1
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, Klinge CM. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104260. [PMID: 37683712 PMCID: PMC10591945 DOI: 10.1016/j.etap.2023.104260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Juw Won Park
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mayukh Banerjee
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
2
|
Horn T, Gosliga A, Li C, Enculescu M, Legewie S. Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing. NPJ Syst Biol Appl 2023; 9:1. [PMID: 36653378 PMCID: PMC9849329 DOI: 10.1038/s41540-022-00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
Collapse
Affiliation(s)
- Timur Horn
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alison Gosliga
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Congxin Li
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
3
|
Alvelos MI, Brüggemann M, Sutandy FXR, Juan-Mateu J, Colli ML, Busch A, Lopes M, Castela Â, Aartsma-Rus A, König J, Zarnack K, Eizirik DL. The RNA-binding profile of the splicing factor SRSF6 in immortalized human pancreatic β-cells. Life Sci Alliance 2021; 4:e202000825. [PMID: 33376132 PMCID: PMC7772782 DOI: 10.26508/lsa.202000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In pancreatic β-cells, the expression of the splicing factor SRSF6 is regulated by GLIS3, a transcription factor encoded by a diabetes susceptibility gene. SRSF6 down-regulation promotes β-cell demise through splicing dysregulation of central genes for β-cells function and survival, but how RNAs are targeted by SRSF6 remains poorly understood. Here, we define the SRSF6 binding landscape in the human pancreatic β-cell line EndoC-βH1 by integrating individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) under basal conditions with RNA sequencing after SRSF6 knockdown. We detect thousands of SRSF6 bindings sites in coding sequences. Motif analyses suggest that SRSF6 specifically recognizes a purine-rich consensus motif consisting of GAA triplets and that the number of contiguous GAA triplets correlates with increasing binding site strength. The SRSF6 positioning determines the splicing fate. In line with its role in β-cell function, we identify SRSF6 binding sites on regulated exons in several diabetes susceptibility genes. In a proof-of-principle, the splicing of the susceptibility gene LMO7 is modulated by antisense oligonucleotides. Our present study unveils the splicing regulatory landscape of SRSF6 in immortalized human pancreatic β-cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mirko Brüggemann
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anke Busch
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Miguel Lopes
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Julian König
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Kathi Zarnack
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
4
|
Gong S, Song Z, Spezia-Lindner D, Meng F, Ruan T, Ying G, Lai C, Wu Q, Liang Y. Novel Insights Into Triple-Negative Breast Cancer Prognosis by Comprehensive Characterization of Aberrant Alternative Splicing. Front Genet 2020; 11:534. [PMID: 32595697 PMCID: PMC7302061 DOI: 10.3389/fgene.2020.00534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background Alternative splicing (AS) is important in the regulation of gene expression and aberrant AS is emerging as a major factor in the pathogenesis of human conditions, including cancer. Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer with strong invasion, high rate of metastasis, and poor prognosis. Here we report a systematic profiling of aberrant AS in TNBC. Methods The percent spliced in (PSI) values for AS events in 151 TNBC patients were obtained from The Cancer Genome Atlas (TCGA) SpliceSeq database. Univariate Cox and stepwise Multivariate Cox regression analyses were conducted to find the best prognostic AS model. Splicing regulatory networks were constructed by prognosis-related spliceosome and aberrant AS events. Additionally, pathway enrichment and gene set enrichment analysis (GSEA) were further employed to reveal the significant pathways for prognosis-related AS genes. Finally, splicing regulatory networks were constructed via Spearman's rank correlation coefficients between prognosis-related AS events and splicing factor expressions. Results A total of 1,397 prognosis-associated AS events were identified in TNBC. The majority of the parent genes of prognostic AS events exhibited direct interactions to each other in the STRING gene network. Pathways of focal adhesion (p < 0.001), RNA splicing (p = 0.007), homologous recombination (p = 0.042) and ECM-receptor interaction (p = 0.046) were found to be significantly enriched for prognosis-related AS. Additionally, the area under curve (AUC) of the best AS prognostic predictor model reached 0.949, showing a powerful capability to predict outcomes. The Exon Skip (ES) type of AS events displayed more robust and efficient capacity in predicting performance than any other specific AS events type in terms of prognosis. The ES AS signature might confer a strong oncogenic phenotype in the high-risk group with elevated activities in cell cycle and SUMOylating pathways of tumorigenesis, while programmed cell death and metabolism pathways were found to be enriched in the low-risk group of TNBC. The splicing correlation network also revealed a regulatory mode of prognostic splicing factors (SFs) in TNBC. Conclusion Our analysis of AS events in TNBC could not only contribute to elucidating the tumorigenesis mechanism of AS but also provide clues to uncovering underlying prognostic biomarkers and therapeutic targets for further study.
