1
|
Mikhael S, Daoud G. Navigating Metabolic Challenges in Ovarian Cancer: Insights and Innovations in Drug Repurposing. Cancer Med 2025; 14:e70681. [PMID: 39969135 PMCID: PMC11837049 DOI: 10.1002/cam4.70681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological malignancy and a major global health concern, often diagnosed at advanced stages with poor survival rates. Despite advancements in treatment, resistance to standard chemotherapy remains a critical challenge with limited treatment options available. In recent years, the role of metabolic reprogramming in OC has emerged as a key factor driving tumor progression, therapy resistance, and poor clinical outcomes. METHODS This review explores the intricate connections between metabolic syndrome, enhanced glycolysis, and altered lipid metabolism within OC cells, which fuel the aggressive nature of the disease. We discuss how metabolic pathways are rewired in OC to support uncontrolled cell proliferation, survival under hypoxic conditions, and evasion of cell death mechanisms, positioning metabolic alterations as central to disease progression. The review also highlights the potential of repurposed metabolic-targeting drugs, such as metformin and statins, which have shown promise in preclinical studies for their ability to disrupt these altered metabolic pathways. CONCLUSION Drug repurposing offers a promising strategy to overcome chemoresistance and improve patient outcomes. Future research should focus on unraveling the complex metabolic networks in OC to develop innovative, targeted therapies that can enhance treatment efficacy and patient survival.
Collapse
Affiliation(s)
- Sara Mikhael
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of MedicineAmerican University of BeirutBeirutLebanon
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of MedicineAmerican University of BeirutBeirutLebanon
| |
Collapse
|
2
|
Manich M, Bochet P, Boquet-Pujadas A, Rose T, Laenen G, Guillén N, Olivo-Marin JC, Labruyère E. Fibronectin induces a transition from amoeboid to a fan morphology and modifies migration in Entamoeba histolytica. PLoS Pathog 2024; 20:e1012392. [PMID: 39052670 PMCID: PMC11302856 DOI: 10.1371/journal.ppat.1012392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/06/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Cell migration modes can vary, depending on a number of environmental and intracellular factors. The high motility of the pathogenic amoeba Entamoeba histolytica is a decisive factor in its ability to cross the human colonic barrier. We used quantitative live imaging techniques to study the migration of this parasite on fibronectin, a key tissue component. Entamoeba histolytica amoebae on fibronectin contain abundant podosome-like structures. By using a laminar flow chamber, we determined that the adhesion forces generated on fibronectin were twice those on non-coated glass. When migrating on fibronectin, elongated amoeboid cells converted into fan-shaped cells characterized by the presence of a dorsal column of F-actin and a broad cytoplasmic extension at the front. The fan shape depended on the Arp2/3 complex, and the amoebae moved laterally and more slowly. Intracellular measurements of physical variables related to fluid dynamics revealed that cytoplasmic pressure gradients were weaker within fan-shaped cells; hence, actomyosin motors might be less involved in driving the cell body forward. We also found that the Rho-associated coiled-coil containing protein kinase regulated podosome dynamics. We conclude that E. histolytica spontaneously changes its migration mode as a function of the substrate composition. This adaptive ability might favour E. histolytica's invasion of human colonic tissue. By combining microfluidic experiments, mechanical modelling, and image analysis, our work also introduces a computational pipeline for the study of cell migration.
Collapse
Affiliation(s)
- Maria Manich
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Pascal Bochet
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Aleix Boquet-Pujadas
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
- École Polytechnique Fédérale de Lausanne, Biomedical Imaging Group, Lausanne, Switzerland
| | - Thierry Rose
- Institut Pasteur, Diagnostic Test Innovation and Development Core Facility Unit, Paris, France
| | - Gertjan Laenen
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| |
Collapse
|
3
|
Saito K, Ozawa S, Chiba Y, Takahashi R, Ogomori R, Mukai K, Taguchi T, Hatakeyama H, Ohta Y. FilGAP, a GAP for Rac1, down-regulates invadopodia formation in breast cancer cells. Cell Struct Funct 2023; 48:161-174. [PMID: 37482421 PMCID: PMC11496788 DOI: 10.1247/csf.23032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023] Open
Abstract
Invadopodia are protrusive structures that mediate the extracellular matrix (ECM) degradation required for tumor invasion and metastasis. Rho small GTPases regulate invadopodia formation, but the molecular mechanisms of how Rho small GTPase activities are regulated at the invadopodia remain unclear. Here we have identified FilGAP, a GTPase-activating protein (GAP) for Rac1, as a negative regulator of invadopodia formation in tumor cells. Depletion of FilGAP in breast cancer cells increased ECM degradation and conversely, overexpression of FilGAP decreased it. FilGAP depletion promoted the formation of invadopodia with ECM degradation. In addition, FilGAP depletion and Rac1 overexpression increased the emergence of invadopodia induced by epidermal growth factor, whereas FilGAP overexpression suppressed it. Overexpression of GAP-deficient FilGAP mutant enhanced invadopodia emergence as well as FilGAP depletion. The pleckstrin-homology (PH) domain of FilGAP binds phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], which is distributed on membranes of the invadopodia. FilGAP localized to invadopodia in breast cancer cells on the ECM, but FilGAP mutant lacking PI(3,4)P2-binding showed low localization. Similarly, the decrease of PI(3,4)P2 production reduced the FilGAP localization. Our results suggest that FilGAP localizes to invadopodia through its PH domain binding to PI(3,4)P2 and down-regulates invadopodia formation by inactivating Rac1, inhibiting ECM degradation in invasive tumor cells.Key words: invadopodia, breast carcinoma, Rac1, FilGAP, PI(3,4)P2.
