1
|
Liu J, Wang Z, Tian X, Xie B, Liu K. ETS1 Promotes Aerobic Glycolysis and Growth in Head and Neck Squamous Cell Carcinoma by Targeting RRAS2. Biochem Genet 2024:10.1007/s10528-024-10996-y. [PMID: 39661306 DOI: 10.1007/s10528-024-10996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a five-year survival rate below 50%, highlighting the urgent need for novel therapeutic targets. This study explores the role of the small GTPase RRAS2 in HNSCC progression and its regulation of glycolysis. Analysis of data from the TCGA and GTEx databases revealed that RRAS2 is significantly upregulated in HNSCC tissues and is associated with poorer overall patient survival. Functional experiments demonstrated that silencing RRAS2 in HNSCC cell lines inhibits glycolytic activity and cell proliferation while promoting apoptosis, whereas overexpression of RRAS2 enhances glycolysis and cell growth. Additionally, bioinformatics and experimental approaches identified the transcription factor ETS1 as an upstream regulator of RRAS2. ETS1 binds to the RRAS2 promoter, facilitating its transcription and contributing to metabolic reprogramming in HNSCC cells. Rescue experiments confirmed that the ETS1-RRAS2 axis is crucial for maintaining the glycolytic phenotype and proliferative capacity of HNSCC cells. These findings suggest that the ETS1-RRAS2 pathway plays a critical role in HNSCC progression and metabolic adaptation, positioning RRAS2 as a potential therapeutic target for improving patient outcomes.
Collapse
Affiliation(s)
- Jianguo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Zhi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xiaoyan Tian
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Bingbin Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Ke Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
2
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 PMCID: PMC11784324 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
3
|
Cieniewicz B, Bhatta A, Torabi D, Baichoo P, Saxton M, Arballo A, Nguyen L, Thomas S, Kethar H, Kukutla P, Shoaga O, Yu B, Yang Z, Fate M, Oliveira E, Ning H, Corey L, Corey D. Chimeric TIM-4 receptor-modified T cells targeting phosphatidylserine mediates both cytotoxic anti-tumor responses and phagocytic uptake of tumor-associated antigen for T cell cross-presentation. Mol Ther 2023; 31:2132-2153. [PMID: 37194236 PMCID: PMC10362418 DOI: 10.1016/j.ymthe.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
To leverage complementary mechanisms for cancer cell removal, we developed a novel cell engineering and therapeutic strategy co-opting phagocytic clearance and antigen presentation activity into T cells. We engineered a chimeric engulfment receptor (CER)-1236, which combines the extracellular domain of TIM-4, a phagocytic receptor recognizing the "eat me" signal phosphatidylserine, with intracellular signaling domains (TLR2/TIR, CD28, and CD3ζ) to enhance both TIM-4-mediated phagocytosis and T cell cytotoxic function. CER-1236 T cells demonstrate target-dependent phagocytic function and induce transcriptional signatures of key regulators responsible for phagocytic recognition and uptake, along with cytotoxic mediators. Pre-clinical models of mantle cell lymphoma (MCL) and EGFR mutation-positive non-small cell lung cancer (NSCLC) demonstrate collaborative innate-adaptive anti-tumor immune responses both in vitro and in vivo. Treatment with BTK (MCL) and EGFR (NSCLC) inhibitors increased target ligand, conditionally driving CER-1236 function to augment anti-tumor responses. We also show that activated CER-1236 T cells exhibit superior cross-presentation ability compared with conventional T cells, triggering E7-specific TCR T responses in an HLA class I- and TLR-2-dependent manner, thereby overcoming the limited antigen presentation capacity of conventional T cells. Therefore, CER-1236 T cells have the potential to achieve tumor control by eliciting both direct cytotoxic effects and indirect-mediated cross-priming.