Collapse
Affiliation(s)
- Shasha Gong
- Institute of Cancer Research, Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China.,Precision Medicine Center, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - David Spezia-Lindner
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Feilong Meng
- Institute of Genetics, Zhejiang University, Hangzhou, China
| | - Tingting Ruan
- Institute of Cancer Research, Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Guangzhi Ying
- Institute of Cancer Research, Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Changhong Lai
- Institute of Cancer Research, Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Qianqian Wu
- Institute of Cancer Research, Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Yong Liang
- Institute of Cancer Research, Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| |
Collapse
|
5
|
de la Fuente L, Arzalluz-Luque Á, Tardáguila M, Del Risco H, Martí C, Tarazona S, Salguero P, Scott R, Lerma A, Alastrue-Agudo A, Bonilla P, Newman JRB, Kosugi S, McIntyre LM, Moreno-Manzano V, Conesa A. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing. Genome Biol 2020; 21:119. [PMID: 32423416 PMCID: PMC7236505 DOI: 10.1186/s13059-020-02028-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in long-read sequencing solve inaccuracies in alternative transcript identification of full-length transcripts in short-read RNA-Seq data, which encourages the development of methods for isoform-centered functional analysis. Here, we present tappAS, the first framework to enable a comprehensive Functional Iso-Transcriptomics (FIT) analysis, which is effective at revealing the functional impact of context-specific post-transcriptional regulation. tappAS uses isoform-resolved annotation of coding and non-coding functional domains, motifs, and sites, in combination with novel analysis methods to interrogate different aspects of the functional readout of transcript variants and isoform regulation. tappAS software and documentation are available at https://app.tappas.org.
Collapse
Affiliation(s)
- Lorena de la Fuente
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
- Present Address: Bioinformatics Unit, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Ángeles Arzalluz-Luque
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Manuel Tardáguila
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Héctor Del Risco
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Cristina Martí
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Sonia Tarazona
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Pedro Salguero
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Raymond Scott
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alberto Lerma
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Ana Alastrue-Agudo
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Pablo Bonilla
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Shunichi Kosugi
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Lauren M McIntyre
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | - Ana Conesa
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
- Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
5' and 3' splicing signals evolution in vertebrates: Analysis in a conserved gene family. Comput Biol Chem 2020; 86:107251. [PMID: 32224443 DOI: 10.1016/j.compbiolchem.2020.107251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/08/2020] [Accepted: 03/13/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial solute carrier genes (SLC25) are highly conserved during vertebrate evolution. In most SLC25 genes of zebrafish, chicken, mouse, and human, the introns are located at exactly superimposable positions. In these topographically corresponding introns we studied the composition of the initial and terminal hexanucleotides (5'ss and 3'ss) which are instrumental in splicing signaling, focusing on the evolutionary conservation/mutation dynamics of these genetically related sequences. At each position, the per cent conservation of zebrafish individual nucleotides in chicken, mouse and human is proportional to their percent frequency in zebrafish; furthermore, nucleotide mutations are biased in favor of the more represented nucleotides, thus compensating for those highly represented zebrafish nucleotides which have not been conserved. As a result of these evolutionary dynamics, the general nucleotide composition at each position has remained relatively conserved throughout vertebrates. At 5'ss, following the canonical GT, A and G are largely prevailing at position +3, A at +4 and G at +5 (GT[A/G]AGx). At 3'ss, T and C are largely prevailing at positions -6, -5 and -3, preceding the canonical intron terminal AG ([C/T] [C/T]x[C/T]AG). However, the actual composition of the tetranucleotides at 5' and 3' often does not conform to the above scheme. At 5'ss the more canonical sequence is completely expressed in 63% of cases and partially (2 or 1 matches) in 37 % of cases. At 3'ss the more canonical sequence is completely expressed in 71 % of cases and partially (2 or 1 matches) in 29 % of cases. The nucleotide conservation loss (nucleotide mutation) is higher in the evolution from fish to the last common ancestor of birds and mammals (58 %), then diminishes in the successive evolution steps up to the mammalian common ancestor (10 %), and becomes still lower at the divergence of rodents and primates (5 %).
