1
|
Rehman SU, Ullah N, Zhang Z, Zhen Y, Din AU, Cui H, Wang M. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem 2024; 11:1335330. [PMID: 38274897 PMCID: PMC10809404 DOI: 10.3389/fchem.2023.1335330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The antisense RNA molecule is a unique DNA transcript consisting of 19-23 nucleotides, characterized by its complementary nature to mRNA. These antisense RNAs play a crucial role in regulating gene expression at various stages, including replication, transcription, and translation. Additionally, artificial antisense RNAs have demonstrated their ability to effectively modulate gene expression in host cells. Consequently, there has been a substantial increase in research dedicated to investigating the roles of antisense RNAs. These molecules have been found to be influential in various cellular processes, such as X-chromosome inactivation and imprinted silencing in healthy cells. However, it is important to recognize that in cancer cells; aberrantly expressed antisense RNAs can trigger the epigenetic silencing of tumor suppressor genes. Moreover, the presence of deletion-induced aberrant antisense RNAs can lead to the development of diseases through epigenetic silencing. One area of drug development worth mentioning is antisense oligonucleotides (ASOs), and a prime example of an oncogenic trans-acting long noncoding RNA (lncRNA) is HOTAIR (HOX transcript antisense RNA). NATs (noncoding antisense transcripts) are dysregulated in many cancers, and researchers are just beginning to unravel their roles as crucial regulators of cancer's hallmarks, as well as their potential for cancer therapy. In this review, we summarize the emerging roles and mechanisms of antisense RNA and explore their application in cancer therapy.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Numan Ullah
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Zhenbin Zhang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| | - Aziz-Ud Din
- Department of Human Genetics, Hazara University Mansehra, Mansehra, Pakistan
| | - Hengmi Cui
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics Yangzhou University, College of Animal Nutrition Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
The small non-coding RNA rli106 contributes to the environmental adaptation and pathogenicity of Listeria monocytogenes. J Vet Res 2023; 67:67-77. [PMID: 37008770 PMCID: PMC10062041 DOI: 10.2478/jvetres-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Abstract
Introduction
Listeria monocytogenes (LM) is an important food-borne pathogen, and the risk of its ingestion is a serious public health issue. The better its environmental adaptation mechanisms and pathogenicity are understood, the better the risk it poses can be countered. The regulatory role of the small non-coding RNA (sRNA) rli106 in the environmental adaptation and pathogenicity of LM is still unclear and this study investigated that role through its biological function.
Material and Methods
An LM-Δrli106 gene deletion strain and an LM-Δrli106/rli106 gene complementation strain were constructed using the homologous recombination technique. Then, the adaptation of these strains to temperature, alkalinity, acidity, salinity, ethanol and oxidative stressors, their biofilm-forming ability and their pathogenicity in mice were investigated to show the regulatory roles of sRNA rli106 in LM. The target gene of rli106 was also predicted, and the interaction between it and rli106 was verified by a two-plasmid co-expressing system based on
E.coli
and Western blot analysis.
Results
The adaptation of LM-Δrli106 to environmental stressors of pH 9, 5% NaCl and 8% NaCl, 3.8% ethanol and 5 mM H2O2 was significantly reduced when compared to the parental (LM EGD-e) and complementation strains. Also, the biofilm formation, cell adhesion, invasion, intracellular proliferation and pathogenicity of LM-Δrli106 in mice were significantly reduced. The results of two-plasmid co-expression and Western blot showed that rli106 can interact with the mRNA of the predicted DegU target gene.
Conclusion
The sRNA rli106 may positively regulate the expression of the DegU gene in LM. This study sheds light on its regulatory roles in environmental adaptation and pathogenicity, providing new insights into the molecular mechanism of sRNA mediation in LM .
Collapse
|
3
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
4
|
Eisfeld J, Kraus A, Ronge C, Jagst M, Brandenburg VB, Narberhaus F. A LysR-type transcriptional regulator controls the expression of numerous small RNAs in Agrobacterium tumefaciens. Mol Microbiol 2021; 116:126-139. [PMID: 33560537 DOI: 10.1111/mmi.14695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Small RNAs (sRNAs) are universal posttranscriptional regulators of gene expression and hundreds of sRNAs are frequently found in each and every bacterium. In order to coordinate cellular processes in response to ambient conditions, many sRNAs are differentially expressed. Here, we asked how these small regulators are regulated using Agrobacterium tumefaciens as a model system. Among the best-studied sRNAs in this plant pathogen are AbcR1 regulating numerous ABC transporters and PmaR, a regulator of peptidoglycan biosynthesis, motility, and ampicillin resistance. We report that the LysR-type regulator VtlR (also known as LsrB) controls expression of AbcR1 and PmaR. A vtlR/lsrB deletion strain showed growth defects, was sensitive to antibiotics and severely compromised in plant tumor formation. Transcriptome profiling by RNA-sequencing revealed more than 1,200 genes with altered expression in the mutant. Consistent with the function of VtlR/LsrB as regulator of AbcR1, many ABC transporter genes were affected. Interestingly, the transcription factor did not only control the expression of AbcR1 and PmaR. In the mutant, 102 sRNA genes were significantly up- or downregulated. Thus, our study uncovered VtlR/LsrB as the master regulator of numerous sRNAs. Thereby, the transcriptional regulator harnesses the regulatory power of sRNAs to orchestrate the expression of distinct sub-regulons.