Collapse
Affiliation(s)
- Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | - Sakino Ozawa
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | - Yosuke Chiba
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | - Ruri Takahashi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | - Ryoya Ogomori
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyasu Hatakeyama
- Department of Physiology, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| |
Collapse
|
4
|
Li D, Wang X, Miao H, Liu H, Pang M, Guo H, Ge M, Glass SE, Emmrich S, Ji S, Zhou Y, Ye X, Mao H, Wang J, Liu Q, Kim T, Klusmann JH, Li C, Liu Z, Jin H, Nie Y, Wu K, Fan D, Song X, Wang X, Li L, Lu Y, Zhao X. The lncRNA MIR99AHG directs alternative splicing of SMARCA1 by PTBP1 to enable invadopodia formation in colorectal cancer cells. Sci Signal 2023; 16:eadh4210. [PMID: 37725664 DOI: 10.1126/scisignal.adh4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alternative splicing regulates gene expression and functional diversity and is often dysregulated in human cancers. Here, we discovered that the long noncoding RNA (lncRNA) MIR99AHG regulated alternative splicing to alter the activity of a chromatin remodeler and promote metastatic behaviors in colorectal cancer (CRC). MIR99AHG was abundant in invasive CRC cells and metastatic tumors from patients and promoted motility and invasion in cultured CRC cells. MIR99AHG bound to and stabilized the RNA splicing factor PTBP1, and this complex increased cassette exon inclusion in the mRNA encoding the chromatin remodeling gene SMARCA1. Specifically, MIR99AHG altered the nature of PTBP1 binding to the splice sites on intron 12 of SMARCA1 pre-mRNA, thereby triggering a splicing switch from skipping to including exon 13 to produce the long isoform, SMARCA1-L. SMARCA1, but not SMARCA1-L, suppressed invadopodia formation, cell migration, and invasion. Analysis of CRC samples revealed that the abundance of MIR99AHG transcript positively correlated with that of SMARCA1-L mRNA and PTBP1 protein and with poor prognosis in patients with CRC. Furthermore, TGF-β1 secretion from cancer-associated fibroblasts increased MIR99AHG expression in CRC cells. Our findings identify an lncRNA that is induced by cues from the tumor microenvironment and that interacts with PTBP1 to regulate alternative splicing, potentially providing a therapeutic target and predictive biomarker for metastatic CRC.
Collapse
Affiliation(s)
- Danxiu Li
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hao Liu
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Maogui Pang
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co. Ltd., Nanjing, Jiangsu 210042, China
| | - Minghui Ge
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co. Ltd., Nanjing, Jiangsu 210042, China
| | - Sarah E Glass
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Songtao Ji
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yun Zhou
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoni Ye
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Huajie Mao
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Wang
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main) 60590, Germany
| | - Cunxi Li
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100191, China
| | - Zhenxiong Liu
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haifeng Jin
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongzhan Nie
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kaichun Wu
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodi Zhao
- Department of Gastroenterology, Tangdu Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
5
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2023; 10:1091801. [PMID: 36699013 PMCID: PMC9869768 DOI: 10.3389/fcell.2022.1091801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Cell migration is crucial for efficient immune responses and is aberrantly used by cancer cells during metastatic dissemination. Amoeboid migrating cells use myosin II-powered blebs to propel themselves, and change morphology and direction. Immune cells use amoeboid strategies to respond rapidly to infection or tissue damage, which require quick passage through several barriers, including blood, lymph and interstitial tissues, with complex and varied environments. Amoeboid migration is also used by metastatic cancer cells to aid their migration, dissemination and survival, whereby key mechanisms are hijacked from professionally motile immune cells. We explore important parallels observed between amoeboid immune and cancer cells. We also consider key distinctions that separate the lifespan, state and fate of these cell types as they migrate and/or fulfil their function. Finally, we reflect on unexplored areas of research that would enhance our understanding of how tumour cells use immune cell strategies during metastasis, and how to target these processes.
Collapse
|
7
|
Perrin L, Gligorijevic B. Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Phys Biol 2022; 20:10.1088/1478-3975/aca0d8. [PMID: 36343366 PMCID: PMC9942491 DOI: 10.1088/1478-3975/aca0d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Cancer invasion and metastasis require remodeling of the adjacent extracellular matrix (ECM). In this mini review, we will cover the mechanisms of proteolytic degradation and the mechanical remodeling of the ECM by cancer cells, with a focus on invadopodia. Invadopodia are membrane protrusions unique to cancer cells, characterized by an actin core and by the focal degradation of ECM via matrix metalloproteases (MMPs). While ECM can also be remodeled, at lower levels, by focal adhesions, or internal collagen digestion, invadopodia are now recognized as the major mechanism for MMP-dependent pericellular ECM degradation by cancer cells. Recent evidence suggests that the completion of epithelial-mesenchymal transition may be dispensable for invadopodia and metastasis, and that invadopodia are required not only for mesenchymal, single cell invasion, but also for collective invasion. During collective invasion, invadopodia was then shown to be located in leader cells, allowing follower cells to move via cooperation. Collectively, this suggests that invadopodia function may be a requirement not only for later steps of metastasis, but also for early invasion of epithelial cells into the stromal tissue. Over the last decade, invadopodia studies have transitioned into in 3D andin vivosettings, leading to the confirmation of their essential role in metastasis in preclinical animal models. In summary, invadopodia may hold a great potential for individual risk assessment as a prognostic marker for metastasis, as well as a therapeutic target.