Collapse
Affiliation(s)
| | - Ankit Bhatta
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Damoun Torabi
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Priya Baichoo
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Mike Saxton
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | - Linh Nguyen
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Sunil Thomas
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Harini Kethar
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | - Omolola Shoaga
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Bi Yu
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Zhuo Yang
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Maria Fate
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Edson Oliveira
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Hongxiu Ning
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel Corey
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Safaroghli-Azar A, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Phosphoinositide 3-kinase (PI3K) classes: From cell signaling to endocytic recycling and autophagy. Eur J Pharmacol 2023:175827. [PMID: 37269974 DOI: 10.1016/j.ejphar.2023.175827] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Lipid signaling is defined as any biological signaling action in which a lipid messenger binds to a protein target, converting its effects to specific cellular responses. In this complex biological pathway, the family of phosphoinositide 3-kinase (PI3K) represents a pivotal role and affects many aspects of cellular biology from cell survival, proliferation, and migration to endocytosis, intracellular trafficking, metabolism, and autophagy. While yeasts have a single isoform of phosphoinositide 3-kinase (PI3K), mammals possess eight PI3K types divided into three classes. The class I PI3Ks have set the stage to widen research interest in the field of cancer biology. The aberrant activation of class I PI3Ks has been identified in 30-50% of human tumors, and activating mutations in PIK3CA is one of the most frequent oncogenes in human cancer. In addition to indirect participation in cell signaling, class II and III PI3Ks primarily regulate vesicle trafficking. Class III PI3Ks are also responsible for autophagosome formation and autophagy flux. The current review aims to discuss the original data obtained from international research laboratories on the latest discoveries regarding PI3Ks-mediated cell biological processes. Also, we unravel the mechanisms by which pools of the same phosphoinositides (PIs) derived from different PI3K types act differently.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Clavaín L, Fernández-Pisonero I, Movilla N, Lorenzo-Martín LF, Nieto B, Abad A, García-Navas R, Llorente-González C, Sánchez-Martín M, Vicente-Manzanares M, Santos E, Alarcón B, García-Aznar JM, Dosil M, Bustelo XR. Characterization of mutant versions of the R-RAS2/TC21 GTPase found in tumors. Oncogene 2023; 42:389-405. [PMID: 36476833 PMCID: PMC9883167 DOI: 10.1038/s41388-022-02563-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln72 residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies. Despite this, little information is available regarding the transforming role of these mutant versions and their relevance for the tumorigenic properties of already-transformed cancer cells. Here, we report that many of the RRAS2 mutations found in human cancers are highly transforming when expressed in immortalized cell lines. Moreover, the expression of endogenous R-RAS2Q72L is important for maintaining optimal levels of PI3K and ERK activities as well as for the adhesion, invasiveness, proliferation, and mitochondrial respiration of ovarian and breast cancer cell lines. Endogenous R-RAS2Q72L also regulates gene expression programs linked to both cell adhesion and inflammatory/immune-related responses. Endogenous R-RAS2Q72L is also quite relevant for the in vivo tumorigenic activity of these cells. This dependency is observed even though these cancer cell lines bear concurrent gain-of-function mutations in genes encoding RAS signaling elements. Finally, we show that endogenous R-RAS2, unlike the case of classical RAS proteins, specifically localizes in focal adhesions. Collectively, these results indicate that gain-of-function mutations of R-RAS2/TC21 play roles in tumor initiation and maintenance that are not fully redundant with those regulated by classical RAS oncoproteins.
Collapse
Affiliation(s)
- Laura Clavaín
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Isabel Fernández-Pisonero
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Nieves Movilla
- grid.11205.370000 0001 2152 8769Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - L. Francisco Lorenzo-Martín
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Blanca Nieto
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Antonio Abad
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Rósula García-Navas
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Clara Llorente-González
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- grid.11762.330000 0001 2180 1817Transgenesis Facility and Nucleus Platform for Research Services, University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Eugenio Santos
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Balbino Alarcón
- grid.5515.40000000119578126Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. García-Aznar
- grid.11205.370000 0001 2152 8769Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Mercedes Dosil