Collapse
Affiliation(s)
- Jessica Eisfeld
- Microbial Biology, Ruhr University Bochum, Bochum, Germany.,Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | | | | | - Michelle Jagst
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
5
|
Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic α-Rhizobia. mBio 2021; 13:e0357621. [PMID: 35164560 PMCID: PMC8844928 DOI: 10.1128/mbio.03576-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rhizosphere and rhizoplane are nutrient-rich but selective environments for the root microbiome. Here, we deciphered a posttranscriptional network regulated by the homologous trans-small RNAs (sRNAs) AbcR1 and AbcR2, which rewire the metabolism of the nitrogen-fixing α-rhizobium Sinorhizobium meliloti during preinfection stages of symbiosis with its legume host alfalfa. The LysR-type regulator LsrB, which transduces the cell redox state, is indispensable for AbcR1 expression in actively dividing bacteria, whereas the stress-induced transcription of AbcR2 depends on the alternative σ factor RpoH1. MS2 affinity purification coupled with RNA sequencing unveiled exceptionally large and overlapping AbcR1/2 mRNA interactomes, jointly representing ⁓6% of the S. meliloti protein-coding genes. Most mRNAs encode transport/metabolic proteins whose translation is silenced by base pairing to two distinct anti-Shine Dalgarno motifs that function independently in both sRNAs. A metabolic model-aided analysis of the targetomes predicted changes in AbcR1/2 expression driven by shifts in carbon/nitrogen sources, which were confirmed experimentally. Low AbcR1/2 levels in some defined media anticipated overexpression growth phenotypes linked to the silencing of specific mRNAs. As a proof of principle, we confirmed AbcR1/2-mediated downregulation of the l-amino acid AapQ permease. AbcR1/2 interactomes are well represented in rhizosphere-related S. meliloti transcriptomic signatures. Remarkably, a lack of AbcR1 specifically compromised the ability of S. meliloti to colonize the root rhizoplane. The AbcR1 regulon likely ranks the utilization of available substrates to optimize metabolism, thus conferring on S. meliloti an advantage for efficient rhizosphere/rhizoplane colonization. AbcR1 regulation is predicted to be conserved in related α-rhizobia, which opens unprecedented possibilities for engineering highly competitive biofertilizers. IMPORTANCE Nitrogen-fixing root nodule symbioses between rhizobia and legume plants provide more than half of the combined nitrogen incorporated annually into terrestrial ecosystems, rendering plant growth independent of environmentally unfriendly chemical fertilizers. The success of symbiosis depends primarily on the capacity of rhizobia to establish competitive populations in soil and rhizosphere environments. Here, we provide insights into the regulation and architecture of an extensive RNA posttranscriptional network that fine-tunes the metabolism of the alfalfa symbiont S. meliloti, thereby enhancing the ability of this beneficial bacterium to colonize nutrient-rich but extremely selective niches, such as the rhizosphere of its host plant. This pervasive RNA regulation of metabolism is a major adaptive mechanism, predicted to operate in diverse rhizobial species. Because RNA regulation relies on modifiable base-pairing interactions, our findings open unexplored avenues for engineering the legumes rhizobiome within sustainable agricultural practices.
Collapse
|
6
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
7
|
Budnick JA, Sheehan LM, Ginder MJ, Failor KC, Perkowski JM, Pinto JF, Kohl KA, Kang L, Michalak P, Luo L, Heindl JE, Caswell CC. A central role for the transcriptional regulator VtlR in small RNA-mediated gene regulation in Agrobacterium tumefaciens. Sci Rep 2020; 10:14968. [PMID: 32917931 PMCID: PMC7486931 DOI: 10.1038/s41598-020-72117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) are the most common type of transcriptional regulators in prokaryotes and function by altering gene expression in response to environmental stimuli. In the class Alphaproteobacteria, a conserved LTTR named VtlR is critical to the establishment of host-microbe interactions. In the mammalian pathogen Brucella abortus, VtlR is required for full virulence in a mouse model of infection, and VtlR activates the expression of abcR2, which encodes a small regulatory RNA (sRNA). In the plant symbiont Sinorhizobium meliloti, the ortholog of VtlR, named LsrB, is involved in the symbiosis of the bacterium with alfalfa. Agrobacterium tumefaciens is a close relative of both B. abortus and S. meliloti, and this bacterium is the causative agent of crown gall disease in plants. In the present study, we demonstrate that VtlR is involved in the ability of A. tumefaciens to grow appropriately in artificial medium, and an A. tumefaciens vtlR deletion strain is defective in motility, biofilm formation, and tumorigenesis of potato discs. RNA-sequencing analyses revealed that more than 250 genes are dysregulated in the ∆vtlR strain, and importantly, VtlR directly controls the expression of three sRNAs in A. tumefaciens. Taken together, these data support a model in which VtlR indirectly regulates hundreds of genes via manipulation of sRNA pathways in A. tumefaciens, and moreover, while the VtlR/LsrB protein is present and structurally conserved in many members of the Alphaproteobacteria, the VtlR/LsrB regulatory circuitry has diverged in order to accommodate the unique environmental niche of each organism.
Collapse
Affiliation(s)
- James A Budnick
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Lauren M Sheehan
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Miranda J Ginder
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Kevin C Failor
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Julia M Perkowski
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - John F Pinto
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Kirsten A Kohl
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Lin Kang
- Edward via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Pawel Michalak
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
- Edward via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Institute of Evolution, Haifa University, 3498838, Haifa, Israel
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Plant Science Center, Shanghai University, Shanghai, 200444, China
| | - Jason E Heindl
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA.