Collapse
Affiliation(s)
- L. Perrin
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Present address, Institut Curie, Paris, France
| | - B. Gligorijevic
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia PA, USA
| |
Collapse
|
8
|
Mondal C, Gacha-Garay MJ, Larkin KA, Adikes RC, Di Martino JS, Chien CC, Fraser M, Eni-Aganga I, Agullo-Pascual E, Cialowicz K, Ozbek U, Naba A, Gaitas A, Fu TM, Upadhyayula S, Betzig E, Matus DQ, Martin BL, Bravo-Cordero JJ. A proliferative to invasive switch is mediated by srGAP1 downregulation through the activation of TGF-β2 signaling. Cell Rep 2022; 40:111358. [PMID: 36130489 PMCID: PMC9596226 DOI: 10.1016/j.celrep.2022.111358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/06/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGA-P1low cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1low cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1low cells have increased Smad2 activation and TGF-β2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-β2-mediated signaling axis. Disseminated tumor cells can remain quiescent or actively proliferate in distant organs, contributing to aggressive disease. Mondal et al. identify srGAP1 as a regulator of a proliferative-to-invasive decision by breast cancer (BC) cells through a TGF-β2-mediated signaling axis.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Majo J Gacha-Garay
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kathryn A Larkin
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rebecca C Adikes
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chen-Chi Chien
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madison Fraser
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ireti Eni-Aganga
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esperanza Agullo-Pascual
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katarzyna Cialowicz
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Ozbek
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tian-Ming Fu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Molecular and Cellular Biology, UC Berkeley, CA 94720, USA
| | - David Q Matus
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin L Martin
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Rodenburg WS, van Buul JD. Rho GTPase signalling networks in cancer cell transendothelial migration. VASCULAR BIOLOGY 2021; 3:R77-R95. [PMID: 34738075 PMCID: PMC8558887 DOI: 10.1530/vb-21-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
Rho GTPases are small signalling G-proteins that are central regulators of cytoskeleton dynamics, and thereby regulate many cellular processes, including the shape, adhesion and migration of cells. As such, Rho GTPases are also essential for the invasive behaviour of cancer cells, and thus involved in several steps of the metastatic cascade, including the extravasation of cancer cells. Extravasation, the process by which cancer cells leave the circulation by transmigrating through the endothelium that lines capillary walls, is an essential step for metastasis towards distant organs. During extravasation, Rho GTPase signalling networks not only regulate the transmigration of cancer cells but also regulate the interactions between cancer and endothelial cells and are involved in the disruption of the endothelial barrier function, ultimately allowing cancer cells to extravasate into the underlying tissue and potentially form metastases. Thus, targeting Rho GTPase signalling networks in cancer may be an effective approach to inhibit extravasation and metastasis. In this review, the complex process of cancer cell extravasation will be discussed in detail. Additionally, the roles and regulation of Rho GTPase signalling networks during cancer cell extravasation will be discussed, both from a cancer cell and endothelial cell point of view.
Collapse
Affiliation(s)
- Wessel S Rodenburg
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.,Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences at University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Benson CE, Southgate L. The DOCK protein family in vascular development and disease. Angiogenesis 2021; 24:417-433. [PMID: 33548004 PMCID: PMC8292242 DOI: 10.1007/s10456-021-09768-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The vascular network is established and maintained through the processes of vasculogenesis and angiogenesis, which are tightly regulated during embryonic and postnatal life. The formation of a functional vasculature requires critical cellular mechanisms, such as cell migration, proliferation and adhesion, which are dependent on the activity of small Rho GTPases, controlled in part by the dedicator of cytokinesis (DOCK) protein family. Whilst the majority of DOCK proteins are associated with neuronal development, a growing body of evidence has indicated that members of the DOCK family may have key functions in the control of vasculogenic and angiogenic processes. This is supported by the involvement of several angiogenic signalling pathways, including chemokine receptor type 4 (CXCR4), vascular endothelial growth factor (VEGF) and phosphatidylinositol 3-kinase (PI3K), in the regulation of specific DOCK proteins. This review summarises recent progress in understanding the respective roles of DOCK family proteins during vascular development. We focus on existing in vivo and in vitro models and known human disease phenotypes and highlight potential mechanisms of DOCK protein dysfunction in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Clare E Benson
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Laura Southgate
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
11
|
