1
|
Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. Front Cell Dev Biol 2025; 12:1457506. [PMID: 39834387 PMCID: PMC11743681 DOI: 10.3389/fcell.2024.1457506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling. The main cellular mechanisms that sustain this migration include contact inhibition of locomotion, co-attraction, chemotaxis and mechanical cues from the surrounding environment, all regulated by proteins that orchestrate cell polarity and motility. In this review we highlight the molecular mechanisms involved in neural crest cell migration and polarity, focusing on the role of small GTPases, Heterotrimeric G proteins and planar cell polarity complex. Here, we also discuss different congenital diseases caused by altered NC cell migration.
Collapse
Affiliation(s)
- Esteban Salinas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francis Ruano-Rivadeneira
- Developmental Biology Laboratory 116, School of Biological Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Teresa Caprile
- Laboratory of Axonal Guidance, Group for the Study of Developmental Processes (GDeP), Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cecilia Arriagada
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
2
|
Freingruber V, Painter KJ, Ptashnyk M, Schumacher LJ. A biased random walk approach for modeling the collective chemotaxis of neural crest cells. J Math Biol 2024; 88:32. [PMID: 38407620 PMCID: PMC10896796 DOI: 10.1007/s00285-024-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Collective cell migration is a multicellular phenomenon that arises in various biological contexts, including cancer and embryo development. 'Collectiveness' can be promoted by cell-cell interactions such as co-attraction and contact inhibition of locomotion. These mechanisms act on cell polarity, pivotal for directed cell motility, through influencing the intracellular dynamics of small GTPases such as Rac1. To model these dynamics we introduce a biased random walk model, where the bias depends on the internal state of Rac1, and the Rac1 state is influenced by cell-cell interactions and chemoattractive cues. In an extensive simulation study we demonstrate and explain the scope and applicability of the introduced model in various scenarios. The use of a biased random walk model allows for the derivation of a corresponding partial differential equation for the cell density while still maintaining a certain level of intracellular detail from the individual based setting.
Collapse
Affiliation(s)
- Viktoria Freingruber
- Department of Mathematics, The Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK.
- The Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, Scotland, UK.
| | - Kevin J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli, 39, Turin, 10125, Italy
| | - Mariya Ptashnyk
- Department of Mathematics, The Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Linus J Schumacher
- The Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, Scotland, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh, EH164UU, Scotland, UK
| |
Collapse
|
3
|
Jahedi A, Kumar G, Kannan L, Agarwal T, Huse J, Bhat K, Kannan K. Gibbs process distinguishes survival and reveals contact-inhibition genes in Glioblastoma multiforme. PLoS One 2023; 18:e0277176. [PMID: 36795646 PMCID: PMC9934342 DOI: 10.1371/journal.pone.0277176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/22/2022] [Indexed: 02/17/2023] Open
Abstract
Tumor growth is a spatiotemporal birth-and-death process with loss of heterotypic contact-inhibition of locomotion (CIL) of tumor cells promoting invasion and metastasis. Therefore, representing tumor cells as two-dimensional points, we can expect the tumor tissues in histology slides to reflect realizations of spatial birth-and-death process which can be mathematically modeled to reveal molecular mechanisms of CIL, provided the mathematics models the inhibitory interactions. Gibbs process as an inhibitory point process is a natural choice since it is an equilibrium process of the spatial birth-and-death process. That is if the tumor cells maintain homotypic contact inhibition, the spatial distributions of tumor cells will result in Gibbs hard core process over long time scales. In order to verify if this is the case, we applied the Gibbs process to 411 TCGA Glioblastoma multiforme patient images. Our imaging dataset included all cases for which diagnostic slide images were available. The model revealed two groups of patients, one of which - the "Gibbs group," showed the convergence of the Gibbs process with significant survival difference. Further smoothing the discretized (and noisy) inhibition metric, for both increasing and randomized survival time, we found a significant association of the patients in the Gibbs group with increasing survival time. The mean inhibition metric also revealed the point at which the homotypic CIL establishes in tumor cells. Besides, RNAseq analysis between patients with loss of heterotypic CIL and intact homotypic CIL in the Gibbs group unveiled cell movement gene signatures and differences in Actin cytoskeleton and RhoA signaling pathways as key molecular alterations. These genes and pathways have established roles in CIL. Taken together, our integrated analysis of patient images and RNAseq data provides for the first time a mathematical basis for CIL in tumors, explains survival as well as uncovers the underlying molecular landscape for this key tumor invasion and metastatic phenomenon.
Collapse
Affiliation(s)
- Afrooz Jahedi
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Gayatri Kumar
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | | | | | - Jason Huse
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Krishna Bhat
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kasthuri Kannan
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
4
|
Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration. Biophys J 2022; 121:44-60. [PMID: 34890578 PMCID: PMC8758422 DOI: 10.1016/j.bpj.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.