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- grid.11762.330000 0001 2180 1817Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain ,grid.11762.330000 0001 2180 1817Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Reed J, Reichelt M, Wetzel SA. Lymphocytes and Trogocytosis-Mediated Signaling. Cells 2021; 10:1478. [PMID: 34204661 PMCID: PMC8231098 DOI: 10.3390/cells10061478] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated molecules. This underappreciated process has been described in a variety of biological settings including neuronal remodeling, fertilization, viral and bacterial spread, and cancer, but has been most widely studied in cells of the immune system. Trogocytosis is performed by multiple immune cell types, including basophils, macrophages, dendritic cells, neutrophils, natural killer cells, B cells, γδ T cells, and CD4+ and CD8+ αβ T cells. Although not expressed endogenously, the presence of trogocytosed molecules on cells has the potential to significantly impact an immune response and the biology of the individual trogocytosis-positive cell. Many studies have focused on the ability of the trogocytosis-positive cells to interact with other immune cells and modulate the function of responders. Less understood and arguably equally important is the impact of these molecules on the individual trogocytosis-positive cell. Molecules that have been reported to be trogocytosed by cells include cognate ligands for receptors on the individual cell, such as activating NK cell ligands and MHC:peptide. These trogocytosed molecules have been shown to interact with receptors on the trogocytosis-positive cell and mediate intracellular signaling. In this review, we discuss the impact of this trogocytosis-mediated signaling on the biology of the individual trogocytosis-positive cell by focusing on natural killer cells and CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Jim Reed
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Madison Reichelt
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Scott A. Wetzel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
7
|
Wang K, Peng K. RRAS2 knockdown suppresses osteosarcoma progression by inactivating the MEK/ERK signaling pathway. Anticancer Drugs 2019; 30:933-939. [PMID: 31517733 DOI: 10.1097/cad.0000000000000799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant function of RRAS2 drives malignant transformation in a various of cancers. However, little information exists on the function of RRAS2 in tumorigenesis of osteosarcoma. In this study, we investigated the effect of RRAS2 on osteosarcoma progression and its underlying mechanism. The gene expression level and prognostic power of RRAS2 in osteosarcoma were first investigated using the data from the Gene Expression Omnibus database. Then RNA interference was performed to silence the expression of RRAS2 in osteosarcoma cells. Quantitative real-time-PCR and western blot were used to examine the gene and protein expressions of RRAS2 in osteosarcoma cells. In-vitro cancer proliferation and migration were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolum bromide solution and wound-healing assays, respectively. We found that RRAS2 was significantly upregulated in osteosarcoma cells and high expression of RRAS2 was associated with a poor prognosis for patients with osteosarcoma. RNA interference decreased the gene and protein expression of RRAS2, reduced in-vitro the proliferation and migration of osteosarcoma cells, and suppressed the activation of the MEK/ERK signaling pathway. RRAS2 as an adverse prognostic factor promoted cell proliferation and migration by activating the MEK/ERK signaling pathway, and may provide new therapeutic value for osteosarcoma.
Collapse
Affiliation(s)
- Kejun Wang
- Department of Orthopaedics, Jingzhou Central Hospital, Jingzhou
| | - Kan Peng
- Department of Trauma Orthopaedics, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
8
|
Janapati S, Wurtzel J, Dangelmaier C, Manne BK, Bhavanasi D, Kostyak JC, Kim S, Holinstat M, Kunapuli SP, Goldfinger LE. TC21/RRas2 regulates glycoprotein VI-FcRγ-mediated platelet activation and thrombus stability. J Thromb Haemost 2018; 16:S1538-7836(22)02217-6. [PMID: 29883056 PMCID: PMC6286703 DOI: 10.1111/jth.14197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/27/2022]
Abstract
Essentials RAS proteins are expressed in platelets but their functions are largely uncharacterized. TC21/RRas2 is required for glycoprotein VI-induced platelet responses and for thrombus stability in vivo. TC21 regulates platelet aggregation by control of αIIb β3 integrin activation, via crosstalk with Rap1b. This is the first indication of functional importance of a proto-oncogenic RAS protein in platelets. SUMMARY Background Many RAS family small GTPases are expressed in platelets, including RAC, RHOA, RAP, and HRAS/NRAS/RRAS1, but most of their signaling and cellular functions remain poorly understood. Like RRAS1, TC21/RRAS2 reverses HRAS-induced suppression of integrin activation in CHO cells. However, a role for TC21 in platelets has not been explored. Objectives To determine TC21 expression in platelets, TC21 activation in response to platelet agonists, and roles of TC21 in platelet function in in vitro and in vivo thrombosis. Results We demonstrate that TC21 is expressed in human and murine platelets, and is activated in response to agonists for the glycoprotein (GP) VI-FcRγ immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor, in an Src-dependent manner. GPVI-induced platelet aggregation, integrin αIIb β3 activation, and α-granule and dense granule secretion, as well as phosphorylation of Syk, phospholipase Cγ2, AKT, and extracellular signal-regulated kinase, were inhibited in TC21-deficient platelets ex vivo. In contrast, these responses were normal in TC21-deficient platelets following stimulation with P2Y, protease-activated receptor 4 and C-type lectin receptor 2 receptor agonists, indicating that the function of TC21 in platelets is GPVI-FcRγ-ITAM-specific. TC21 was required for GPVI-induced activation of Rap1b. TC21-deficient mice did not show a significant delay in injury-induced thrombosis as compared with wild-type controls; however, thrombi were unstable. Hemostatic responses showed similar effects. Conclusions TC21 is essential for GPVI-FcRγ-mediated platelet activation and for thrombus stability in vivo via control of Rap1b and integrins.
