the ncRNA. In the presence of translation-inhibiting antibiotics ribosomes arrest over the uORF, altering the RNA structure of the regulator and switching the expression of the resistance gene to 'ON'. The specificity of these riboregulators is tuned to sense-specific classes of antibiotics based on the length and composition of the respective uORF. Here we review recent work describing new types of antibiotic-sensing RNA-based regulators and elucidating the molecular mechanisms by which they function to control antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Daniel Dar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm Sin B 2014; 4:295-300. [PMID: 26579398 PMCID: PMC4629078 DOI: 10.1016/j.apsb.2014.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to investigate the genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii clinical isolates from Beijing, China. 173 A. baumannii clinical isolates from hospitals in Beijing from 2006 to 2009 were first subjected to high level aminoglycoside resistance (HLAR, MIC to gentamicin and amikacin>512 µg/mL) phenotype selection by broth microdilution method. The strains were then subjected to genetic basis analysis by PCR detection of the aminoglycoside modifying enzyme genes (aac(3)-I, aac(3)-IIc, aac(6')-Ib, aac(6')-II, aph(4)-Ia, aph(3')-I, aph(3')-IIb, aph(3')-IIIa, aph(3')-VIa, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(2″)-Ia, ant(3″)-I and ant(4')-Ia) and the 16S rRNA methylase genes (armA, rmtB and rmtC). Correlation analysis between the presence of aminoglycoside resistance gene and HLAR phenotype were performed by SPSS. Totally 102 (58.96%) HLAR isolates were selected. The HLAR rates for year 2006, 2007, 2008 and 2009 were 52.63%, 65.22%, 51.11% and 70.83%, respectively. Five modifying enzyme genes (aac(3)-I, detection rate of 65.69%; aac(6')-Ib, detection rate of 45.10%; aph(3')-I, detection rate of 47.06%; aph(3')-IIb, detection rate of 0.98%; ant(3″)-I, detection rate of 95.10%) and one methylase gene (armA, detection rate of 98.04%) were detected in the 102 A. baumannii with aac(3)-I+aac(6')-Ib+ant(3″)-I+armA (detection rate of 25.49%), aac(3)-I+aph(3')-I+ant(3″)-I+armA (detection rate of 21.57%) and ant(3″)-I+armA (detection rate of 12.75%) being the most prevalent gene profiles. The values of chi-square tests showed correlation of armA, ant(3″)-I, aac(3)-I, aph(3')-I and aac(6')-Ib with HLAR. armA had significant correlation (contingency coefficient 0.685) and good contingency with HLAR (kappa 0.940). The high rates of HLAR may cause a serious problem for combination therapy of aminoglycoside with β-lactams against A. baumannii infections. As armA was reported to be able to cause high level aminoglycoside resistance to most of the clinical important aminoglycosides (gentamicin, amikacin, tobramycin, etc), the function of aminoglycoside modifying enzyme gene(s) in A. baumannii carrying armA deserves further investigation.
Collapse
|
17
|
Weigand JE, Gottstein-Schmidtke SR, Demolli S, Groher F, Duchardt-Ferner E, Wöhnert J, Suess B. Sequence elements distal to the ligand binding pocket modulate the efficiency of a synthetic riboswitch. Chembiochem 2014; 15:1627-37. [PMID: 24954073 DOI: 10.1002/cbic.201402067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Indexed: 01/16/2023]
Abstract
Synthetic riboswitches can serve as sophisticated genetic control devices in synthetic biology, regulating gene expression through direct RNA-ligand interactions. We analyzed a synthetic neomycin riboswitch, which folds into a stem loop structure with an internal loop important for ligand binding and regulation. It is closed by a terminal hexaloop containing a U-turn and a looped-out adenine. We investigated the relationship between sequence, structure, and biological activity in the terminal loop by saturating mutagenesis, ITC, and NMR. Mutants corresponding to the canonical U-turn fold retained biological activity. An improvement of stacking interactions in the U-turn led to an RNA element with slightly enhanced regulatory activity. For the first position of the U-turn motif and the looped out base, sequence-activity relationships that could not initially be explained on the basis of the structure of the aptamer-ligand complex were observed. However, NMR studies of these mutants revealed subtle relationships between structure and dynamics of the aptamer in its free or bound state and biological activity.
Collapse
Affiliation(s)
- Julia E Weigand
- Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt (Germany)
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen D, Murchie AIH. An aminoglycoside sensing riboswitch controls the expression of aminoglycoside resistance acetyltransferase and adenyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:951-8. [PMID: 24631585 DOI: 10.1016/j.bbagrm.2014.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
Abstract
The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5' leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Dongrong Chen
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China; Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China.
| | - Alastair I H Murchie
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China; Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China; School of Pharmacy, Fudan University, Zhang Heng Road 826, Pudong 201203, Shanghai, PR China.
| |
Collapse
|