1
|
Abstract
Minimally evolved codes are constructed here; these have randomly chosen standard genetic code (SGC) triplets, completed with completely random triplet assignments. Such "genetic codes" have not evolved, but retain SGC qualities. Retained qualities are basic, part of the underpinning of coding. For example, the sensitivity of coding to arbitrary assignments, which must be < ∼10%, is intrinsic. Such sensitivity comes from the elementary combinatorial properties of coding and constrains any SGC evolution hypothesis. Similarly, assignment of last-evolved functions is difficult because of late kinetic phenomena, likely common across codes. Census of minimally evolved code assignments shows that shape and size of wobble domains controls the code's fit into a coding table, strongly shifting accuracy of codon assignments. Access to the SGC therefore requires a plausible pathway to limited randomness, avoiding difficult completion while fitting a highly ordered, degenerate code into a preset three-dimensional space. Three-dimensional late Crick wobble in a genetic code assembled by lateral transfer between early partial codes satisfies these varied, simultaneous requirements. By allowing parallel evolution of SGC domains, this origin can yield shortened evolution to SGC-level order and allow the code to arise in smaller populations. It effectively yields full codes. Less obviously, it unifies previously studied chemical, biochemical, and wobble order in amino acid assignment, including a stereochemical minority of triplet-amino acid associations. Finally, fusion of intermediates into the final SGC is credible, mirroring broadly accepted later cellular evolution.
Collapse
|
2
|
Abstract
A near-universal Standard Genetic Code (SGC) implies a single origin for present Earth life. To study this unique event, I compute paths to the SGC, comparing different plausible histories. Notably, SGC-like coding emerges from traditional evolutionary mechanisms, and a superior route can be identified. To objectively measure evolution, progress values from 0 (random coding) to 1 (SGC-like) are defined: these measure fractions of random-code-to-SGC distance. Progress types are spacing/distance/delta Polar Requirement, detecting space between identical assignments/mutational distance to the SGC/chemical order, respectively. The coding system is based on selected RNAs performing aminoacyl-RNA synthetase reactions. Acceptor RNAs exhibit SGC-like Crick wobble; alternatively, non-wobbling triplets uniquely encode 20 amino acids/start/stop. Triplets acquire 22 functions by stereochemistry, selection, coevolution, or at random. Assignments also propagate to an assigned triplet’s neighborhood via single mutations, but can also decay. A vast code universe makes futile evolutionary paths plentiful. Thus, SGC evolution is critically sensitive to disorder from random assignments. Evolution also inevitably slows near coding completion. The SGC likely avoided these difficulties, and two suitable paths are compared. In late wobble, a majority of non-wobble assignments are made before wobble is adopted. In continuous wobble, a uniquely advantageous early intermediate yields an ordered SGC. Revised coding evolution (limited randomness, late wobble, concentration on amino acid encoding, chemically conservative coevolution with a chemically ordered elite) produces varied full codes with excellent joint progress values. A population of only 600 independent coding tables includes SGC-like members; a Bayesian path toward more accurate SGC evolution is available.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309-0347, USA.
| |
Collapse
|
3
|
Evolution of Life on Earth: tRNA, Aminoacyl-tRNA Synthetases and the Genetic Code. Life (Basel) 2020; 10:life10030021. [PMID: 32131473 PMCID: PMC7151597 DOI: 10.3390/life10030021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Life on Earth and the genetic code evolved around tRNA and the tRNA anticodon. We posit that the genetic code initially evolved to synthesize polyglycine as a cross-linking agent to stabilize protocells. We posit that the initial amino acids to enter the code occupied larger sectors of the code that were then invaded by incoming amino acids. Displacements of amino acids follow selection rules. The code sectored from a glycine code to a four amino acid code to an eight amino acid code to an ~16 amino acid code to the standard 20 amino acid code with stops. The proposed patterns of code sectoring are now most apparent from patterns of aminoacyl-tRNA synthetase evolution. The Elongation Factor-Tu GTPase anticodon-codon latch that checks the accuracy of translation appears to have evolved at about the eight amino acid to ~16 amino acid stage. Before evolution of the EF-Tu latch, we posit that both the 1st and 3rd anticodon positions were wobble positions. The genetic code evolved via tRNA charging errors and via enzymatic modifications of amino acids joined to tRNAs, followed by tRNA and aminoacyl-tRNA synthetase differentiation. Fidelity mechanisms froze the code by inhibiting further innovation.
Collapse
|
4
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Abstract
Transfer RNA (tRNA) is the central intellectual property in the evolution of life on Earth. tRNA evolved from repeats and inverted repeats of known sequence. The anticodon and the T stem-loop-stems are homologs with significant conserved sequence identity. A number of models have been advanced to explain tRNA evolution. No 2-minihelix model or accretion model (built a stem at a time) can be correct, in part because of anticodon and T stem-loop-stem identity. Only a 3-minihelix model is adequate.