| | - Clayton C Caswell
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
8
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
9
|
Abstract
Brucella spp. are Gram negative intracellular bacteria responsible for brucellosis, a worldwide distributed zoonosis. A prominent aspect of the Brucella life cycle is its ability to invade, survive and multiply within host cells. Comprehensive approaches, such as proteomics, have aided in unravelling the molecular mechanisms underlying Brucella pathogenesis. Technological and methodological advancements such as increased instrument performance and multiplexed quantification have broadened the range of proteome studies, enabling new and improved analyses, providing deeper and more accurate proteome coverage. Indeed, proteomics has demonstrated its contribution to key research questions in Brucella biology, i.e., immunodominant proteins, host-cell interaction, stress response, antibiotic targets and resistance, protein secretion. Here, we review the proteomics of Brucella with a focus on more recent works and novel findings, ranging from reconfiguration of the intracellular bacterial proteome and studies on proteomic profiles of Brucella infected tissues, to the identification of Brucella extracellular proteins with putative roles in cell signaling and pathogenesis. In conclusion, proteomics has yielded copious new candidates and hypotheses that require future verification. It is expected that proteomics will continue to be an invaluable tool for Brucella and applications will further extend to the currently ill-explored aspects including, among others, protein processing and post-translational modification.
Collapse
|
10
|
Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms 2020; 8:microorganisms8030384. [PMID: 32164262 PMCID: PMC7143759 DOI: 10.3390/microorganisms8030384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/21/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are ubiquitous components of bacterial adaptive regulatory networks underlying stress responses and chronic intracellular infection of eukaryotic hosts. Thus, sRNA-mediated regulation of gene expression is expected to play a major role in the establishment of mutualistic root nodule endosymbiosis between nitrogen-fixing rhizobia and legume plants. However, knowledge about this level of genetic regulation in this group of plant-interacting bacteria is still rather scarce. Here, we review insights into the rhizobial non-coding transcriptome and sRNA-mediated post-transcriptional regulation of symbiotic relevant traits such as nutrient uptake, cell cycle, quorum sensing, or nodule development. We provide details about the transcriptional control and protein-assisted activity mechanisms of the functionally characterized sRNAs involved in these processes. Finally, we discuss the forthcoming research on riboregulation in legume symbionts.
Collapse
|
11
|
Georg J, Lalaouna D, Hou S, Lott SC, Caldelari I, Marzi S, Hess WR, Romby P. The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs. Mol Microbiol 2019; 113:603-612. [PMID: 31705780 PMCID: PMC7154689 DOI: 10.1111/mmi.14420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Trans‐acting small regulatory RNAs (sRNAs) are key players in the regulation of gene expression in bacteria. There are hundreds of different sRNAs in a typical bacterium, which in contrast to eukaryotic microRNAs are more heterogeneous in length, sequence composition, and secondary structure. The vast majority of sRNAs function post‐transcriptionally by binding to other RNAs (mRNAs, sRNAs) through rather short regions of imperfect sequence complementarity. Besides, every single sRNA may interact with dozens of different target RNAs and impact gene expression either negatively or positively. These facts contributed to the view that the entirety of the regulatory targets of a given sRNA, its targetome, is challenging to identify. However, recent developments show that a more comprehensive sRNAs targetome can be achieved through the combination of experimental and computational approaches. Here, we give a short introduction into these methods followed by a description of two sRNAs, RyhB, and RsaA, to illustrate the particular strengths and weaknesses of these approaches in more details. RyhB is an sRNA involved in iron homeostasis in Enterobacteriaceae, while RsaA is a modulator of virulence in Staphylococcus aureus. Using such a combined strategy, a better appreciation of the sRNA‐dependent regulatory networks is now attainable.
Collapse
Affiliation(s)
- Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - David Lalaouna
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Shengwei Hou
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Steffen C Lott
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Sass AM, De Waele S, Daled S, Devreese B, Deforce D, Van Nieuwerburgh F, Coenye T. Small RNA NcS27 co-regulates utilization of carbon sources in Burkholderia cenocepacia J2315. MICROBIOLOGY-SGM 2019; 165:1135-1150. [PMID: 31464662 DOI: 10.1099/mic.0.000848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small non-coding sRNAs have versatile roles in regulating bacterial metabolism. Four short homologous Burkholderia cenocepacia sRNAs strongly expressed under conditions of growth arrest were recently identified. Here we report the detailed investigation of one of these, NcS27. sRNA NcS27 contains a short putative target recognition sequence, which is conserved throughout the order Burkholderiales. This sequence is the reverse complement of the Shine-Dalgarno sequence of a large number of genes involved in transport and metabolism of amino acids and carbohydrates. Overexpression of NcS27 sRNA had a distinct impact on growth, attenuating growth on a variety of substrates such as phenylalanine, tyrosine, glycerol and galactose, while having no effect on growth on other substrates. Transcriptomics and proteomics of NcS27 overexpression and silencing mutants revealed numerous predicted targets changing expression, notably of genes involved in degradation of aromatic amino acids phenylalanine and tyrosine, and in transport of carbohydrates. The conserved target recognition sequence was essential for growth phenotypes and gene expression changes. Cumulatively, our data point to a role of NcS27 in regulating the shutdown of metabolism upon nutrient deprivation in B. cenocepacia. We propose Burkholderiadouble-hairpin sRNA regulator bdhR1 as designation for ncS27.
Collapse
Affiliation(s)
- Andrea M Sass
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stijn De Waele
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Simon Daled
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 2019; 45:W435-W439. [PMID: 28472523 PMCID: PMC5570192 DOI: 10.1093/nar/gkx279] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023] Open
Abstract
The IntaRNA algorithm enables fast and accurate prediction of RNA-RNA hybrids by incorporating seed constraints and interaction site accessibility. Here, we introduce IntaRNAv2, which enables enhanced parameterization as well as fully customizable control over the prediction modes and output formats. Based on up to date benchmark data, the enhanced predictive quality is shown and further improvements due to more restrictive seed constraints are highlighted. The extended web interface provides visualizations of the new minimal energy profiles for RNA-RNA interactions. These allow a detailed investigation of interaction alternatives and can reveal potential interaction site multiplicity. IntaRNAv2 is freely available (source and binary), and distributed via the conda package manager. Furthermore, it has been included into the Galaxy workflow framework and its already established web interface enables ad hoc usage.
