1
|
Kim JA, Im S, Lim J, Hong JM, Ihn HJ, Bae JS, Kim JE, Bae YC, Park EK. The guanine nucleotide exchange factor DOCK5 negatively regulates osteoblast differentiation and BMP2-induced bone regeneration via the MKK3/6 and p38 signaling pathways. Exp Mol Med 2025; 57:86-103. [PMID: 39741184 PMCID: PMC11799167 DOI: 10.1038/s12276-024-01372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 01/02/2025] Open
Abstract
DOCK5 (dedicator of cytokinesis 5), a guanine nucleotide exchange factor for Rac1, has been implicated in BMP2-mediated osteoblast differentiation, but its specific role in osteogenesis and bone regeneration remained unclear. This study investigated the effect of DOCK5 on bone regeneration using C21, a DOCK5 chemical inhibitor, and Dock5-deficient mice. Osteoblast differentiation and bone regeneration were analyzed using bone marrow mesenchymal stem cells (BMSCs) and various animal models. C21 significantly enhanced osteoblast differentiation and mineral deposition in mouse MC3T3-E1 cells and in human and mouse BMSCs. Dock5 knockout (KO) mice exhibited increased bone mass and mineral apposition rate, with their BMSCs showing enhanced osteoblast differentiation. Calvarial defect and ectopic bone formation models demonstrated significant induction of bone regeneration in Dock5 KO mice compared to wild-type (WT) mice. Moreover, DOCK5 inhibition by C21 in WT mice enhanced BMP2-induced subcutaneous ectopic bone formation. The mechanism responsible for enhanced bone formation induced by DOCK5 inhibition may involve the suppression of Rac1 under TAK1, accompanied by the activation of MKK3/6 and p38 induced by BMP2. These findings strongly suggest that DOCK5 negatively regulates osteoblast differentiation and bone regeneration through signaling pathways involving TAK1, MKK3/6, and p38, providing new insights into potential therapeutic strategies for bone regeneration.
Collapse
Affiliation(s)
- Ju Ang Kim
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Soomin Im
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jiwon Lim
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jung Min Hong
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
2
|
Yazbeck P, Cullere X, Bennett P, Yajnik V, Wang H, Kawada K, Davis V, Parikh A, Kuo A, Mysore V, Hla T, Milstone D, Mayadas TN. DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:886-902. [PMID: 35477279 PMCID: PMC9233130 DOI: 10.1161/atvbaha.122.317565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.
Collapse
Affiliation(s)
- Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Bennett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Vijay Yajnik
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Huan Wang
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kenji Kawada
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Vanessa Davis
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Asit Parikh
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - David Milstone
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
3
|
Bharadwaj R, Kushwaha T, Ahmad A, Inampudi KK, Nozaki T. An atypical EhGEF regulates phagocytosis in Entamoeba histolytica through EhRho1. PLoS Pathog 2021; 17:e1010030. [PMID: 34807955 PMCID: PMC8648123 DOI: 10.1371/journal.ppat.1010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
The parasite Entamoeba histolytica is the etiological agent of amoebiasis, a major cause of morbidity and mortality due to parasitic diseases in developing countries. Phagocytosis is an essential mode of obtaining nutrition and has been associated with the virulence behaviour of E. histolytica. Signalling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remains to be elucidated in this parasite. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica and have described some of the molecules that play key roles in the process. Here we showed the involvement of non-Dbl Rho Guanine Nucleotide Exchange Factor, EhGEF in regulation of amoebic phagocytosis by regulating activation of EhRho1. EhGEF was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. Our observation from imaging, pull down experiments and down regulating expression of different molecules suggest that EhGEF interacts with EhRho1 and it is required during initiation of phagocytosis and phagosome formation. Also, biophysical, and computational analysis reveals that EhGEF mediates GTP exchange on EhRho1 via an unconventional pathway. In conclusion, we describe a non-Dbl EhGEF of EhRho1 which is involved in endocytic processes of E. histolytica.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Azhar Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail: (TN); , (S)
| |
Collapse
|
4
|
Roopasree OJ, Adivitiya, Chakraborty S, Kateriya S, Veleri S. Centriole is the pivot coordinating dynamic signaling for cell proliferation and organization during early development in the vertebrates. Cell Biol Int 2021; 45:2178-2197. [PMID: 34288241 DOI: 10.1002/cbin.11667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- O J Roopasree
- Agroprocessing Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019 and Academy of CSIR, Uttar Pradesh - 201002, India
| | - Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
5
|
Thompson AP, Bitsina C, Gray JL, von Delft F, Brennan PE. RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. J Biol Chem 2021; 296:100521. [PMID: 33684443 PMCID: PMC8063744 DOI: 10.1016/j.jbc.2021.100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.