Collapse
|
5
|
Khataee H, Czirok A, Neufeld Z. Contact inhibition of locomotion generates collective cell migration without chemoattractants in an open domain. Phys Rev E 2021; 104:014405. [PMID: 34412289 DOI: 10.1103/physreve.104.014405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/07/2022]
Abstract
Neural crest cells are embryonic stem cells that migrate throughout embryos and, at different target locations, give rise to the formation of a variety of tissues and organs. The directional migration of the neural crest cells is experimentally described using a process referred to as contact inhibition of locomotion, by which cells redirect their movement upon the cell-cell contacts. However, it is unclear how the migration alignment is affected by the motility properties of the cells. Here, we theoretically model the migration alignment as a function of the motility dynamics and interaction of the cells in an open domain with a channel geometry. The results indicate that by increasing the influx rate of the cells into the domain a transition takes place from random movement to an organized collective migration, where the migration alignment is maximized and the migration time is minimized. This phase transition demonstrates that the cells can migrate efficiently over long distances without any external chemoattractant information about the direction of migration just based on local interactions with each other. The analysis of the dependence of this transition on the characteristic properties of cellular motility shows that the cell density determines the coordination of collective migration whether the migration domain is open or closed. In the open domain, this density is determined by a feedback mechanism between the flux and order parameter, which characterises the alignment of collective migration. The model also demonstrates that the coattraction mechanism proposed earlier is not necessary for collective migration and a constant flux of cells moving into the channel is sufficient to produce directed movement over arbitrary long distances.
Collapse
Affiliation(s)
- Hamid Khataee
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Abualsaud N, Caprio L, Galli S, Krawczyk E, Alamri L, Zhu S, Gallicano GI, Kitlinska J. Neuropeptide Y/Y5 Receptor Pathway Stimulates Neuroblastoma Cell Motility Through RhoA Activation. Front Cell Dev Biol 2021; 8:627090. [PMID: 33681186 PMCID: PMC7928066 DOI: 10.3389/fcell.2020.627090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y (NPY) has been implicated in the regulation of cellular motility under various physiological and pathological conditions, including cancer dissemination. Yet, the exact signaling pathways leading to these effects remain unknown. In a pediatric malignancy, neuroblastoma (NB), high NPY release from tumor tissue associates with metastatic disease. Here, we have shown that NPY stimulates NB cell motility and invasiveness and acts as a chemotactic factor for NB cells. We have also identified the Y5 receptor (Y5R) as the main NPY receptor mediating these actions. In NB tissues and cell cultures, Y5R is highly expressed in migratory cells and accumulates in regions of high RhoA activity and dynamic cytoskeleton remodeling. Y5R stimulation activates RhoA and results in Y5R/RhoA-GTP interactions, as shown by pull-down and proximity ligation assays, respectively. This is the first demonstration of the role for the NPY/Y5R axis in RhoA activation and the subsequent cytoskeleton remodeling facilitating cell movement. These findings implicate Y5R as a target in anti-metastatic therapies for NB and other cancers expressing this receptor.
Collapse
Affiliation(s)
- Nouran Abualsaud
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States.,Cell Therapy and Cancer Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Lindsay Caprio
- Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC, United States
| | - Susana Galli
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Ewa Krawczyk
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, United States
| | - Lamia Alamri
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Shiya Zhu
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - G Ian Gallicano
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
7
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
8
|
Chen BJ, Wu JS, Tang YJ, Tang YL, Liang XH. What makes leader cells arise: Intrinsic properties and support from neighboring cells. J Cell Physiol 2020; 235:8983-8995. [PMID: 32572948 DOI: 10.1002/jcp.29828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Cancer cells collectively invading as a cohesive and polarized group is termed collective invasion, which is a fundamental property of many types of cancers. In this multicellular unit, cancer cells are heterogeneous, consisting of two morphologically and functionally distinct subpopulations, leader cells and follower cells. Leader cells at the invasive front are responsible for exploring the microenvironment, paving the way, and transmitting information to follower cells. Here, in this review, we will describe the important role of leader cells in collective invasion and the emerging underlying mechanisms of leader cell formation including intrinsic properties and the support from neighboring cells. It will help us to elucidate the essence of collective invasion and provide new anticancer therapeutic clues.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Abstract
Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
11
|