Collapse
Affiliation(s)
- Martin Mann
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Patrick R Wright
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Abstract
Small regulatory RNAs play an important role in the adaptation to changing conditions. Here, we describe a differentially expressed small regulatory RNA (sRNA) that affects various cellular processes in the plant pathogen Agrobacterium tumefaciens Using a combination of bioinformatic predictions and comparative proteomics, we identified nine targets, most of which are positively regulated by the sRNA. According to these targets, we named the sRNA PmaR for peptidoglycan biosynthesis, motility, and ampicillin resistance regulator. Agrobacterium spp. are long known to be naturally resistant to high ampicillin concentrations, and we can now explain this phenotype by the positive PmaR-mediated regulation of the beta-lactamase gene ampC Structure probing revealed a spoon-like structure of the sRNA, with a single-stranded loop that is engaged in target interaction in vivo and in vitro Several riboregulators have been implicated in antibiotic resistance mechanisms, such as uptake and efflux transporters, but PmaR represents the first example of an sRNA that directly controls the expression of an antibiotic resistance gene.IMPORTANCE The alphaproteobacterium Agrobacterium tumefaciens is able to infect various eudicots causing crown gall tumor formation. Based on its unique ability of interkingdom gene transfer, Agrobacterium serves as a crucial biotechnological tool for genetic manipulation of plant cells. The presence of hundreds of putative sRNAs in this organism suggests a considerable impact of riboregulation on A. tumefaciens physiology. Here, we characterized the biological function of the sRNA PmaR that controls various processes crucial for growth, motility, and virulence. Among the genes directly targeted by PmaR is ampC coding for a beta-lactamase that confers ampicillin resistance, suggesting that the sRNA is crucial for fitness in the competitive microbial composition of the rhizosphere.
Collapse
|
15
|
Raden M, Ali SM, Alkhnbashi OS, Busch A, Costa F, Davis JA, Eggenhofer F, Gelhausen R, Georg J, Heyne S, Hiller M, Kundu K, Kleinkauf R, Lott SC, Mohamed MM, Mattheis A, Miladi M, Richter AS, Will S, Wolff J, Wright PR, Backofen R. Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res 2018; 46:W25-W29. [PMID: 29788132 PMCID: PMC6030932 DOI: 10.1093/nar/gky329] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.
Collapse
Affiliation(s)
- Martin Raden
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Syed M Ali
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Omer S Alkhnbashi
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Fabrizio Costa
- Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK
| | - Jason A Davis
- Coreva Scientific, Kaiser-Joseph-Str 198-200, 79098 Freiburg, Germany
| | - Florian Eggenhofer
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rick Gelhausen
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Kousik Kundu
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Hinxton Cambridge CB10 1HH, UK
| | - Robert Kleinkauf
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Steffen C Lott
- Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Mostafa M Mohamed
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Alexander Mattheis
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Milad Miladi
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | | | - Sebastian Will
- Theoretical Biochemistry Group, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria
| | - Joachim Wolff
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Patrick R Wright
- Department of Clinical Research, Clinical Trial Unit, University of Basel Hospital, Schanzenstrasse 55, 4031 Basel, Switzerland
| | - Rolf Backofen
- Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Robledo M, Schlüter JP, Loehr LO, Linne U, Albaum SP, Jiménez-Zurdo JI, Becker A. An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA. Front Microbiol 2018; 9:763. [PMID: 29740411 PMCID: PMC5928217 DOI: 10.3389/fmicb.2018.00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
Adjustment of cell cycle progression is crucial for bacterial survival and adaptation under adverse conditions. However, the understanding of modulation of cell cycle control in response to environmental changes is rather incomplete. In α-proteobacteria, the broadly conserved cell cycle master regulator CtrA underlies multiple levels of control, including coupling of cell cycle and cell differentiation. CtrA levels are known to be tightly controlled through diverse transcriptional and post-translational mechanisms. Here, small RNA (sRNA)-mediated post-transcriptional regulation is uncovered as an additional level of CtrA fine-tuning. Computational predictions as well as transcriptome and proteome studies consistently suggested targeting of ctrA and the putative cold shock chaperone cspA5 mRNAs by the trans-encoded sRNA (trans-sRNA) GspR (formerly SmelC775) in several Sinorhizobium species. GspR strongly accumulated in the stationary growth phase, especially in minimal medium (MM) cultures. Lack of the gspR locus confers a fitness disadvantage in competition with the wild type, while its overproduction hampers cell growth, suggesting that this riboregulator interferes with cell cycle progression. An eGFP-based reporter in vivo assay, involving wild-type and mutant sRNA and mRNA pairs, experimentally confirmed GspR-dependent post-transcriptional down-regulation of ctrA and cspA5 expression, which most likely occurs through base-pairing to the respective mRNA. The energetically favored secondary structure of GspR is predicted to comprise three stem-loop domains, with stem-loop 1 and stem-loop 3 targeting ctrA and cspA5 mRNA, respectively. Moreover, this work reports evidence for post-transcriptional control of ctrA by CspA5. Thus, this regulation and GspR-mediated post-transcriptional repression of ctrA and cspA5 expression constitute a coherent feed-forward loop, which may enhance the negative effect of GspR on CtrA levels. This novel regulatory circuit involving the riboregulator GspR, CtrA, and a cold shock chaperone may contribute to fine-tuning of ctrA expression.