Kloc M, Uosef A, Villagran M, Zdanowski R, Kubiak JZ, Wosik J, Ghobrial RM. RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. BIOLOGY 2021; 10:biology10020070. [PMID: 33498417 PMCID: PMC7909416 DOI: 10.3390/biology10020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The functions of animal and human cells depend on the actin cytoskeleton and its regulating protein called the RhoA. The actin cytoskeleton and RhoA also regulate the response of the immune cells such as macrophages to the microbial invasion and/or the presence of a non-self, such as a transplanted organ. The immune response against transplant occurs in several steps. The early step occurring within days post-transplantation is called the acute rejection and the late step, occurring months to years post-transplantation, is called the chronic rejection. In clinical transplantation, acute rejection is easily manageable by the anti-rejection drugs. However, there is no cure for chronic rejection, which is caused by the macrophages entering the transplant and promoting blockage of its blood vessels and destruction of tissue. We discuss here how the inhibition of the RhoA and actin cytoskeleton polymerization in the macrophages, either by genetic interference or pharmacologically, prevents macrophage entry into the transplanted organ and prevents chronic rejection, and also how it affects the anti-microbial function of the macrophages. We also focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection and anti-microbial therapies. Abstract The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Martha Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), 04-141 Warsaw, Poland;
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, CNRS, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, UMR, 6290 Rennes, France
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
12
|
Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. Int J Mol Sci 2020; 21:ijms21207768. [PMID: 33092251 PMCID: PMC7656306 DOI: 10.3390/ijms21207768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center—Portuguese Oncology Institute of Porto (CI-IPOP), 4200-162 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-225-570-700
| |
Collapse
|
13
|
Zahra FT, Sajib MS, Ichiyama Y, Akwii RG, Tullar PE, Cobos C, Minchew SA, Doçi CL, Zheng Y, Kubota Y, Gutkind JS, Mikelis CM. Endothelial RhoA GTPase is essential for in vitro endothelial functions but dispensable for physiological in vivo angiogenesis. Sci Rep 2019; 9:11666. [PMID: 31406143 PMCID: PMC6690958 DOI: 10.1038/s41598-019-48053-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/27/2019] [Indexed: 01/03/2023] Open
Abstract
Imbalanced angiogenesis is a characteristic of several diseases. Rho GTPases regulate multiple cellular processes, such as cytoskeletal rearrangement, cell movement, microtubule dynamics, signal transduction and gene expression. Among the Rho GTPases, RhoA, Rac1 and Cdc42 are best characterized. The role of endothelial Rac1 and Cdc42 in embryonic development and retinal angiogenesis has been studied, however the role of endothelial RhoA is yet to be explored. Here, we aimed to identify the role of endothelial RhoA in endothelial cell functions, in embryonic and retinal development and explored compensatory mechanisms. In vitro, RhoA is involved in cell proliferation, migration and tube formation, triggered by the angiogenesis inducers Vascular Endothelial Growth Factor (VEGF) and Sphingosine-1 Phosphate (S1P). In vivo, through constitutive and inducible endothelial RhoA deficiency we tested the role of endothelial RhoA in embryonic development and retinal angiogenesis. Constitutive endothelial RhoA deficiency, although decreased survival, was not detrimental for embryonic development, while inducible endothelial RhoA deficiency presented only mild deficiencies in the retina. The redundant role of RhoA in vivo can be attributed to potential differences in the signaling cues regulating angiogenesis in physiological versus pathological conditions and to the alternative compensatory mechanisms that may be present in the in vivo setting.
Collapse
Affiliation(s)
- Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Yusuke Ichiyama
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Paul E Tullar
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Christopher Cobos
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Shelby A Minchew
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Colleen L Doçi
- College of Arts and Sciences, Marian University Indianapolis, Indianapolis, Indiana, 46222, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD, San Diego, California, 92093, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA.
| |
Collapse
|
14
|
Noll B, Benz D, Frey Y, Meyer F, Lauinger M, Eisler SA, Schmid S, Hordijk PL, Olayioye MA. DLC3 suppresses MT1-MMP-dependent matrix degradation by controlling RhoB and actin remodeling at endosomal membranes. J Cell Sci 2019; 132:jcs.223172. [PMID: 31076513 DOI: 10.1242/jcs.223172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer cells degrade the extracellular matrix through actin-rich protrusions termed invadopodia. The formation of functional invadopodia requires polarized membrane trafficking driven by Rho GTPase-mediated cytoskeletal remodeling. We identify the Rho GTPase-activating protein deleted in liver cancer 3 (DLC3; also known as STARD8) as an integral component of the endosomal transport and sorting machinery. We provide evidence for the direct regulation of RhoB by DLC3 at endosomal membranes to which DLC3 is recruited by interacting with the sorting nexin SNX27. In TGF-β-treated MCF10A breast epithelial cells, DLC3 knockdown enhanced metalloproteinase-dependent matrix degradation, which was partially rescued by RhoB co-depletion. This was recapitulated in MDA-MB-231 breast cancer cells in which early endosomes demonstrated aberrantly enriched F-actin and accumulated the metalloproteinase MT1-MMP (also known as MMP14) upon DLC3 knockdown. Remarkably, Rab4 (herein referring to Rab4A) downregulation fully rescued the enhanced matrix degradation of TGF-β-treated MCF10A and MDA-MB-231 cells. In summary, our findings establish a novel role for DLC3 in the suppression of MT1-MMP-dependent matrix degradation by inactivating RhoB signaling at endosomal membranes. We propose that DLC3 function is required to limit endosomal actin polymerization, Rab4-dependent recycling of MT1-MMP and, consequently, matrix degradation mediated by invadopodial activity.