Hiraiwa T. Two types of exclusion interactions for self-propelled objects and collective motion induced by their combination. Phys Rev E 2019; 99:012614. [PMID: 30780270 DOI: 10.1103/physreve.99.012614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/09/2023]
Abstract
Exclusive interactions between self-driven objects may play crucial roles in their collective behavior, e.g., in collective migration of living cells. Here, such collective behavior is studied based on a simple but sufficient model taking account the exclusion effects, which incorporate the following two distinct kinds of exclusion interactions in two dimensions: The first is the mechanical exclusion wherein two objects mechanically repel each other when they overlap. The second is the scattering exclusion, wherein the directions along which each object tries to move are modulated to avoid overlapping. We propose a theoretical model based on two principles: (1) Each object maintains its own polarity with a fixed strength and attempts to move into the polarity direction and (2) objects interact with each other through the abovementioned exclusions. Based on this model, we look at the difference of consequences and combinatory effects of these two kinds of exclusions. Furthermore, we calculate the polar order of polarity directions without an external directional bias. Our results suggest that the combination of these two kinds of exclusions leads to effectively inelastic scattering of two objects, which eventually gives rise to global polar ordering. We also find that the traveling band can arise by this mechanism of alignment at the intermediate density, as generally seen in collective motion with polar alignment and investigated in various earlier works. Characteristics of transitions among disordered, traveling band, and homogeneously ordered states of the presented model are investigated, and their similarities and differences with those given by the explicit alignment interaction are discussed.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Switching between individual and collective motility in B lymphocytes is controlled by cell-matrix adhesion and inter-cellular interactions. Sci Rep 2018; 8:5800. [PMID: 29643414 PMCID: PMC5895587 DOI: 10.1038/s41598-018-24222-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/26/2018] [Indexed: 02/07/2023] Open
Abstract
Lymphocytes alternate between phases of individual migration across tissues and phases of clustering during activation and function. The range of lymphocyte motility behaviors and the identity of the factors that govern them remain elusive. To explore this point, we here collected unprecedented statistics pertaining to cell displacements, cell:matrix and cell:cell interactions using a model B cell line as well as primary human B lymphocytes. At low cell density, individual B lymphocytes displayed a high heterogeneity in their speed and diffusivity. Beyond this intrinsic variability, B lymphocytes adapted their motility to the composition of extra-cellular matrix, adopting slow persistent walks over collagen IV and quick Brownian walks over fibronectin. At high cell density, collagen IV favored the self-assembly of B lymphocytes into clusters endowed with collective coordination, while fibronectin stimulated individual motility. We show that this behavioral plasticity is controlled by acto-myosin dependent adhesive and Arp2/3-dependent protrusive actin pools, respectively. Our study reveals the adaptive nature of B lymphocyte motility and group dynamics, which are shaped by an interplay between and cell:matrix and cell:cell interactions.
Collapse
|
13
|
Kalcheim C. Neural crest emigration: From start to stop. Genesis 2018; 56:e23090. [DOI: 10.1002/dvg.23090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC; Hebrew University of Jerusalem-Hadassah Medical School; Jerusalem 9112102 Israel
| |
Collapse
|
14
|
Pauli S, Bajpai R, Borchers A. CHARGEd with neural crest defects. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:478-486. [PMID: 29082625 DOI: 10.1002/ajmg.c.31584] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders.
Collapse
Affiliation(s)
- Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
15
|
Schnyder SK, Molina JJ, Tanaka Y, Yamamoto R. Collective motion of cells crawling on a substrate: roles of cell shape and contact inhibition. Sci Rep 2017; 7:5163. [PMID: 28701766 PMCID: PMC5507894 DOI: 10.1038/s41598-017-05321-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
Contact inhibition plays a crucial role in cell motility, wound healing, and tumour formation. By mimicking the mechanical motion of cells crawling on a substrate, we constructed a minimal model of migrating cells that naturally gives rise to contact inhibition of locomotion (CIL). The model cell consists of two disks, a front disk (a pseudopod) and a back disk (cell body), which are connected by a finite extensible spring. Despite the simplicity of the model, the collective behaviour of the cells is highly non-trivial and depends on both the shape of the cells and whether CIL is enabled. Cells with a small front disk (i.e., a narrow pseudopod) form immobile colonies. In contrast, cells with a large front disk (e.g., a lamellipodium) exhibit coherent migration without any explicit alignment mechanism in the model. This result suggests that crawling cells often exhibit broad fronts because this helps facilitate alignment. After increasing the density, the cells develop density waves that propagate against the direction of cell migration and finally stop at higher densities.
Collapse
Affiliation(s)
- Simon K Schnyder
- Department of Chemical Engineering, Kyoto University, Kyoto, 615-8510, Japan. .,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan.