Collapse
|
7
|
Enculescu M, Braun S, Thonta Setty S, Busch A, Zarnack K, König J, Legewie S. Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene. Biophys J 2020; 118:2027-2041. [PMID: 32336349 DOI: 10.1016/j.bpj.2020.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called "exon definition" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.
Collapse
Affiliation(s)
| | - Simon Braun
- Institute of Molecular Biology, Mainz, Germany
| | - Samarth Thonta Setty
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anke Busch
- Institute of Molecular Biology, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
8
|
Rahhal R, Seto E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 2019; 47:4911-4926. [PMID: 31162605 PMCID: PMC6547430 DOI: 10.1093/nar/gkz292] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Histone modifications and RNA splicing, two seemingly unrelated gene regulatory processes, greatly increase proteome diversity and profoundly influence normal as well as pathological eukaryotic cellular functions. Like many histone modifying enzymes, histone deacetylases (HDACs) play critical roles in governing cellular behaviors and are indispensable in numerous biological processes. While the association between RNA splicing and histone modifications is beginning to be recognized, a lack of knowledge exists regarding the role of HDACs in splicing. Recent studies however, reveal that HDACs interact with spliceosomal and ribonucleoprotein complexes, actively control the acetylation states of splicing-associated histone marks and splicing factors, and thereby unexpectedly could modulate splicing. Here, we review the role of histone/protein modifications and HDACs in RNA splicing and discuss the convergence of two parallel fields, which supports the argument that HDACs, and perhaps most histone modifying enzymes, are much more versatile and far more complicated than their initially proposed functions. Analogously, an HDAC-RNA splicing connection suggests that splicing is regulated by additional upstream factors and pathways yet to be defined or not fully characterized. Some human diseases share common underlying causes of aberrant HDACs and dysregulated RNA splicing and, thus, further support the potential link between HDACs and RNA splicing.
Collapse
Affiliation(s)
- Raneen Rahhal
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
9
|
CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun 2019; 10:4056. [PMID: 31492834 PMCID: PMC6731291 DOI: 10.1038/s41467-019-12028-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
The introduction of insertion-deletions (INDELs) by non-homologous end-joining (NHEJ) pathway underlies the mechanistic basis of CRISPR-Cas9-directed genome editing. Selective gene ablation using CRISPR-Cas9 is achieved by installation of a premature termination codon (PTC) from a frameshift-inducing INDEL that elicits nonsense-mediated decay (NMD) of the mutant mRNA. Here, by examining the mRNA and protein products of CRISPR targeted genes in a cell line panel with presumed gene knockouts, we detect the production of foreign mRNAs or proteins in ~50% of the cell lines. We demonstrate that these aberrant protein products stem from the introduction of INDELs that promote internal ribosomal entry, convert pseudo-mRNAs (alternatively spliced mRNAs with a PTC) into protein encoding molecules, or induce exon skipping by disruption of exon splicing enhancers (ESEs). Our results reveal challenges to manipulating gene expression outcomes using INDEL-based mutagenesis and strategies useful in mitigating their impact on intended genome-editing outcomes.