Collapse
Affiliation(s)
- Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - David Benz
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Yannick Frey
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Manuel Lauinger
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Center, VUmc, De Boelelaan 1118,1081 HV Amsterdam, The Netherlands
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany .,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Bolomini-Vittori M, Mennens SFB, Joosten B, Fransen J, Du G, van den Dries K, Cambi A. PLD-dependent phosphatidic acid microdomains are signaling platforms for podosome formation. Sci Rep 2019; 9:3556. [PMID: 30837487 PMCID: PMC6401089 DOI: 10.1038/s41598-019-39358-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/22/2019] [Indexed: 01/07/2023] Open
Abstract
Local membrane phospholipid enrichment serves as docking platform for signaling proteins involved in many processes including cell adhesion and migration. Tissue-resident dendritic cells (DCs) assemble actomyosin-based structures called podosomes, which mediate adhesion and degradation of extracellular matrix for migration and antigen sampling. Recent evidence suggested the involvement of phospholipase D (PLD) and its product phosphatidic acid (PA) in podosome formation, but the spatiotemporal control of this process is poorly characterized. Here we determined the role of PLD1 and PLD2 isoforms in regulating podosome formation and dynamics in human primary DCs by combining PLD pharmacological inhibition with a fluorescent PA sensor and fluorescence microscopy. We found that ongoing PLD2 activity is required for the maintenance of podosomes, whereas both PLD1 and PLD2 control the early stages of podosome assembly. Furthermore, we captured the formation of PA microdomains accumulating at the membrane cytoplasmic leaflet of living DCs, in dynamic coordination with nascent podosome actin cores. Finally, we show that both PLD1 and PLD2 activity are important for podosome-mediated matrix degradation. Our results provide novel insight into the isoform-specific spatiotemporal regulation of PLD activity and further our understanding of the role of cell membrane phospholipids in controlling localized actin polymerization and cell protrusion.
Collapse
Affiliation(s)
- Matteo Bolomini-Vittori
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Chi PY, Spuul P, Tseng FG, Genot E, Chou CF, Taloni A. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:79-103. [PMID: 31612455 DOI: 10.1007/978-3-030-17593-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The last 20 years have seen the blooming of microfluidics technologies applied to biological sciences. Microfluidics provides effective tools for biological analysis, allowing the experimentalists to extend their playground to single cells and single molecules, with high throughput and resolution which were inconceivable few decades ago. In particular, microfluidic devices are profoundly changing the conventional way of studying the cell motility and cell migratory dynamics. In this chapter we will furnish a comprehensive view of the advancements made in the research domain of confinement-induced cell migration, thanks to the use of microfluidic devices. The chapter is subdivided in three parts. Each section will be addressing one of the fundamental questions that the microfluidic technology is contributing to unravel: (i) where cell migration takes place, (ii) why cells migrate and, (iii) how the cells migrate. The first introductory part is devoted to a thumbnail, and partially historical, description of microfluidics and its impact in biological sciences. Stress will be put on two aspects of the devices fabrication process, which are crucial for biological applications: materials used and coating methods. The second paragraph concerns the cell migration induced by environmental cues: chemical, leading to chemotaxis, mechanical, at the basis of mechanotaxis, and electrical, which induces electrotaxis. Each of them will be addressed separately, highlighting the fundamental role of microfluidics in providing the well-controlled experimental conditions where cell migration can be induced, investigated and ultimately understood. The third part of the chapter is entirely dedicated to how the cells move in confined environments. Invadosomes (the joint name for podosomes and invadopodia) are cell protrusion that contribute actively to cell migration or invasion. The formation of invadosomes under confinement is a research topic that only recently has caught the attention of the scientific community: microfluidic design is helping shaping the future direction of this emerging field of research.
Collapse
Affiliation(s)
- Pei-Yin Chi
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Elisabeth Genot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux, France.
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China. .,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China. .,Genomics Research Center and Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.
| | - Alessandro Taloni
- Institute for Complex Systems, Consiglio Nazionale delle Ricerche, Roma, Italy.
| |
Collapse
|
17
|
Alonso F, Spuul P, Daubon T, Kramer IJ, Génot E. Variations on the theme of podosomes: A matter of context. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:545-553. [PMID: 30594495 DOI: 10.1016/j.bbamcr.2018.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
Extensive in vitro studies have described podosomes as actin-based structures at the plasma membrane, connecting the cell with its extracellular matrix and endowed with multiple capabilities. Contractile actin-myosin cables assemble them into a network that constitutes a multifaceted cellular superstructure taking different forms - with common characteristics - but manifesting different properties depending on the context of study. Their morphology and their role in cell functioning and behavior are therefore now apprehended in in vivo or in vitro situations relevant to physiological processes. We focus here on three of them, namely: macrophage migration, antigen presentation by dendritic cells and endothelial cell sprouting during angiogenesis to highlight the characteristics of podosomes and their functioning shaped by the microenvironment.
Collapse
Affiliation(s)
- Florian Alonso
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Thomas Daubon
- Laboratoire de l'Angiogénèse et du Microenvironnement des Cancers (INSERM U1029), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - IJsbrand Kramer
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France.