Collapse
Affiliation(s)
- Marta Robledo
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.,Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jan-Philip Schlüter
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Lars O Loehr
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Linne
- LOEWE Center for Synthetic Microbiology and Faculty of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - José I Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
17
|
Wright PR, Mann M, Backofen R. Structure and Interaction Prediction in Prokaryotic RNA Biology. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0001-2017. [PMID: 29676245 PMCID: PMC11633574 DOI: 10.1128/microbiolspec.rwr-0001-2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 01/01/2023] Open
Abstract
Many years of research in RNA biology have soundly established the importance of RNA-based regulation far beyond most early traditional presumptions. Importantly, the advances in "wet" laboratory techniques have produced unprecedented amounts of data that require efficient and precise computational analysis schemes and algorithms. Hence, many in silico methods that attempt topological and functional classification of novel putative RNA-based regulators are available. In this review, we technically outline thermodynamics-based standard RNA secondary structure and RNA-RNA interaction prediction approaches that have proven valuable to the RNA research community in the past and present. For these, we highlight their usability with a special focus on prokaryotic organisms and also briefly mention recent advances in whole-genome interactomics and how this may influence the field of predictive RNA research.
Collapse
Affiliation(s)
| | | | - Rolf Backofen
- Bioinformatics Group
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Ahmed W, Razzaq M. RETRACTED: A small non-coding RNA AbcR2 regulate gntR transcription factor that modulate the intracellular survival of Brucella melitensis. Microb Pathog 2018; 118:118-125. [PMID: 29555506 DOI: 10.1016/j.micpath.2018.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Waqas Ahmed
- College of Life Sciences, Guangzhou University, Guangzhou, P. R. China.
| | - Maria Razzaq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
19
|
Small Noncoding RNA AbcR1 Addressing Multiple Target mRNAs From Transcriptional Factor and Two-Component Response Regulator of Brucella melitensis. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.60269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
20
|
Sheehan LM, Caswell CC. An account of evolutionary specialization: the AbcR small RNAs in the Rhizobiales. Mol Microbiol 2017; 107:24-33. [PMID: 29076560 DOI: 10.1111/mmi.13869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 01/26/2023]
Abstract
The AbcR small RNAs (sRNAs) are a fascinating example of two highly conserved sRNAs that differ tremendously at the functional level among organisms. From their transcriptional activation to their regulatory capabilities, the AbcR sRNAs exhibit varying characteristics in three well-studied bacteria belonging to the Rhizobiales order: the plant symbiont Sinorhizobium meliloti, the plant pathogen Agrobacterium tumefaciens, and the animal pathogen Brucella abortus. This review outlines the similarities and differences of the AbcR sRNAs between each of these organisms, and discusses reasons as to why this group of sRNAs has diverged in their genetic organization and regulatory functions across species. In the end, this review will shed light on how regulatory systems, although seemingly conserved among bacteria, can vary based on the environmental niche and lifestyle of an organism.
Collapse
Affiliation(s)
- Lauren M Sheehan
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
21
|
Saramago M, Peregrina A, Robledo M, Matos RG, Hilker R, Serrania J, Becker A, Arraiano CM, Jiménez-Zurdo JI. Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation. Nucleic Acids Res 2017; 45:1371-1391. [PMID: 28180335 PMCID: PMC5388416 DOI: 10.1093/nar/gkw1234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/23/2023] Open
Abstract
Structural and biochemical features suggest that the almost ubiquitous bacterial YbeY protein may serve catalytic and/or Hfq-like protective functions central to small RNA (sRNA)-mediated regulation and RNA metabolism. We have biochemically and genetically characterized the YbeY ortholog of the legume symbiont Sinorhizobium meliloti (SmYbeY). Co-immunoprecipitation (CoIP) with a FLAG-tagged SmYbeY yielded a poor enrichment in RNA species, compared to Hfq CoIP-RNA uncovered previously by a similar experimental setup. Purified SmYbeY behaved as a monomer that indistinctly cleaved single- and double-stranded RNA substrates, a unique ability among bacterial endoribonucleases. SmYbeY-mediated catalysis was supported by the divalent metal ions Mg2+, Mn2+ and Ca2+, which influenced in a different manner cleavage efficiency and reactivity patterns, with Ca2+ specifically blocking activity on double-stranded and some structured RNA molecules. SmYbeY loss-of-function compromised expression of core energy and RNA metabolism genes, whilst promoting accumulation of motility, late symbiotic and transport mRNAs. Some of the latter transcripts are known Hfq-binding sRNA targets and might be SmYbeY substrates. Genetic reporter and in vitro assays confirmed that SmYbeY is required for sRNA-mediated down-regulation of the amino acid ABC transporter prbA mRNA. We have thus discovered a bacterial endoribonuclease with unprecedented catalytic features, acting also as gene silencing enzyme.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- These authors contributed equally to the work as the first authors
| | - Alexandra Peregrina
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- These authors contributed equally to the work as the first authors
| | - Marta Robledo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- These authors contributed equally to the work as the first authors
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Rolf Hilker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Cecilia M. Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - José I. Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- To whom correspondence should be addressed. Tel: +34 958181600; Fax: +34 958181609;
| |
Collapse
|
22
|
Jiménez-Zurdo JI, Robledo M. RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view. RNA Biol 2017; 14:1672-1677. [PMID: 28805544 DOI: 10.1080/15476286.2017.1356565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Extensive work in model enterobacteria has evidenced that the RNA chaperone Hfq and several endoribonucleases, such as RNase E or RNase III, serve pivotal roles in small RNA-mediated post-transcriptional silencing of gene expression. Characterization of these protein hubs commonly provide global functional and mechanistic insights into complex sRNA regulatory networks. The legume endosymbiont Sinorhizobium meliloti is a non-classical model bacterium with a very complex lifestyle in which riboregulation is expected to play important adaptive functions. Here, we discuss current knowledge about RNA silencing in S. meliloti from the perspective of the activity of Hfq and a recently discovered endoribonuclease (YbeY) exhibiting unprecedented catalytic versatility for the cleavage of single- and double-stranded RNA molecules.