Collapse
|
10
|
Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor usage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194391. [PMID: 31202784 DOI: 10.1016/j.bbagrm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 11/16/2022]
Abstract
Elaborate research on splicing, starting in the late seventies, evolved from the discovery that 5' splice sites are recognized by their complementarity to U1 snRNA towards the realization that RNA duplex formation cannot be the sole basis for 5'ss selection. Rather, their recognition is highly influenced by a number of context factors including transcript architecture as well as splicing regulatory elements (SREs) in the splice site neighborhood. In particular, proximal binding of splicing regulatory proteins highly influences splicing outcome. The importance of SRE integrity especially becomes evident in the light of human pathogenic mutations where single nucleotide changes in SREs can severely affect the resulting transcripts. Bioinformatics tools nowadays greatly assist in the computational evaluation of 5'ss, their neighborhood and the impact of pathogenic mutations. Although predictions are already quite robust, computational evaluation of the splicing regulatory landscape still faces challenges to increase future reliability. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Majoros WH, Holt C, Campbell MS, Ware D, Yandell M, Reddy TE. Predicting gene structure changes resulting from genetic variants via exon definition features. Bioinformatics 2018; 34:3616-3623. [PMID: 29701825 PMCID: PMC6198862 DOI: 10.1093/bioinformatics/bty324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/28/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023] Open
Abstract
Motivation Genetic variation that disrupts gene function by altering gene splicing between individuals can substantially influence traits and disease. In those cases, accurately predicting the effects of genetic variation on splicing can be highly valuable for investigating the mechanisms underlying those traits and diseases. While methods have been developed to generate high quality computational predictions of gene structures in reference genomes, the same methods perform poorly when used to predict the potentially deleterious effects of genetic changes that alter gene splicing between individuals. Underlying that discrepancy in predictive ability are the common assumptions by reference gene finding algorithms that genes are conserved, well-formed and produce functional proteins. Results We describe a probabilistic approach for predicting recent changes to gene structure that may or may not conserve function. The model is applicable to both coding and non-coding genes, and can be trained on existing gene annotations without requiring curated examples of aberrant splicing. We apply this model to the problem of predicting altered splicing patterns in the genomes of individual humans, and we demonstrate that performing gene-structure prediction without relying on conserved coding features is feasible. The model predicts an unexpected abundance of variants that create de novo splice sites, an observation supported by both simulations and empirical data from RNA-seq experiments. While these de novo splice variants are commonly misinterpreted by other tools as coding or non-coding variants of little or no effect, we find that in some cases they can have large effects on splicing activity and protein products and we propose that they may commonly act as cryptic factors in disease. Availability and implementation The software is available from geneprediction.org/SGRF. Supplementary information Supplementary information is available at Bioinformatics online.
Collapse
Affiliation(s)
- William H Majoros
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
| | - Carson Holt
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT, USA
- USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | | | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- USDA ARS NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, USA
| | - Mark Yandell
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT, USA
- USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Timothy E Reddy
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
12
|
Ramanouskaya TV, Grinev VV. The determinants of alternative RNA splicing in human cells. Mol Genet Genomics 2017; 292:1175-1195. [PMID: 28707092 DOI: 10.1007/s00438-017-1350-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.