| | - John J Molina
- Department of Chemical Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yuki Tanaka
- Department of Chemical Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
16
|
Milano DF, Ngai NA, Muthuswamy SK, Asthagiri AR. Regulators of Metastasis Modulate the Migratory Response to Cell Contact under Spatial Confinement. Biophys J 2017; 110:1886-1895. [PMID: 27119647 DOI: 10.1016/j.bpj.2016.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/16/2022] Open
Abstract
The breast tumor microenvironment (TMEN) is a unique niche where protein fibers help to promote invasion and metastasis. Cells migrating along these fibers are constantly interacting with each other. How cells respond to these interactions has important implications. Cancer cells that circumnavigate or slide around other cells on protein fibers take a less tortuous path out of the primary tumor; conversely, cells that turn back upon encountering other cells invade less efficiently. The contact response of migrating cancer cells in a fibrillar TMEN is poorly understood. Here, using high-aspect ratio micropatterns as a model fibrillar platform, we show that metastatic cells overcome spatial constraints to slide effectively on narrow fiber-like dimensions, whereas nontransformed MCF-10A mammary epithelial cells require much wider micropatterns to achieve moderate levels of sliding. Downregulating the cell-cell adhesion protein, E-cadherin, enables MCF-10A cells to slide on narrower micropatterns; meanwhile, introducing exogenous E-cadherin in metastatic MDA-MB-231 cells increases the micropattern dimension at which they slide. We propose the characteristic fibrillar dimension (CFD) at which effective sliding is achieved as a metric of sliding ability under spatial confinement. Using this metric, we show that metastasis-promoting genetic perturbations enhance cell sliding and reduce CFD. Activation of ErbB2 combined with downregulation of the tumor suppressor and cell polarity regulator, PARD3, reduced the CFD, in agreement with their cooperative role in inducing metastasis in vivo. The CFD was further reduced by a combination of ErbB2 activation and transforming growth factor β stimulation, which is known to enhance invasive behavior. These findings demonstrate that sliding is a quantitative property and a decrease in CFD is an effective metric to understand how multiple genetic hits interact to change cell behavior in fibrillar environments. This quantitative framework sheds insights into how genetic perturbations conspire with fibrillar maturation in the TMEN to drive the invasive behavior of cancer cells.
Collapse
Affiliation(s)
- Daniel F Milano
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Nicholas A Ngai
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Senthil K Muthuswamy
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada; Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, Massachusetts.
| | - Anand R Asthagiri
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
17
|
Abstract
Cell polarization is a key step in the migration, development, and organization of eukaryotic cells, both at the single cell and multicellular level. Research on the mechanisms that give rise to polarization of a given cell, and organization of polarity within a tissue has led to new understanding across cellular and developmental biology. In this review, we describe some of the history of theoretical and experimental aspects of the field, as well as some interesting questions and challenges for the future.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|
18
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
19
|
Roycroft A, Mayor R. Molecular basis of contact inhibition of locomotion. Cell Mol Life Sci 2016; 73:1119-30. [PMID: 26585026 PMCID: PMC4761371 DOI: 10.1007/s00018-015-2090-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Contact inhibition of locomotion (CIL) is a complex process, whereby cells undergoing a collision with another cell cease their migration towards the colliding cell. CIL has been identified in numerous cells during development including embryonic fibroblasts, neural crest cells and haemocytes and is the driving force behind a range of phenomenon including collective cell migration and dispersion. The loss of normal CIL behaviour towards healthy tissue has long been implicated in the invasion of cancer cells. CIL is a multi-step process that is driven by the tight coordination of molecular machinery. In this review, we shall breakdown CIL into distinct steps and highlight the key molecular mechanisms and components that are involved in driving each step of this process.
Collapse
Affiliation(s)
- Alice Roycroft
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Pröls F, Sagar, Scaal M. Signaling filopodia in vertebrate embryonic development. Cell Mol Life Sci 2016; 73:961-74. [PMID: 26621670 PMCID: PMC11108401 DOI: 10.1007/s00018-015-2097-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
Next to classical diffusion-based models, filopodia-like cellular protrusions have been proposed to mediate long range signaling events and morphogen gradient formation during communication between distant cells. An increasing wealth of data indicates that in spite of variable characteristics of signaling filopodia in different biological contexts, they represent a paradigm of intercellular crosstalk which is presently being unraveled in a growing literature. Here, we summarize recent advances in investigating the morphology, cellular basis and function of signaling filopodia, with focus on their role during embryonic development in vertebrates.
Collapse
Affiliation(s)
- Felicitas Pröls
- Department of Vertebrate Embryology, Institute of Anatomy II, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany
| | - Sagar
- Department of Vertebrate Embryology, Institute of Anatomy II, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany
- Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Martin Scaal
- Department of Vertebrate Embryology, Institute of Anatomy II, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
21
|
Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016; 17:97-109. [PMID: 26726037 DOI: 10.1038/nrm.2015.14] [Citation(s) in RCA: 566] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sandrine Etienne-Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
22
|
Podleschny M, Grund A, Berger H, Rollwitz E, Borchers A. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration. PLoS One 2015; 10:e0145169. [PMID: 26680417 PMCID: PMC4683079 DOI: 10.1371/journal.pone.0145169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022] Open
Abstract
Neural crest cells are a highly migratory pluripotent cell population that generates a wide array of different cell types and failure in their migration can result in severe birth defects and malformation syndromes. Neural crest migration is controlled by various means including chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP (planar cell polarity) signaling has previously been shown to control cell-contact mediated neural crest cell guidance. PTK7 (protein tyrosine kinase 7) is a transmembrane pseudokinase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however, it remains unclear by which means PTK7 affects neural crest migration. Expressing fluorescently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7 interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration, because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell imaging of explanted neural crest cells shows that PTK7 loss of function affects the formation of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7 loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the signaling function of its kinase domain is required for this effect.