Collapse
Affiliation(s)
- José I Jiménez-Zurdo
- a Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín , Consejo Superior de Investigaciones Científicas (CSIC) , Granada , Spain
| | - Marta Robledo
- a Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín , Consejo Superior de Investigaciones Científicas (CSIC) , Granada , Spain
| |
Collapse
|
23
|
A 6-Nucleotide Regulatory Motif within the AbcR Small RNAs of Brucella abortus Mediates Host-Pathogen Interactions. mBio 2017; 8:mBio.00473-17. [PMID: 28588127 PMCID: PMC5461406 DOI: 10.1128/mbio.00473-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Brucella abortus, two small RNAs (sRNAs), AbcR1 and AbcR2, are responsible for regulating transcripts encoding ABC-type transport systems. AbcR1 and AbcR2 are required for Brucella virulence, as a double chromosomal deletion of both sRNAs results in attenuation in mice. Although these sRNAs are responsible for targeting transcripts for degradation, the mechanism utilized by the AbcR sRNAs to regulate mRNA in Brucella has not been described. Here, two motifs (M1 and M2) were identified in AbcR1 and AbcR2, and complementary motif sequences were defined in AbcR-regulated transcripts. Site-directed mutagenesis of M1 or M2 or of both M1 and M2 in the sRNAs revealed transcripts to be targeted by one or both motifs. Electrophoretic mobility shift assays revealed direct, concentration-dependent binding of both AbcR sRNAs to a target mRNA sequence. These experiments genetically and biochemically characterized two indispensable motifs within the AbcR sRNAs that bind to and regulate transcripts. Additionally, cellular and animal models of infection demonstrated that only M2 in the AbcR sRNAs is required for Brucella virulence. Furthermore, one of the M2-regulated targets, BAB2_0612, was found to be critical for the virulence of B. abortus in a mouse model of infection. Although these sRNAs are highly conserved among Alphaproteobacteria, the present report displays how gene regulation mediated by the AbcR sRNAs has diverged to meet the intricate regulatory requirements of each particular organism and its unique biological niche. Small RNAs (sRNAs) are important components of bacterial regulation, allowing organisms to quickly adapt to changes in their environments. The AbcR sRNAs are highly conserved throughout the Alphaproteobacteria and negatively regulate myriad transcripts, many encoding ABC-type transport systems. In Brucella abortus, AbcR1 and AbcR2 are functionally redundant, as only a double abcR1 abcR2 (abcR1/2) deletion results in attenuation in vitro and in vivo. In the present study, we confirmed that the AbcR sRNAs have redundant regulatory functions and defined two six-nucleotide motifs, M1 and M2, that the AbcR sRNAs utilize to control gene expression. Importantly, only M2 was linked to B. abortus virulence. Further investigation of M2-regulated targets identified BAB2_0612 as critical for colonization of B. abortus in mice, highlighting the significance of AbcR M2-regulated transcripts for Brucella infection. Overall, our findings define the molecular mechanism of the virulence-associated AbcR system in the pathogenic bacterium B. abortus.
Collapse
|
24
|
Robledo M, Peregrina A, Millán V, García-Tomsig NI, Torres-Quesada O, Mateos PF, Becker A, Jiménez-Zurdo JI. A conserved α-proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots. Environ Microbiol 2017; 19:2661-2680. [PMID: 28401641 DOI: 10.1111/1462-2920.13757] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 02/02/2023]
Abstract
Small non-coding RNAs (sRNAs) are expected to have pivotal roles in the adaptive responses underlying symbiosis of nitrogen-fixing rhizobia with legumes. Here, we provide primary insights into the function and activity mechanism of the Sinorhizobium meliloti trans-sRNA NfeR1 (Nodule Formation Efficiency RNA). Northern blot probing and transcription tracking with fluorescent promoter-reporter fusions unveiled high nfeR1 expression in response to salt stress and throughout the symbiotic interaction. The strength and differential regulation of nfeR1 transcription are conferred by a motif, which is conserved in nfeR1 promoter regions in α-proteobacteria. NfeR1 loss-of-function compromised osmoadaptation of free-living bacteria, whilst causing misregulation of salt-responsive genes related to stress adaptation, osmolytes catabolism and membrane trafficking. Nodulation tests revealed that lack of NfeR1 affected competitiveness, infectivity, nodule development and symbiotic efficiency of S. meliloti on alfalfa roots. Comparative computer predictions and a genetic reporter assay evidenced a redundant role of three identical NfeR1 unpaired anti Shine-Dalgarno motifs for targeting and downregulation of translation of multiple mRNAs from transporter genes. Our data provide genetic evidence of the hyperosmotic conditions of the endosymbiotic compartments. NfeR1-mediated gene regulation in response to this cue could contribute to coordinate nutrient uptake with the metabolic reprogramming concomitant to symbiotic transitions.