Collapse
Affiliation(s)
- S Janapati
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - J Wurtzel
- The Sol Sherry Thrombosis Research Center and Department of Anatomy & Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - C Dangelmaier
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - B K Manne
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - D Bhavanasi
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - J C Kostyak
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - S Kim
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - M Holinstat
- Department of Pharmacology, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - S P Kunapuli
- The Sol Sherry Thrombosis Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - L E Goldfinger
- The Sol Sherry Thrombosis Research Center and Department of Anatomy & Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
9
|
Mendoza P, Martínez-Martín N, Bovolenta ER, Reyes-Garau D, Hernansanz-Agustín P, Delgado P, Diaz-Muñoz MD, Oeste CL, Fernández-Pisonero I, Castellano E, Martínez-Ruiz A, Alonso-Lopez D, Santos E, Bustelo XR, Kurosaki T, Alarcón B. R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes. Sci Signal 2018; 11:11/532/eaal1506. [DOI: 10.1126/scisignal.aal1506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Finetti F, Cassioli C, Baldari CT. Transcellular communication at the immunological synapse: a vesicular traffic-mediated mutual exchange. F1000Res 2017; 6:1880. [PMID: 29123650 PMCID: PMC5657015 DOI: 10.12688/f1000research.11944.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
The cell’s ability to communicate with the extracellular environment, with other cells, and with itself is a crucial feature of eukaryotic organisms. In the immune system, T lymphocytes assemble a specialized structure upon contact with antigen-presenting cells bearing a peptide-major histocompatibility complex ligand, known as the immunological synapse (IS). The IS has been extensively characterized as a signaling platform essential for T-cell activation. Moreover, emerging evidence identifies the IS as a device for vesicular traffic-mediated cell-to-cell communication as well as an active release site of soluble molecules. Here, we will review recent advances in the role of vesicular trafficking in IS assembly and focused secretion of microvesicles at the synaptic area in naïve T cells and discuss the role of the IS in transcellular communication.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
11
|
Anillin Regulates Neuronal Migration and Neurite Growth by Linking RhoG to the Actin Cytoskeleton. Curr Biol 2015; 25:1135-45. [PMID: 25843030 DOI: 10.1016/j.cub.2015.02.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
Abstract
Neuronal migration and neurite growth are essential events in neural development, but it remains unclear how guidance cues are transduced through receptors to the actin cytoskeleton, which powers these processes. We report that a cytokinetic scaffold protein, Anillin, is redistributed to the leading edge of the C. elegans Q neuroblast during cell migration and neurite growth. To bypass the requirement for Anillin in cytokinesis, we used the somatic CRISPR-Cas9 technique to generate conditional mutations in Anillin. We demonstrate that Anillin regulates cell migration and growth cone extension by stabilizing the F-actin network at the leading edge. Our biochemical analysis shows that the actin-binding domain of Anillin is sufficient to stabilize F-actin by antagonizing the F-actin severing activity of Cofilin. We further uncover that the active form of RhoG/MIG-2 directly binds to Anillin and recruits it to the leading edge. Our results reveal a novel pathway in which Anillin transduces the RhoG signal to the actin cytoskeleton during neuronal migration and neurite growth.
Collapse
|
12
|
Gutierrez-Erlandsson S, Herrero-Vidal P, Fernandez-Alfara M, Hernandez-Garcia S, Gonzalo-Flores S, Mudarra-Rubio A, Fresno M, Cubelos B. R-RAS2 overexpression in tumors of the human central nervous system. Mol Cancer 2013; 12:127. [PMID: 24148564 PMCID: PMC3900289 DOI: 10.1186/1476-4598-12-127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/17/2013] [Indexed: 01/06/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are the 10th most frequent cause of cancer mortality. Despite the strong malignancy of some such tumors, oncogenic mutations are rarely found in classic members of the RAS family of small GTPases. This raises the question as to whether other RAS family members may be affected in CNS tumors, excessively activating RAS pathways. The RAS-related subfamily of GTPases is that which is most closely related to classical Ras and it currently contains 3 members: RRAS, RRAS2 and RRAS3. While R-RAS and R-RAS2 are expressed ubiquitously, R-RAS3 expression is restricted to the CNS. Significantly, both wild type and mutated RRAS2 (also known as TC21) are overexpressed in human carcinomas of the oral cavity, esophagus, stomach, skin and breast, as well as in lymphomas. Hence, we analyzed the expression of R-RAS2 mRNA and protein in a wide variety of human CNS tumors and we found the R-RAS2 protein to be overexpressed in all of the 90 CNS cancer samples studied, including glioblastomas, astrocytomas and oligodendrogliomas. However, R-Ras2 was more strongly expressed in low grade (World Health Organization grades I-II) rather than high grade (grades III-IV) tumors, suggesting that R-RAS2 is overexpressed in the early stages of malignancy. Indeed, R-RAS2 overexpression was evident in pre-malignant hyperplasias, both at the mRNA and protein levels. Nevertheless, such dramatic changes in expression were not evident for the other two subfamily members, which implies that RRAS2 is the main factor triggering neural transformation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beatriz Cubelos
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|