| |
Collapse
|
18
|
Kobayashi Y, Banno K, Kunitomi H, Tominaga E, Aoki D. Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J Gynecol Oncol 2018; 30:e10. [PMID: 30479094 PMCID: PMC6304407 DOI: 10.3802/jgo.2019.30.e10] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/08/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is the seventh most common cancer and the eighth most common cause of cancer mortality in women. Although standard chemotherapy is the established treatment for ovarian cancer, the prognosis remains poor, and it is highly anticipated that new drugs will be developed. New drugs, such as humanized anti-vascular endothelial growth factor monoclonal antibodies and poly ADP-ribose polymerase inhibitors, are expected to improve clinical outcomes of ovarian cancer. However, long-term, costly research is required to develop such new drugs, and soaring national healthcare costs are becoming a concern worldwide. In this social context, drug repositioning, wherein existing drugs are used to develop drugs with new indications for other diseases, has recently gained attention. Because trials have already confirmed the safety in humans and the pharmacokinetics of such drugs, the development period is shorter than the conventional development of a new drug, thereby reducing costs. This review discusses the available basic experimental and clinical data on drugs used for other types of cancer for which drug repositioning is anticipated to repurpose the drug for the treatment of ovarian cancer. These include statins, which are used to treat dyslipidemia; bisphosphonate, which is used to treat osteoporosis; metformin, which is used to treat diabetes; non-steroidal anti-inflammatory drugs; ivermectin, an antiparasitic agent; and itraconazole, an anti-fungal agent. These drugs will play an important role in future drug repositioning strategies for ovarian cancer. Furthermore, drug repositioning is anticipated to extend not only to ovarian cancer treatment but also to ovarian cancer prevention.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Haruko Kunitomi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Abstract
Malignant carcinomas are often characterized by metastasis, the movement of carcinoma cells from a primary site to colonize distant organs. For metastasis to occur, carcinoma cells first must adopt a pro-migratory phenotype and move through the surrounding stroma towards a blood or lymphatic vessel. Currently, there are very limited possibilities to target these processes therapeutically. The family of Rho GTPases is an ubiquitously expressed division of GTP-binding proteins involved in the regulation of cytoskeletal dynamics and intracellular signaling. The best characterized members of the Rho family GTPases are RhoA, Rac1 and Cdc42. Abnormalities in Rho GTPase function have major consequences for cancer progression. Rho GTPase activation is driven by cell surface receptors that activate GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this review, we summarize our current knowledge on Rho GTPase function in the regulation of metastasis. We will focus on key discoveries in the regulation of epithelial-mesenchymal-transition (EMT), cell-cell junctions, formation of membrane protrusions, plasticity of cell migration and adaptation to a hypoxic environment. In addition, we will emphasize on crosstalk between Rho GTPase family members and other important oncogenic pathways, such as cyclic AMP-mediated signaling, canonical Wnt/β-catenin, Yes-associated protein (YAP) and hypoxia inducible factor 1α (Hif1α) and provide an overview of the advancements and challenges in developing pharmacological tools to target Rho GTPase and the aforementioned crosstalk in the context of cancer therapeutics.
Collapse
|
21
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
22
|
Goicoechea SM, Zinn A, Awadia SS, Snyder K, Garcia-Mata R. A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. J Cell Sci 2017; 130:1064-1077. [PMID: 28202690 DOI: 10.1242/jcs.195552] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/14/2017] [Indexed: 01/11/2023] Open
Abstract
One of the hallmarks of cancer is the ability of tumor cells to invade surrounding tissues and metastasize. During metastasis, cancer cells degrade the extracellular matrix, which acts as a physical barrier, by developing specialized actin-rich membrane protrusion structures called invadopodia. The formation of invadopodia is regulated by Rho GTPases, a family of proteins that regulates the actin cytoskeleton. Here, we describe a novel role for RhoG in the regulation of invadopodia disassembly in human breast cancer cells. Our results show that RhoG and Rac1 have independent and opposite roles in the regulation of invadopodia dynamics. We also show that SGEF (also known as ARHGEF26) is the exchange factor responsible for the activation of RhoG during invadopodia disassembly. When the expression of either RhoG or SGEF is silenced, invadopodia are more stable and have a longer lifetime than in control cells. Our findings also demonstrate that RhoG and SGEF modulate the phosphorylation of paxillin, which plays a key role during invadopodia disassembly. In summary, we have identified a novel signaling pathway involving SGEF, RhoG and paxillin phosphorylation, which functions in the regulation of invadopodia disassembly in breast cancer cells.
Collapse
Affiliation(s)
- Silvia M Goicoechea
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Ashtyn Zinn
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel S Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kyle Snyder
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
23
|
Vazquez-Mellado MJ, Monjaras-Embriz V, Rocha-Zavaleta L. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration. VITAMINS AND HORMONES 2017. [DOI: 10.1016/bs.vh.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Genot E. ARF1 at the crossroads of podosome construction and function. J Cell Biol 2016; 216:13-15. [PMID: 28007918 PMCID: PMC5223615 DOI: 10.1083/jcb.201611097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elisabeth Genot highlights a paper by Rafiq et al. that reveals a role for the small GTPase ARF1 in the regulation of podosome formation and function. Podosomes are actin-based proteolytic microdomains of the plasma membrane found in cells that travel across tissues. In this issue, Rafiq et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201605104) reveal that the small guanosine triphosphatase ARF1, a well-known orchestrator of membrane traffic at the Golgi, regulates podosome formation, maintenance, and function.