Collapse
Affiliation(s)
- Marta Robledo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Alexandra Peregrina
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Vicenta Millán
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Natalia I García-Tomsig
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Omar Torres-Quesada
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pedro F Mateos
- Departamento de Microbiología y Genética and CIALE, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - José I Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
25
|
The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis. Cell Res 2017; 27:416-439. [PMID: 28244490 DOI: 10.1038/cr.2017.26] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA) biogenesis is finely controlled by complex layers of post-transcriptional regulators, including RNA-binding proteins (RBPs). Here, we show that an RBP, QKI5, activates the processing of primary miR-124-1 (pri-124-1) during erythropoiesis. QKI5 recognizes a distal QKI response element and recruits Microprocessor through interaction with DGCR8. Furthermore, the recruited Microprocessor is brought to pri-124-1 stem loops by a spatial RNA-RNA interaction between two complementary sequences. Thus, mutations disrupting their base-pairing affect the strength of QKI5 activation. When erythropoiesis proceeds, the concomitant decrease of QKI5 releases Microprocessor from pri-124-1 and reduces mature miR-124 levels to facilitate erythrocyte maturation. Mechanistically, miR-124 targets TAL1 and c-MYB, two transcription factors involved in normal erythropoiesis. Importantly, this QKI5-mediated regulation also gives rise to a unique miRNA signature, which is required for erythroid differentiation. Taken together, these results demonstrate the pivotal role of QKI5 in primary miRNA processing during erythropoiesis and provide new insights into how a distal element on primary transcripts affects miRNA biogenesis.
Collapse
|
26
|
Mollerup MS, Ross JA, Helfer AC, Meistrup K, Romby P, Kallipolitis BH. Two novel members of the LhrC family of small RNAs in Listeria monocytogenes with overlapping regulatory functions but distinctive expression profiles. RNA Biol 2016; 13:895-915. [PMID: 27400116 DOI: 10.1080/15476286.2016.1208332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multicopy small RNAs (sRNAs) have gained recognition as an important feature of bacterial gene regulation. In the human pathogen Listeria monocytogenes, 5 homologous sRNAs, called LhrC1-5, control gene expression by base pairing to target mRNAs though 3 conserved UCCC motifs common to all 5 LhrCs. We show here that the sRNAs Rli22 and Rli33-1 are structurally and functionally related to LhrC1-5, expanding the LhrC family to 7 members, which makes it the largest multicopy sRNA family reported so far. Rli22 and Rli33-1 both contain 2 UCCC motifs important for post-transcriptional repression of 3 LhrC target genes. One such target, oppA, encodes a virulence-associated oligo-peptide binding protein. Like LhrC1-5, Rli22 and Rli33-1 employ their UCCC motifs to recognize the Shine-Dalgarno region of oppA mRNA and prevent formation of the ribosomal complex, demonstrating that the 7 sRNAs act in a functionally redundant manner. However, differential expression profiles of the sRNAs under infection-relevant conditions suggest that they might also possess non-overlapping functions. Collectively, this makes the LhrC family a unique case for studying the purpose of sRNA multiplicity in the context of bacterial virulence.
Collapse
Affiliation(s)
- Maria Storm Mollerup
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Joseph Andrew Ross
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Anne-Catherine Helfer
- b Architecture et Réactivité de l´ARN, Université de Strasbourg, CNRS, IBMC , Strasbourg , France
| | - Kristine Meistrup
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Pascale Romby
- b Architecture et Réactivité de l´ARN, Université de Strasbourg, CNRS, IBMC , Strasbourg , France
| | | |
Collapse
|
27
|
Unraveling the universe of small RNA regulators in the legume symbiont Sinorhizobium meliloti. Symbiosis 2015. [DOI: 10.1007/s13199-015-0345-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Miyakoshi M, Chao Y, Vogel J. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 2015; 34:1478-92. [PMID: 25630703 PMCID: PMC4474525 DOI: 10.15252/embj.201490546] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
There is an expanding list of examples by which one mRNA can posttranscriptionally influence the expression of others. This can involve RNA sponges that sequester regulatory RNAs of mRNAs in the same regulon, but the underlying molecular mechanism of such mRNA cross talk remains little understood. Here, we report sponge-mediated mRNA cross talk in the posttranscriptional network of GcvB, a conserved Hfq-dependent small RNA with one of the largest regulons known in bacteria. We show that mRNA decay from the gltIJKL locus encoding an amino acid ABC transporter generates a stable fragment (SroC) that base-pairs with GcvB. This interaction triggers the degradation of GcvB by RNase E, alleviating the GcvB-mediated mRNA repression of other amino acid-related transport and metabolic genes. Intriguingly, since the gltIJKL mRNA itself is a target of GcvB, the SroC sponge seems to enable both an internal feed-forward loop to activate its parental mRNA in cis and activation of many trans-encoded mRNAs in the same pathway. Disabling this mRNA cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- RNA Biology Group, Institute for Molecular Infection Biology University of Würzburg, Würzburg, Germany
| | - Yanjie Chao
- RNA Biology Group, Institute for Molecular Infection Biology University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology University of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Dequivre M, Diel B, Villard C, Sismeiro O, Durot M, Coppée JY, Nesme X, Vial L, Hommais F. Small RNA Deep-Sequencing Analyses Reveal a New Regulator of Virulence in Agrobacterium fabrum C58. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:580-589. [PMID: 26024442 DOI: 10.1094/mpmi-12-14-0380-fi] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Novel ways of regulating Ti plasmid functions were investigated by studying small RNAs (sRNAs) that are known to act as posttranscriptional regulators in plant pathogenic bacteria. sRNA-seq analyses of Agrobacterium fabrum C58 allowed us to identify 1,108 small transcripts expressed in several growth conditions that could be sRNAs. A quarter of them were confirmed by bioinformatics or by biological experiments. Antisense RNAs represent 24% of the candidates and they are over-represented on the pTi (with 62% of pTi sRNAs), suggesting differences in the regulatory mechanisms between the essential and accessory replicons. Moreover, a large number of these pTi antisense RNAs are transcribed opposite to those genes involved in virulence. Others are 5'- and 3'-untranslated region RNAs and trans-encoded RNAs. We have validated, by rapid amplification of cDNA ends polymerase chain reaction, the transcription of 14 trans-encoded RNAs, among which RNA1111 is expressed from the pTiC58. Its deletion decreased the aggressiveness of A. fabrum C58 on tomatoes, tobaccos, and kalanchoe, suggesting that this sRNA activates virulence. The identification of its putative target mRNAs (6b gene, virC2, virD3, and traA) suggests that this sRNA may coordinate two of the major pTi functions, the infection of plants and its dissemination among bacteria.