Collapse
Affiliation(s)
- Martina Podleschny
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anita Grund
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Erik Rollwitz
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Abstract
This review addresses the developmental roles of 2 GTPases of the Rho family, RhoV/Chp and RhoU/Wrch. These two GTPases form a distinct subfamily related to Rac and Cdc42 proteins and were detected in a screen for Rho members that are particularly expressed in the neural crest, an embryonic tissue peculiar to vertebrates. The neural crest represents a physiological model of normal epithelial to mesenchymal transition (EMT), in which epithelial cells at the border of neural and non-neural ectoderm differentiate, lose their intercellular connections and migrate throughout the embryo. We showed that RhoV, transiently induced by the canonical Wnt pathway, is required for the full differentiation of neural crest cells, while RhoU, induced later by the non-canonical Wnt pathway, is necessary for the migration process. These two GTPases, which are highly conserved across vertebrates, are thus tightly functionally linked to Wnt signaling, whose implication in embryonic development and cancer progression is well established. In the light of the recent literature, we discuss how RhoV and RhoU may achieve their physiological functions.
Collapse
Affiliation(s)
- Sandrine Faure
- a Universités Montpellier 2 et 1; CRBM; UMS BioCampus ; Montpellier , France.,b INSERM ; Montpellier , France
| | - Philippe Fort
- a Universités Montpellier 2 et 1; CRBM; UMS BioCampus ; Montpellier , France.,c CNRS UMR 5237 ; Montpellier , France
| |
Collapse
|
24
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
25
|
Chicken trunk neural crest migration visualized with HNK1. Acta Histochem 2015; 117:255-66. [PMID: 25805416 DOI: 10.1016/j.acthis.2015.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 02/07/2023]
Abstract
The development of the nervous system involves cells remaining within the neural tube (CNS) and a group of cells that delaminate from the dorsal neural tube and migrate extensively throughout the developing embryo called neural crest cells (NCC). These cells are a mesenchymal highly migratory group of cells that give rise to a wide variety of cell derivatives: melanocytes, sensory neurons, bone, Schwann cells, etc. But not all NCC can give rise to all derivatives, they have fate restrictions based on their axial level of origin: cranial, vagal, trunk and sacral. Our aim was to provide a thorough presentation on how does trunk neural crest cell migration looks in the chicken embryo, in wholemount and in sections using the unique chicken marker HNK1. The description presented here makes a good guideline for those interested in viewing trunk NCC migration patterns. We show how before HH14 there are few trunk NCC delaminating and migrating, but between HH15 through HH19 trunk NCC delaminate in large numbers. Melanocytes precursors begin to enter the dorsolateral pathway by HH17. We found that by HH20 HNK1 is not a valid good marker for NCC and that HNK1 is a better marker than Sox10 when looking at neural crest cells morphology and migration details.
Collapse
|
26
|
Shamloo A, Heibatollahi M, Mofrad MRK. Directional migration and differentiation of neural stem cells within three-dimensional microenvironments. Integr Biol (Camb) 2015; 7:335-44. [PMID: 25633746 DOI: 10.1039/c4ib00144c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Harnessing neural stem cells to repair neuronal damage is a promising potential treatment for neuronal diseases. To enable future therapeutic efficacy, the survival, proliferation, migration and differentiation of neural stem/progenitor cells (NPCs) should be accurately studied and optimized in in vitro platforms before transplanting these cells into the body for treatment purposes. Such studies can determine the appropriate quantities of the biochemical and biomechanical factors needed to control and optimize NPC behavior in vivo. In this study, NPCs were cultured within a microfluidic device while being encapsulated within the collagen matrix. The migration and differentiation of NPCs were studied in response to varying concentrations of nerve growth factor (NGF) and within varying densities of collagen matrices. It was shown that the migration and differentiation of NPCs can be significantly improved by providing the appropriate range of NGF concentrations while encapsulating the cells within the collagen matrix of optimal density. In particular, it was observed that within collagen matrices of intermediate density (0.9 mg ml(-1)), NPCs have a higher ability to migrate farther and in a collective manner while their differentiation into neurons is significantly higher and the cells can form protrusions and connections with their neighboring cells. Within collagen matrices with higher densities (1.8 mg ml(-1)), the cells did not migrate significantly as compared to the ones within lower matrix densities; within the matrices with lower collagen densities (0.45 mg ml(-1)) most of the cells migrated in an individual manner. However, no significant differentiation into neurons was observed for these two cases. It was also found that depending on the collagen matrix density, a minimum concentration of NGF caused a collective migration of NPCs, and a minimum concentration gradient of this factor stimulated the directional navigation of the cells. The results of this study can be implemented in designing platforms appropriate for regeneration of damaged neuronal systems.
Collapse
Affiliation(s)
- Amir Shamloo
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
27
|
Abstract
Embryonic cell migration patterns are amazingly complex in the timing and spatial distribution of cells throughout the vertebrate landscape. However, advances in in vivo visualization, cell interrogation, and computational modeling are extracting critical features that underlie the mechanistic nature of these patterns. The focus of this review highlights recent advances in the study of the highly invasive neural crest cells and their migratory patterns during embryonic development. We discuss these advances within three major themes and include a description of computational models that have emerged to more rapidly integrate and test hypothetical mechanisms of neural crest migration. We conclude with technological advances that promise to reveal new insights and help translate results to human neural crest-related birth defects and metastatic cancer.