Collapse
Affiliation(s)
- Elisabeth Genot
- Centre Cardiothoracique de Bordeaux, U1045, Université de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
25
|
The US3 Protein of Pseudorabies Virus Drives Viral Passage across the Basement Membrane in Porcine Respiratory Mucosa Explants. J Virol 2016; 90:10945-10950. [PMID: 27681139 DOI: 10.1128/jvi.01577-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
Passage of the basement membrane (BM), which forms a barrier between the epithelium and the underlying lamina propria, represents an important step in the early pathogenesis of different alphaherpesviruses. Rho GTPase signaling plays an important role in transmigration of cells across the BM during physiological and pathological processes. We reported earlier that the US3 protein kinase of the alphaherpesvirus pseudorabies virus (PRV) interferes with Rho GTPase signaling and causes a reorganization of the host cell cytoskeleton, which as a consequence, enhances viral cell-to-cell spread in epithelial cell cultures. Here, using an ex vivo system of porcine nasal respiratory mucosa explants that allows to study PRV invasion through the BM, we found that a PRV strain that lacks US3 expression (ΔUS3 PRV) showed a reduced spread in mucosal epithelium and was virtually unable to breach the BM, in contrast to isogenic wild-type (WT) or US3 rescue PRV strains. Interestingly, addition of IPA3, an inhibitor of p21-activated kinases that blocks the effects of US3 on the cytoskeleton, suppressed the ability of WT PRV to spread across the BM. In addition, artificial suppression of RhoA signaling using CPC3 (cell-permeable C3 transferase) to mimic the effects of US3 on Rho GTPase signaling, significantly increased passage of ΔUS3 PRV through the BM, whereas it did not significantly affect BM passage of WT or US3 rescue PRV. In conclusion, these data indicate that US3 plays an important role in PRV mucosal invasion across the BM, which involves its interference with Rho GTPase signaling. This is the first report describing an alphaherpesvirus protein that drives viral BM passage. IMPORTANCE Many viruses, including alphaherpesviruses, primarily replicate in epithelial cells of surface mucosae, such as the respiratory mucosa. Some of these viruses breach the basement membrane underlying these epithelial cells to reach underlying connective tissue and blood vessels and invade the host. Hence, epithelial spread and basement membrane passage represent crucial but still poorly understood early steps in (alphaherpes)virus pathogenesis. Here, using ex vivo porcine respiratory mucosa explants, we show that the conserved US3 protein of the porcine alphaherpesvirus pseudorabies virus (PRV) is critical for passage of PRV across the basement membrane and contributes to efficient viral epithelial spread. In addition, we show that US3-mediated viral epithelial spread and passage across the basement membrane depend at least in part on the ability of this viral protein to modulate cellular Rho GTPase signaling. This is the first report that identifies an alphaherpesvirus protein that drives viral basement membrane passage.
Collapse
|
26
|
Matas-Rico E, van Veen M, Leyton-Puig D, van den Berg J, Koster J, Kedziora KM, Molenaar B, Weerts MJA, de Rink I, Medema RH, Giepmans BNG, Perrakis A, Jalink K, Versteeg R, Moolenaar WH. Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome. Cancer Cell 2016; 30:548-562. [PMID: 27693046 DOI: 10.1016/j.ccell.2016.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/06/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is a pediatric embryonal malignancy characterized by impaired neuronal differentiation. A better understanding of neuroblastoma differentiation is essential for developing new therapeutic approaches. GDE2 (encoded by GDPD5) is a six-transmembrane-domain glycerophosphodiesterase that promotes embryonic neurogenesis. We find that high GDPD5 expression is strongly associated with favorable outcome in neuroblastoma. GDE2 induces differentiation of neuroblastoma cells, suppresses cell motility, and opposes RhoA-driven neurite retraction. GDE2 alters the Rac-RhoA activity balance and the expression of multiple differentiation-associated genes. Mechanistically, GDE2 acts by cleaving (in cis) and releasing glycosylphosphatidylinositol-anchored glypican-6, a putative co-receptor. A single point mutation in the ectodomain abolishes GDE2 function. Our results reveal GDE2 as a cell-autonomous inducer of neuroblastoma differentiation with prognostic significance and potential therapeutic value.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michiel van Veen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Daniela Leyton-Puig
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Katarzyna M Kedziora
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas Molenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Marjolein J A Weerts
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Iris de Rink
- Deep Sequencing Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ben N G Giepmans
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter H Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Bagnato A, Rosanò L. Endothelin-1 receptor drives invadopodia: Exploiting how β-arrestin-1 guides the way. Small GTPases 2016; 9:394-398. [PMID: 27690729 DOI: 10.1080/21541248.2016.1235526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Metastatization is a complex multistep process requiring fine-tuned regulated cytoskeleton re-modeling, mediated by the cross-talk of actin with interacting partners, such as the Rho GTPases. Our expanding knowledge of invadopodia, small invasive membrane protrusions composed of a core of F-actin, actin regulators and actin-binding proteins, and hotspots for secretion of extracellular matrix (ECM) proteinases, contributes to clarify critical steps of the metastatic program. Growth factor receptors and their intermediate signaling molecules, along with matrix adhesion and rigidity, pH and hypoxia, act as drivers of cytoskeleton changes and invadopodia formation. We recently pro-posed a novel route map by which cancer cells regulates invadopodia dynamics supporting metastasis as response to the endothelin A receptor (ETAR), among the highly druggable G-protein coupled receptors in cancer. The metastatic behavior exhibited by ovarian cancer cells overe-xpressing ETAR is now explained by the interplay with β-arrestin1 (β-arr1), a scaffold protein acting as signal-integrating module of RhoC and cofilin signaling for specific invadopodia formation, accomplished by its interaction with a Rho guanine nucleotide exchange factor (GEF), PDZ-RhoGEF, in a G-protein independent manner. Here, we summarize this novel activation of the RhoC pathway from ETAR/β-arr1 signaling that may be exploited therapeutically and discuss new perspectives for future directions of investigations.