Collapse
|
13
|
Protein 4.1R Exon 16 3' Splice Site Activation Requires Coordination among TIA1, Pcbp1, and RBM39 during Terminal Erythropoiesis. Mol Cell Biol 2017; 37:MCB.00446-16. [PMID: 28193846 DOI: 10.1128/mcb.00446-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/03/2017] [Indexed: 12/18/2022] Open
Abstract
Exon 16 of protein 4.1R encodes a spectrin/actin-binding peptide critical for erythrocyte membrane stability. Its expression during erythroid differentiation is regulated by alternative pre-mRNA splicing. A UUUUCCCCCC motif situated between the branch point and the 3' splice site is crucial for inclusion. We show that the UUUU region and the last three C residues in this motif are necessary for the binding of splicing factors TIA1 and Pcbp1 and that these proteins appear to act in a collaborative manner to enhance exon 16 inclusion. This element also activates an internal exon when placed in a corresponding intronic position in a heterologous reporter. The impact of these two factors is further enhanced by high levels of RBM39, whose expression rises during erythroid differentiation as exon 16 inclusion increases. TIA1 and Pcbp1 associate in a complex containing RBM39, which interacts with U2AF65 and SF3b155 and promotes U2 snRNP recruitment to the branch point. Our results provide a mechanism for exon 16 3' splice site activation in which a coordinated effort among TIA1, Pcbp1, and RBM39 stabilizes or increases U2 snRNP recruitment, enhances spliceosome A complex formation, and facilitates exon definition through RBM39-mediated splicing regulation.
Collapse
|
14
|
Niemelä EH, Verbeeren J, Singha P, Nurmi V, Frilander MJ. Evolutionarily conserved exon definition interactions with U11 snRNP mediate alternative splicing regulation on U11-48K and U11/U12-65K genes. RNA Biol 2016; 12:1256-64. [PMID: 26479860 DOI: 10.1080/15476286.2015.1096489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Many splicing regulators bind to their own pre-mRNAs to induce alternative splicing that leads to formation of unstable mRNA isoforms. This provides an autoregulatory feedback mechanism that regulates the cellular homeostasis of these factors. We have described such an autoregulatory mechanism for two core protein components, U11-48K and U11/U12-65K, of the U12-dependent spliceosome. This regulatory system uses an atypical splicing enhancer element termed USSE (U11 snRNP-binding splicing enhancer), which contains two U12-type consensus 5' splice sites (5'ss). Evolutionary analysis of the USSE element from a large number of animal and plant species indicate that USSE sequence must be located 25-50 nt downstream from the target 3' splice site (3'ss). Together with functional evidence showing a loss of USSE activity when this distance is reduced and a requirement for RS-domain of U11-35K protein for 3'ss activation, our data suggests that U11 snRNP bound to USSE uses exon definition interactions for regulating alternative splicing. However, unlike standard exon definition where the 5'ss bound by U1 or U11 will be subsequently activated for splicing, the USSE element functions similarly as an exonic splicing enhancer and is involved only in upstream splice site activation but does not function as a splicing donor. Additionally, our evolutionary and functional data suggests that the function of the 5'ss duplication within the USSE elements is to allow binding of two U11/U12 di-snRNPs that stabilize each others' binding through putative mutual interactions.
Collapse
Affiliation(s)
- Elina H Niemelä
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Jens Verbeeren
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Prosanta Singha
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Visa Nurmi
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Mikko J Frilander
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| |
Collapse
|
15
|
Lu J, Plank TD, Su F, Shi X, Liu C, Ji Y, Li S, Huynh A, Shi C, Zhu B, Yang G, Wu Y, Wilkinson MF, Lu Y. The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. J Clin Invest 2016; 126:3058-62. [PMID: 27348585 DOI: 10.1172/jci86508] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022] Open
Abstract
Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Little is known about the molecular pathways that precipitate IMT formation. Here, we report the identification of somatic mutations in UPF1, a gene that encodes an essential component of the nonsense-mediated RNA decay (NMD) pathway, in 13 of 15 pulmonary IMT samples. The majority of mutations occurred in a specific region of UPF1 and triggered UPF1 alternative splicing. Several mRNA targets of the NMD pathway were upregulated in IMT samples, indicating that the UPF1 mutations led to reduced NMD magnitude. These upregulated NMD targets included NIK mRNA, which encodes a potent activator of NF-κB. In human lung cells, UPF1 depletion increased expression of chemokine-encoding genes in a NIK-dependent manner. Elevated chemokines and IgE class switching events were observed in IMT samples, consistent with NIK upregulation in these tumors. Together, these results support a model in which UPF1 mutations downregulate NMD, leading to NIK-dependent NF-κB induction, which contributes to the immune infiltration that is characteristic of IMTs. The molecular link between the NMD pathway and IMTs has implications for the diagnosis and treatment of these tumors.