Collapse
Affiliation(s)
- Paul M. Kulesa
- Stowers Institute for Medical Research1000 E. 50 St, Kansas City, MO 64110USA
- Department of Anatomy and Cell Biology, University of Kansas School of MedicineKansas City, KS, 66160USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research1000 E. 50 St, Kansas City, MO 64110USA
| |
Collapse
|
28
|
Abstract
This review addresses the developmental roles of two GTPases of the Rho family, RhoV/Chp and RhoU/Wrch. These two GTPases form a distinct subfamily related to Rac and Cdc42 proteins and were detected in a screen for Rho members that are particularly expressed in the neural crest, an embryonic tissue peculiar to vertebrates. The neural crest represents a physiological model of normal epithelial to mesenchymal transition (EMT), in which epithelial cells at the border of neural and non-neural ectoderm differentiate, lose their intercellular connections and migrate throughout the embryo. We showed that RhoV, transiently induced by the canonical Wnt pathway, is required for the full differentiation of neural crest cells, while RhoU, induced later by the non-canonical Wnt pathway, is necessary for the migration process. These two GTPases, which are highly conserved across vertebrates, are thus tightly functionally linked to Wnt signaling, whose implication in embryonic development and cancer progression is well established. In the light of the recent literature, we discuss how RhoV and RhoU may achieve their physiological functions.
Collapse
|
29
|
Blasky AJ, Pan L, Moens CB, Appel B. Pard3 regulates contact between neural crest cells and the timing of Schwann cell differentiation but is not essential for neural crest migration or myelination. Dev Dyn 2014; 243:1511-23. [PMID: 25130183 DOI: 10.1002/dvdy.24172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Schwann cells, which arise from the neural crest, are the myelinating glia of the peripheral nervous system. During development neural crest and their Schwann cell derivatives engage in a sequence of events that comprise delamination from the neuroepithelium, directed migration, axon ensheathment, and myelin membrane synthesis. At each step neural crest and Schwann cells are polarized, suggesting important roles for molecules that create cellular asymmetries. In this work we investigated the possibility that one polarity protein, Pard3, contributes to the polarized features of neural crest and Schwann cells that are associated with directed migration and myelination. RESULTS We analyzed mutant zebrafish embryos deficient for maternal and zygotic pard3 function. Time-lapse imaging revealed that neural crest delamination was normal but that migrating cells were disorganized with substantial amounts of overlapping membrane. Nevertheless, neural crest cells migrated to appropriate peripheral targets. Schwann cells wrapped motor axons and, although myelin gene expression was delayed, myelination proceeded to completion. CONCLUSIONS Pard3 mediates contact inhibition between neural crest cells and promotes timely myelin gene expression but is not essential for neural crest migration or myelination.
Collapse
Affiliation(s)
- Alex J Blasky
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | |
Collapse
|
30
|
Directional collective cell migration emerges as a property of cell interactions. PLoS One 2014; 9:e104969. [PMID: 25181349 PMCID: PMC4152153 DOI: 10.1371/journal.pone.0104969] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants.
Collapse
|
31
|
Etienne-Manneville S. Neighborly relations during collective migration. Curr Opin Cell Biol 2014; 30:51-9. [PMID: 24997300 DOI: 10.1016/j.ceb.2014.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
The collective migration of sheets, cohorts, chains or streams of cells contributes to embryogenesis, tissue remodeling and repair as well as to cancer invasion. The functional coordination between neighboring cells is at the heart of collective migration, during which cells migrate with a similar speed in an identical direction. Far from being the result of the simultaneous migration of isolated cells, collective migration relies on the intercellular communication between migrating cells. Although the mechanisms of cell coordination are far from being completely understood, accumulated evidence show that exchange of mechanical and chemical information by direct intercellular contacts and by soluble extracellular signals orchestrate the coordinated behavior of collectively migrating cells.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
32
|
Murali A, Rajalingam K. Small Rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci 2014; 71:1703-21. [PMID: 24276852 PMCID: PMC11113993 DOI: 10.1007/s00018-013-1519-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
Rho GTPases are a class of evolutionarily conserved proteins comprising 20 members, which are predominantly known for their role in regulating the actin cytoskeleton. They are primarily regulated by binding of GTP/GDP, which is again controlled by regulators like GEFs, GAPs, and RhoGDIs. Rho GTPases are thus far well known for their role in the regulation of actin cytoskeleton and migration. Here we present an overview on the role of Rho GTPases in regulating cell shape and plasticity of cell migration. Finally, we discuss the emerging roles of ubiquitination and sumoylation in regulating Rho GTPases and cell migration.