Collapse
|
6
|
Type-II tRNAs and Evolution of Translation Systems and the Genetic Code. Int J Mol Sci 2018; 19:ijms19103275. [PMID: 30360357 PMCID: PMC6214036 DOI: 10.3390/ijms19103275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022] Open
Abstract
Because tRNA is the core biological intellectual property that was necessary to evolve translation systems, tRNAomes, ribosomes, aminoacyl-tRNA synthetases, and the genetic code, the evolution of tRNA is the core story in evolution of life on earth. We have previously described the evolution of type-I tRNAs. Here, we use the same model to describe the evolution of type-II tRNAs, with expanded V loops. The models are strongly supported by inspection of typical tRNA diagrams, measuring lengths of V loop expansions, and analyzing the homology of V loop sequences to tRNA acceptor stems. Models for tRNA evolution provide a pathway for the inanimate-to-animate transition and for the evolution of translation systems, the genetic code, and cellular life.
Collapse
|
7
|
Yarus M. The Genetic Code and RNA-Amino Acid Affinities. Life (Basel) 2017; 7:life7020013. [PMID: 28333103 PMCID: PMC5492135 DOI: 10.3390/life7020013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022] Open
Abstract
A significant part of the genetic code likely originated via a chemical interaction, which should be experimentally verifiable. One possible verification relates bound amino acids (or perhaps their activated congeners) and ribonucleotide sequences within cognate RNA binding sites. To introduce this interaction, I first summarize how amino acids function as targets for RNA binding. Then the experimental method for selecting relevant RNA binding sites is characterized. The selection method’s characteristics are related to the investigation of the RNA binding site model treated at the outset. Finally, real binding sites from selection and also from extant natural RNAs (for example, the Sulfobacillus guanidinium riboswitch) are connected to the genetic code, and by extension, to the evolutionary progression that produced the code. During this process, peptides may have been produced directly on an instructive amino acid binding RNA (a DRT; Direct RNA Template). Combination of observed stereochemical selectivity with adaptation and co-evolutionary refinement is logically required, and also potentially sufficient, to create the striking order conserved throughout the present coding table.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
8
|
Strazewski P. Omne Vivum Ex Vivo … Omne? How to Feed an Inanimate Evolvable Chemical System so as to Let it Self-evolve into Increased Complexity and Life-like Behaviour. Isr J Chem 2015. [DOI: 10.1002/ijch.201400175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Yarus M. A ribonucleotide Origin for Life--fluctuation and near-ideal reactions. ORIGINS LIFE EVOL B 2013; 43:19-30. [PMID: 23344886 PMCID: PMC3576565 DOI: 10.1007/s11084-013-9325-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/03/2013] [Indexed: 12/22/2022]
Abstract
Oligoribonucleotides are potentially capable of Darwinian evolution - they may replicate and can express an independent chemical phenotype, as embodied in modern enzymatic cofactors. Using quantitative chemical kinetics on a sporadically fed ribonucleotide pool, unreliable supplies of unstable activated ribonucleotides A and B at low concentrations recurrently yield a replicating AB polymer with a potential chemical phenotype. Self-complementary replication in the pool occurs during a minority (here ≈ 35 %) of synthetic episodes that exploit coincidental overlaps between 4, 5 or 6 spikes of arbitrarily arriving substrates. Such uniquely productive synthetic episodes, in which near-ideal reaction sequences recur at random, account for most AB oligonucleotide synthesis, and therefore underlie the emergence of net replication under realistic primordial conditions. Because overlapping substrate spikes are unexpectedly frequent, and in addition, complex spike sequences appear disproportionately, a sporadically fed pool can host unexpectedly complex syntheses. Thus, primordial substrate fluctuations are not necessarily a barrier to Darwinism, but instead can facilitate early evolution.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
10
|
Yarus M. Darwinian behavior in a cold, sporadically fed pool of ribonucleotides. ASTROBIOLOGY 2012; 12:870-83. [PMID: 22946838 PMCID: PMC3444769 DOI: 10.1089/ast.2012.0860] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
A testable, explicit origin for Darwinian behavior, feasible on a chaotic early Earth, would aid origins discussion. Here I show that a pool receiving unreliable supplies of unstable ribonucleotide precursors can recurrently fill this role. By using numerical integration, the differential equations governing a sporadically fed pool are solved, yielding quantitative constraints for the proliferation of molecules that also have a chemical phenotype. For example, templated triphosphate nucleotide joining is >10(4) too slow, suggesting that a group more reactive than pyrophosphate activated primordial nucleotides. However, measured literature rates are sufficient if the Initial Darwinian Ancestor (IDA) resembles a 5'-5' cofactor-like dinucleotide RNA, synthesized via activation with a phosphorimidazolide-like group. A sporadically fed pool offers unforeseen advantages; for example, the pool hosts a novel replicator which is predominantly unpaired, even though it replicates. Such free template is optimized for effective selection during its replication. Pool nucleotides are also subject to a broadly based selection that impels the population toward replication, effective selection, and Darwinian behavior. Such a primordial pool may have left detectable modern traces. A sporadically fed ribonucleotide pool also fits a recognizable early Earth environment, has recognizable modern descendants, and suits the early shape of the phylogenetic tree of Earthly life. Finally, analysis points to particular data now needed to refine the hypothesis. Accordingly, a kinetically explicit chemical hypothesis for a terran IDA can be justified, and informative experiments seem readily accessible.
Collapse
Affiliation(s)
- Michael Yarus
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| |
Collapse
|