Collapse
|
16
|
Brooks AN, Duff MO, May G, Yang L, Bolisetty M, Landolin J, Wan K, Sandler J, Booth BW, Celniker SE, Graveley BR, Brenner SE. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins. Genome Res 2015; 25:1771-80. [PMID: 26294686 PMCID: PMC4617972 DOI: 10.1101/gr.192518.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022]
Abstract
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.
Collapse
Affiliation(s)
- Angela N Brooks
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Broad Institute, Cambridge, Massachusetts 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Michael O Duff
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gemma May
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Li Yang
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Mohan Bolisetty
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Jane Landolin
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ken Wan
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Sandler
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin W Booth
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Susan E Celniker
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Sibley CR, Emmett W, Blazquez L, Faro A, Haberman N, Briese M, Trabzuni D, Ryten M, Weale ME, Hardy J, Modic M, Curk T, Wilson SW, Plagnol V, Ule J. Recursive splicing in long vertebrate genes. Nature 2015; 521:371-375. [PMID: 25970246 PMCID: PMC4471124 DOI: 10.1038/nature14466] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
It is generally believed that splicing removes introns as single units from precursor messenger RNA transcripts. However, some long Drosophila melanogaster introns contain a cryptic site, known as a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing. The extent to which recursive splicing occurs in other species and its mechanistic basis have not been examined. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of an 'RS-exon' that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform owing to competition with a reconstituted 5' splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic promoters or exons that fail to reconstitute an efficient 5' splice site. Most RS-exons contain a premature stop codon such that their inclusion can decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling cryptic elements with inclusion of RS-exons.
Collapse
Affiliation(s)
- Christopher R Sibley
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Warren Emmett
- University College London Genetics Institute, Gower Street, London WC1E 6BT, UK
| | - Lorea Blazquez
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nejc Haberman
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Michael Briese
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Institute for Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Medical &Molecular Genetics, King’s College London, Guy’s Hospital, London, UK
| | - Michael E Weale
- King’s College London, Department of Medical & Molecular Genetics, Guy’s Hospital, London SE1 9RT, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Miha Modic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Institute of Stem Cell Research, German Research Center for Environmental Health, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Vincent Plagnol
- University College London Genetics Institute, Gower Street, London WC1E 6BT, UK
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
18
|
Zhou K, Kuo A, Grigoriev IV. Reverse transcriptase and intron number evolution. Stem Cell Investig 2014; 1:17. [PMID: 27358863 DOI: 10.3978/j.issn.2306-9759.2014.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. METHODS Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. RESULTS The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota's ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss. There was a down trend of EPG from more conserved to less conserved genes. Moreover, species-specific genes have higher exon-densities, shorter exons, and longer introns when compared to genes conserved at the phylum level. However, intron length in species-specific genes became shorter than that of genes conserved in all species after genomes experiencing drastic intron loss. The estimated EPG from the most frequent exon length is more than double that from the RIL method. CONCLUSIONS This implies significant intron loss during the very early period of eukaryotic evolution. De novo gene-birth contributes to shorter exons, longer introns, and higher exon-density in species-specific genes relative to conserved genes.
Collapse
Affiliation(s)
- Kemin Zhou
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Alan Kuo
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
19
|
Juan WC, Roca X, Ong ST. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PLoS One 2014; 9:e95210. [PMID: 24743263 PMCID: PMC3990581 DOI: 10.1371/journal.pone.0095210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.
Collapse
Affiliation(s)
- Wen Chun Juan
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (XR); (STO)
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Chapel Hill, North Carolina, United States of America
- * E-mail: (XR); (STO)
| |
Collapse
|