Collapse
Affiliation(s)
- Arun Murali
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - Krishnaraj Rajalingam
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| |
Collapse
|
33
|
Vermillion KL, Lidberg KA, Gammill LS. Cytoplasmic protein methylation is essential for neural crest migration. ACTA ACUST UNITED AC 2013; 204:95-109. [PMID: 24379414 PMCID: PMC3882789 DOI: 10.1083/jcb.201306071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Post-translational methylation of the non-histone, actin-binding protein EF1α1 is essential for neural crest migration. As they initiate migration in vertebrate embryos, neural crest cells are enriched for methylation cycle enzymes, including S-adenosylhomocysteine hydrolase (SAHH), the only known enzyme to hydrolyze the feedback inhibitor of trans-methylation reactions. The importance of methylation in neural crest migration is unknown. Here, we show that SAHH is required for emigration of polarized neural crest cells, indicating that methylation is essential for neural crest migration. Although nuclear histone methylation regulates neural crest gene expression, SAHH and lysine-methylated proteins are abundant in the cytoplasm of migratory neural crest cells. Proteomic profiling of cytoplasmic, lysine-methylated proteins from migratory neural crest cells identified 182 proteins, several of which are cytoskeleton related. A methylation-resistant form of one of these proteins, the actin-binding protein elongation factor 1 alpha 1 (EF1α1), blocks neural crest migration. Altogether, these data reveal a novel and essential role for post-translational nonhistone protein methylation during neural crest migration and define a previously unknown requirement for EF1α1 methylation in migration.
Collapse
Affiliation(s)
- Katie L Vermillion
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | | | | |
Collapse
|
34
|
Coburn L, Cerone L, Torney C, Couzin ID, Neufeld Z. Tactile interactions lead to coherent motion and enhanced chemotaxis of migrating cells. Phys Biol 2013; 10:046002. [DOI: 10.1088/1478-3975/10/4/046002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Barriga EH, Maxwell PH, Reyes AE, Mayor R. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol 2013; 201:759-76. [PMID: 23712262 PMCID: PMC3664719 DOI: 10.1083/jcb.201212100] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/03/2013] [Indexed: 02/05/2023] Open
Abstract
One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell-cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells.
Collapse
Affiliation(s)
- Elias H. Barriga
- Department of Cell and Developmental Biology and Division of Medicine, University College London, WC1E 6BT London, England, UK
- Laboratorio de Biología del Desarrollo, Facultad de Ciencias Biológicas, Universidad Andrés Bello, 8370146 Santiago, Chile
| | - Patrick H. Maxwell
- Department of Cell and Developmental Biology and Division of Medicine, University College London, WC1E 6BT London, England, UK
| | - Ariel E. Reyes
- Laboratorio de Biología del Desarrollo, Facultad de Ciencias Biológicas, Universidad Andrés Bello, 8370146 Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, 3349001 Concepción, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology and Division of Medicine, University College London, WC1E 6BT London, England, UK
| |
Collapse
|
36
|
Leslie JD, Mayor R. Complement in animal development: unexpected roles of a highly conserved pathway. Semin Immunol 2013; 25:39-46. [PMID: 23665279 PMCID: PMC3989114 DOI: 10.1016/j.smim.2013.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/13/2013] [Indexed: 12/16/2022]
Abstract
The complement pathway is most famous for its role in immunity, orchestrating an exquisitely refined system for immune surveillance. At its core lies a cascade of proteolytic events that ultimately serve to recognise microbes, infected cells or debris and target them for elimination. Mounting evidence has shown that a number of the proteolytic intermediaries in this cascade have, in themselves, other functions in the body, signalling through receptors to drive events that appear to be unrelated to immune surveillance. It seems, then, that the complement system not only functions as an immunological effector, but also has cell-cell signalling properties that are utilised by a number of non-immunological processes. In this review we examine a number of these processes in the context of animal development, all of which share a requirement for precise control of cell behaviour in time and space. As we will see, the scope of the complement system's function is indeed much greater than we might have imagined only a few years ago.
Collapse
Affiliation(s)
- Jonathan D Leslie
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
37
|
Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012; 13:631-45. [PMID: 23000794 DOI: 10.1038/nrm3433] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.