Collapse
Affiliation(s)
- Andrew P Thompson
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christina Bitsina
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Janine L Gray
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul E Brennan
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
6
|
Panahi Y, Azimi A, Naderi M, Jadidi K, Sahebkar A. An analytical enrichment-based review of structural genetic studies on keratoconus. J Cell Biochem 2018; 120:4748-4756. [PMID: 30260013 DOI: 10.1002/jcb.27764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Keratoconus is a progressive bilateral corneal protrusion that leads to irregular astigmatism and impairment of vision. Keratoconus is an etiologically heterogeneous corneal dystrophy and both environmental and genetic factors play a role in its etiopathogenesis. In this analytical review, we have studied all the genes that are structurally associated with keratoconus and have tried to explain the function of each gene and its association with other eye disorders in a concise way. In addition, using gene set enrichment analysis, it was attempted to find the most important impaired metabolic pathways in keratoconus. Several genetic studies have been carried out on keratoconus and several genes have been identified as risk factors involved in the etiology of the disease. In the current study, 16 studies, including nine association studies, five genome-wide association studies, one linkage study, and one meta-analysis, were reviewed and based on the 19 genes found, enrichment was performed and the most important metabolic pathways involved in the disease were identified. The enrichment results indicated that the two pathways, interleukin 1 processing and assembly of collagen fibrils, are significantly associated with the disease. Obviously, the results of this study, in addition to providing information about the genes involved in the disease, can provide an integrated insight into the gene-based etiology of keratoconus and therapeutic opportunities thereof.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Azimi
- Department of Ophthalmology, Poostchi Eye Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Naderi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic inflammation Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Sakamoto A, Matsuda T, Kawaguchi K, Takaoka A, Maruyama M. Involvement of Zizimin2/3 in the age-related defect of peritoneal B-1a cells as a source of anti-bacterial IgM. Int Immunol 2018; 29:431-438. [PMID: 29099971 DOI: 10.1093/intimm/dxx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/05/2017] [Indexed: 12/18/2022] Open
Abstract
Zizimin2 (Ziz2), also known as dedicator of cytokinesis 11 (DOCK11), is a guanine nucleotide exchange factor that is predominantly expressed in lymphoid tissues. Recent findings demonstrated that Ziz2 is involved in the development of B cells, including germinal centre B cells and marginal zone B cells. However, limited information is currently available on the roles of Ziz2 in B-1 cells, a B-cell subset that resides in body cavities and contributes to protection against foreign pathogens in a T-cell-independent manner. We herein show that Ziz2 and its widely expressed isoform Ziz3 (also known as DOCK10) may be involved in defective production of anti-bacterial IgM by aged B-1a cells, a CD5+ subset of B-1 cells. Natural IgM against typical bacterial epitopes was defectively produced by peritoneal B-1a cells from aged mice. The down-regulation of Ziz2/3 in B-1a cells appeared to be responsible for this defective IgM production, as demonstrated by Ziz2/3 double-knockout mice. Mechanistically, lower levels of basal AKT phosphorylation did not allow for the differentiation of Ziz2/3-deficient B-1a cells into plasma cells. Defective production of anti-bacterial IgM was not fully rescued by immunization, resulting in slightly weaker protection in Ziz2/3-deficient mice. Thus, the down-regulation of Ziz2/3 in B-1a cells may at least partly account for defective protection in aged mice.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Takenori Matsuda
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Koichiro Kawaguchi
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Mitsuo Maruyama
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| |
Collapse
|
8
|
Rho Signaling in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:61-181. [DOI: 10.1016/bs.ircmb.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Jaudon F, Raynaud F, Wehrlé R, Bellanger JM, Doulazmi M, Vodjdani G, Gasman S, Fagni L, Dusart I, Debant A, Schmidt S. The RhoGEF DOCK10 is essential for dendritic spine morphogenesis. Mol Biol Cell 2015; 26:2112-27. [PMID: 25851601 PMCID: PMC4472020 DOI: 10.1091/mbc.e14-08-1310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 04/02/2015] [Indexed: 12/15/2022] Open
Abstract
By regulating actin cytoskeleton dynamics, Rho GTPases and their activators RhoGEFs are implicated in various aspects of neuronal differentiation, including dendritogenesis and synaptogenesis. Purkinje cells (PCs) of the cerebellum, by developing spectacular dendrites covered with spines, represent an attractive model system in which to decipher the molecular signaling underlying these processes. To identify novel regulators of dendritic spine morphogenesis among members of the poorly characterized DOCK family of RhoGEFs, we performed gene expression profiling of fluorescence-activated cell sorting (FACS)-purified murine PCs at various stages of their postnatal differentiation. We found a strong increase in the expression of the Cdc42-specific GEF DOCK10. Depleting DOCK10 in organotypic cerebellar cultures resulted in dramatic dendritic spine defects in PCs. Accordingly, in mouse hippocampal neurons, depletion of DOCK10 or expression of a DOCK10 GEF-dead mutant led to a strong decrease in spine density and size. Conversely, overexpression of DOCK10 led to increased spine formation. We show that DOCK10 function in spinogenesis is mediated mainly by Cdc42 and its downstream effectors N-WASP and PAK3, although DOCK10 is also able to activate Rac1. Our global approach thus identifies an unprecedented function for DOCK10 as a novel regulator of dendritic spine morphogenesis via a Cdc42-mediated pathway.