Collapse
Affiliation(s)
- M Dequivre
- 1Université de Lyon, F-69622, Lyon, France
- 2Université Lyon 1, F-69622 Villeurbanne, France
- 3CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, F-69622 Villeurbanne, France
| | - B Diel
- 1Université de Lyon, F-69622, Lyon, France
- 2Université Lyon 1, F-69622 Villeurbanne, France
- 3CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, F-69622 Villeurbanne, France
- 4CNRS, UMR 5557 Ecologie Microbienne, F-69622 Villeurbanne, France
- 5INRA, USC 1364 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - C Villard
- 1Université de Lyon, F-69622, Lyon, France
- 2Université Lyon 1, F-69622 Villeurbanne, France
- 3CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, F-69622 Villeurbanne, France
| | - O Sismeiro
- 6Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, 25 rue du Dr. Roux, F75015 Paris, France
| | - M Durot
- 7CEA/DSV/FAR/IG/Genoscope and CNRS UMR8030 Laboratoire d'Analyses Bioinformatiques en Métabolisme et Génomique, 2 rue Gaston Crémieux 91057 Evry cedex, France
- 8Total New Energies USA, 5858 Horton Street, Emeryville, CA 94608, U.S.A
| | - J Y Coppée
- 6Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, 25 rue du Dr. Roux, F75015 Paris, France
| | - X Nesme
- 1Université de Lyon, F-69622, Lyon, France
- 2Université Lyon 1, F-69622 Villeurbanne, France
- 4CNRS, UMR 5557 Ecologie Microbienne, F-69622 Villeurbanne, France
- 5INRA, USC 1364 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - L Vial
- 1Université de Lyon, F-69622, Lyon, France
- 2Université Lyon 1, F-69622 Villeurbanne, France
- 4CNRS, UMR 5557 Ecologie Microbienne, F-69622 Villeurbanne, France
- 5INRA, USC 1364 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - F Hommais
- 1Université de Lyon, F-69622, Lyon, France
- 2Université Lyon 1, F-69622 Villeurbanne, France
- 3CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, F-69622 Villeurbanne, France
| |
Collapse
|
30
|
|
31
|
Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Front Cell Infect Microbiol 2014; 4:151. [PMID: 25389522 PMCID: PMC4211561 DOI: 10.3389/fcimb.2014.00151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Abstract
Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.
Collapse
Affiliation(s)
- Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD Regional College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine Athens, OH, USA
| |
Collapse
|
32
|
Möller P, Overlöper A, Förstner KU, Wen TN, Sharma CM, Lai EM, Narberhaus F. Profound impact of Hfq on nutrient acquisition, metabolism and motility in the plant pathogen Agrobacterium tumefaciens. PLoS One 2014; 9:e110427. [PMID: 25330313 PMCID: PMC4201532 DOI: 10.1371/journal.pone.0110427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/14/2014] [Indexed: 01/18/2023] Open
Abstract
As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens.
Collapse
Affiliation(s)
- Philip Möller
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | | - Konrad U. Förstner
- Research Center for Infectious Diseases (ZINF), Julius-Maximilian's University of Würzburg, Würzburg, Germany
| | - Tuan-Nan Wen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Cynthia M. Sharma
- Research Center for Infectious Diseases (ZINF), Julius-Maximilian's University of Würzburg, Würzburg, Germany
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
33
|
Becker A, Overlöper A, Schlüter JP, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E. Riboregulation in plant-associated α-proteobacteria. RNA Biol 2014; 11:550-62. [PMID: 25003187 DOI: 10.4161/rna.29625] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The symbiotic α-rhizobia Sinorhizobium meliloti, Bradyrhizobium japonicum, Rhizobium etli and the related plant pathogen Agrobacterium tumefaciens are important model organisms for studying plant-microbe interactions. These metabolically versatile soil bacteria are characterized by complex lifestyles and large genomes. Here we summarize the recent knowledge on their small non-coding RNAs (sRNAs) including conservation, function, and interaction of the sRNAs with the RNA chaperone Hfq. In each of these organisms, an inventory of hundreds of cis- and trans-encoded sRNAs with regulatory potential was uncovered by high-throughput approaches and used for the construction of 39 sRNA family models. Genome-wide analyses of hfq mutants and co-immunoprecipitation with tagged Hfq revealed a major impact of the RNA chaperone on the physiology of plant-associated α-proteobacteria including symbiosis and virulence. Highly conserved members of the SmelC411 family are the AbcR sRNAs, which predominantly regulate ABC transport systems. AbcR1 of A. tumefaciens controls the uptake of the plant-generated signaling molecule GABA and is a central regulator of nutrient uptake systems. It has similar functions in S. meliloti and the human pathogen Brucella abortus. As RNA degradation is an important process in RNA-based gene regulation, a short overview on ribonucleases in plant-associated α-proteobacteria concludes this review.
Collapse
Affiliation(s)
- Anke Becker
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | | | - Jan-Philip Schlüter
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Jan Reinkensmeier
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | - Marta Robledo
- LOEWE Centre for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Robert Giegerich
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | | | | |
Collapse
|