Collapse
|
38
|
Theveneau E, Mayor R. Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol 2012; 24:677-84. [PMID: 22944726 PMCID: PMC4902125 DOI: 10.1016/j.ceb.2012.08.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/07/2012] [Accepted: 08/16/2012] [Indexed: 12/27/2022]
Abstract
Immunity, embryogenesis and tissue repair rely heavily on cell migration. Cells can be seen migrating as individuals or large groups. In the latter case, collectiveness emerges via cell-cell interactions. In migratory epithelial cell sheets, classic Cadherins are critical to maintain tissue integrity, to promote coordination and establish cell polarity. However, recent evidence indicates that mesenchymal cells, migrating in streams such as neural crest or cancer cells, also exhibit collective migration. Here we will explore the idea that Cadherins play an essential role during collective migration of mesenchymal cells.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
39
|
Shoval I, Kalcheim C. Antagonistic activities of Rho and Rac GTPases underlie the transition from neural crest delamination to migration. Dev Dyn 2012; 241:1155-68. [PMID: 22553120 DOI: 10.1002/dvdy.23799] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neural crest progenitors arise as epithelial cells and then undergo a transition into mesenchyme that generates motility. Previously, we showed that active Rho maintains crest cells in the epithelial conformation by keeping stress fibers and membrane-bound N-cadherin. RESULTS While Rho disappears from cell membranes upon delamination, active Rac1 becomes apparent in lamellipodia of mesenchymal cells. Loss of Rac1 function at trunk levels inhibited NC migration but did not prevent cell emigration that is associated with N-cadherin downregulation and G1/S transition. Furthermore, inhibition of Rho stimulated premature Rac1 activity and consequent formation of lamellipodia, leading to NC migration. To examine whether timely migration influences cell fate, Rac1 activity was transiently inhibited to delay dispersion of early NC cells that generate neural derivatives, and its activity was restored by the time of melanoblast migration. Even if confronted with a melanocytic environment, late-dispersing progenitors colonized sensory ganglia where they generated neurons and glia. CONCLUSIONS In the context of crest delamination and migration, activities of Rho and Rac are differential, sequential, and antagonistic. Furthermore, transient inhibition of Rac1 that delays the onset of crest dispersion raises the possibility that the fate of trunk neural progenitors might be restricted prior to migration.
Collapse
Affiliation(s)
- Irit Shoval
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, IMRIC and ELSC, Jerusalem, Israel
| | | |
Collapse
|
40
|
Theveneau E, Mayor R. Can mesenchymal cells undergo collective cell migration? The case of the neural crest. Cell Adh Migr 2012; 5:490-8. [PMID: 22274714 DOI: 10.4161/cam.5.6.18623] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step towards malignancy. Migratory cells are often categorized into two groups: mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on Neural Crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that other mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
41
|
Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis. Int J Mol Sci 2012; 13:4564-4590. [PMID: 22605996 PMCID: PMC3344232 DOI: 10.3390/ijms13044564] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an epithelial-mesenchymal transition (EMT)-mediated mesenchymal cell migration requires the endocytic recycling of integrin-mediated adhesions after the disruption of cell-cell adhesions, an amoeboid migration is not dependent on any adhesions to extracellular matrix (ECM) or neighboring cells. In contrast, a collective migration is mediated by both cell-cell and cell-ECM adhesions, and a scaffold cell-dependent migration is regulated by the endocytosis and recycling of cell-cell adhesion molecules. Although some invasive carcinoma cells exhibit an EMT-mediated mesenchymal or amoeboid migration, other cancer cells are known to maintain cadherin-based cell-cell adhesions and epithelial morphology during metastasis. On the other hand, a scaffold cell-dependent migration is mainly utilized by migrating neurons in normal developing brains. This review will summarize the structures of cell adhesions, including adherens junctions and focal adhesions, and discuss the regulatory mechanisms for the dynamic behavior of cell adhesions by endocytic pathways in cell migration in physiological and pathological conditions, focusing particularly on neural development and cancer metastasis.
Collapse
|
42
|
Theveneau E, Mayor R. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:435-45. [PMID: 23801492 DOI: 10.1002/wdev.28] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural crest (NC) cells are induced at the border of the neural plate and subsequently leave the neuroepithelium during a delamination phase. This delamination involves either a complete or partial epithelium-to-mesenchyme transition, which is directly followed by an extensive cell migration. During migration, NC cells are exposed to a wide variety of signals controlling their polarity and directionality, allowing them to colonize specific areas or preventing them from invading forbidden zones. For instance, NC cells are restricted to very precise pathways by the presence of inhibitory signals at the borders of each route, such as Semaphorins, Ephrins, and Slit/Robo. Although specific NC chemoattractants have been recently identified, there is evidence that repulsive interactions between the cells, in a process called contact inhibition of locomotion, is one of the major driving forces behind directional migration. Interestingly, in cellular and molecular terms, the invasive behavior of NC is similar to the invasion of cancer cells during metastasis. NC cells eventually settle in various places and make an immense contribution to the vertebrate body. They form the major constituents of the skull, the peripheral nervous system, and the pigment cells among others, which show the remarkable diversity and importance of this embryonic-stem cell like cell population. Consequently, several birth defects and craniofacial disorders, such as Treacher Collins syndrome, are due to improper NC cell migration.
Collapse
Affiliation(s)
- Eric Theveneau
- Cell and Developmental Biology Department, University College London, London, UK
| | | |
Collapse
|
43
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
44
|
Choi HJ, Lee DH, Park SH, Kim J, Do KH, An TJ, Ahn YS, Park CB, Moon Y. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells. Biochem Biophys Res Commun 2011; 413:448-53. [DOI: 10.1016/j.bbrc.2011.08.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
|