Collapse
Affiliation(s)
- Fanny Jaudon
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Université de Montpellier, 34293 Montpellier, France
| | - Fabrice Raynaud
- Institute of Functional Genomics, CNRS-UMR 5203, INSERM U661, Université de Montpellier, 34094 Montpellier, France
| | - Rosine Wehrlé
- Université Pierre et Marie Curie, CNRS-UMR 7102, Université Paris 06, 75005 Paris, France
| | - Jean-Michel Bellanger
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Université de Montpellier, 34293 Montpellier, France
| | - Mohamed Doulazmi
- Université Pierre et Marie Curie, CNRS-UMR 7102, Université Paris 06, 75005 Paris, France
| | - Guilan Vodjdani
- PROTECT, Neuroprotection du cerveau en développement, UMR1141-INSERM, Université Paris-Diderot, Sorbonne Paris-Cité, 75019 Paris, France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, CNRS-UPR 3212, Centre de Neurochimie, Université de Strasbourg, 67084 Strasbourg, France
| | - Laurent Fagni
- Institute of Functional Genomics, CNRS-UMR 5203, INSERM U661, Université de Montpellier, 34094 Montpellier, France
| | - Isabelle Dusart
- Université Pierre et Marie Curie, CNRS-UMR 7102, Université Paris 06, 75005 Paris, France
| | - Anne Debant
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Université de Montpellier, 34293 Montpellier, France
| | - Susanne Schmidt
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Université de Montpellier, 34293 Montpellier, France
| |
Collapse
|
10
|
Miller NLG, Kleinschmidt EG, Schlaepfer DD. RhoGEFs in cell motility: novel links between Rgnef and focal adhesion kinase. Curr Mol Med 2014; 14:221-34. [PMID: 24467206 DOI: 10.2174/1566524014666140128110339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/08/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022]
Abstract
Rho guanine exchange factors (GEFs) are a large, diverse family of proteins defined by their ability to catalyze the exchange of GDP for GTP on small GTPase proteins such as Rho family members. GEFs act as integrators from varied intra- and extracellular sources to promote spatiotemporal activity of Rho GTPases that control signaling pathways regulating cell proliferation and movement. Here we review recent studies elucidating roles of RhoGEF proteins in cell motility. Emphasis is placed on Dbl-family GEFs and connections to development, integrin signaling to Rho GTPases regulating cell adhesion and movement, and how these signals may enhance tumor progression. Moreover, RhoGEFs have additional domains that confer distinctive functions or specificity. We will focus on a unique interaction between Rgnef (also termed Arhgef28 or p190RhoGEF) and focal adhesion kinase (FAK), a non-receptor tyrosine kinase that controls migration properties of normal and tumor cells. This Rgnef-FAK interaction activates canonical GEF-dependent RhoA GTPase activity to govern contractility and also functions as a scaffold in a GEF-independent manner to enhance FAK activation. Recent studies have also brought to light the importance of specific regions within the Rgnef pleckstrin homology (PH) domain for targeting the membrane. As revealed by ongoing Rgnef-FAK investigations, exploring GEF roles in cancer will yield fundamental new information on the molecular mechanisms promoting tumor spread and metastasis.
Collapse
Affiliation(s)
| | | | - D D Schlaepfer
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, MC 0803, 3855 Health Sciences Dr., La Jolla, CA 92093 USA.
| |
Collapse
|
11
|
Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 2013; 33:4021-35. [PMID: 24037532 DOI: 10.1038/onc.2013.362] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger).
Collapse
Affiliation(s)
- D R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - K L Rossman
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - C J Der
- 1] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA [2] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|