Collapse
Affiliation(s)
- Anna Bagnato
- a Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area , Regina Elena National Cancer Institute , Rome , Italy
| | - Laura Rosanò
- a Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area , Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
28
|
VEGF-A/Notch-Induced Podosomes Proteolyse Basement Membrane Collagen-IV during Retinal Sprouting Angiogenesis. Cell Rep 2016; 17:484-500. [DOI: 10.1016/j.celrep.2016.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/23/2016] [Accepted: 09/03/2016] [Indexed: 11/21/2022] Open
|
29
|
Cadamuro M, Spagnuolo G, Sambado L, Indraccolo S, Nardo G, Rosato A, Brivio S, Caslini C, Stecca T, Massani M, Bassi N, Novelli E, Spirli C, Fabris L, Strazzabosco M. Low-Dose Paclitaxel Reduces S100A4 Nuclear Import to Inhibit Invasion and Hematogenous Metastasis of Cholangiocarcinoma. Cancer Res 2016; 76:4775-84. [PMID: 27328733 PMCID: PMC4987167 DOI: 10.1158/0008-5472.can-16-0188] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023]
Abstract
Nuclear expression of the calcium-binding protein S100A4 is a biomarker of increased invasiveness in cholangiocarcinoma, a primary liver cancer with scarce treatment opportunities and dismal prognosis. In this study, we provide evidence that targeting S100A4 nuclear import by low-dose paclitaxel, a microtubule-stabilizing agent, inhibits cholangiocarcinoma invasiveness and metastatic spread. Administration of low-dose paclitaxel to established (EGI-1) and primary (CCA-TV3) cholangiocarcinoma cell lines expressing nuclear S100A4 triggered a marked reduction in nuclear expression of S100A4 without modifying its cytoplasmic levels, an effect associated with a significant decrease in cell migration and invasiveness. While low-dose paclitaxel did not affect cellular proliferation, apoptosis, or cytoskeletal integrity, it significantly reduced SUMOylation of S100A4, a critical posttranslational modification that directs its trafficking to the nucleus. This effect of low-dose paclitaxel was reproduced by ginkolic acid, a specific SUMOylation inhibitor. Downregulation of nuclear S100A4 by low-dose paclitaxel was associated with a strong reduction in RhoA and Cdc42 GTPase activity, MT1-MMP expression, and MMP-9 secretion. In an SCID mouse xenograft model, low-dose metronomic paclitaxel treatment decreased lung dissemination of EGI-1 cells without significantly affecting their local tumor growth. In the tumor mass, nuclear S100A4 expression by cholangiocarcinoma cells was significantly reduced, whereas rates of proliferation and apoptosis were unchanged. Overall, our findings highlight nuclear S100A4 as a candidate therapeutic target in cholangiocarcinoma and establish a mechanistic rationale for the use of low-dose paclitaxel in blocking metastatic progression of cholangiocarcinoma. Cancer Res; 76(16); 4775-84. ©2016 AACR.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy. International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milano, Italy
| | - Gaia Spagnuolo
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy
| | - Luisa Sambado
- Metabolism, Disease and Clinical Nutrition Unit, Treviso Regional Hospital, Treviso, Italy
| | | | - Giorgia Nardo
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy. Department of Surgery, Oncology and Gastroenterology, University of Padua School of Medicine, Padua, Italy
| | - Simone Brivio
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy
| | - Chiara Caslini
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy
| | - Tommaso Stecca
- 4 Surgery Division, Treviso Regional Hospital, Treviso, Italy
| | - Marco Massani
- 4 Surgery Division, Treviso Regional Hospital, Treviso, Italy
| | - Nicolò Bassi
- Department of Surgery, Oncology and Gastroenterology, University of Padua School of Medicine, Padua, Italy. 4 Surgery Division, Treviso Regional Hospital, Treviso, Italy
| | | | - Carlo Spirli
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milano, Italy. Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
| | - Luca Fabris
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milano, Italy. Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut. Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.
| | - Mario Strazzabosco
- School of Medicine and Surgery, University of Milan-Bicocca, Milano, Italy. International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milano, Italy. Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
30
|
Significance of kinase activity in the dynamic invadosome. Eur J Cell Biol 2016; 95:483-492. [PMID: 27465307 DOI: 10.1016/j.ejcb.2016.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
Invadosomes are actin rich protrusive structures that facilitate invasive migration in multiple cell types. Comprised of invadopodia and podosomes, these highly dynamic structures adhere to and degrade the extracellular matrix, and are also thought to play a role in mechanosensing. Many extracellular signals have been implicated in invadosome stimulation, activating complex signalling cascades to drive the formation, activity and turnover of invadosomes. While the structural components of invadosomes have been well studied, the regulation of invadosome dynamics is still poorly understood. Protein kinases are essential to this regulation, affecting all stages of invadosome dynamics and allowing tight spatiotemporal control of their activity. Invadosome organisation and function have been linked to pathophysiological states such as cancer invasion and metastasis; therapeutic targeting of invadosome regulatory components is thus warranted. In this review, we discuss the involvement of kinase signalling in every stage of the invadosome life cycle and evaluate its significance.
Collapse
|
31
|
Kai F, Laklai H, Weaver VM. Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease. Trends Cell Biol 2016; 26:486-497. [PMID: 27056543 DOI: 10.1016/j.tcb.2016.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/05/2023]
Abstract
Atherosclerosis, cancer, and various chronic fibrotic conditions are characterized by an increase in the migratory behavior of resident cells and the enhanced invasion of assorted exogenous cells across a stiffened extracellular matrix (ECM). This stiffened scaffold aberrantly engages cellular mechanosignaling networks in cells, which promotes the assembly of invadosomes and lamellae for cell invasion and migration. Accordingly, deciphering the conserved molecular mechanisms whereby matrix stiffness fosters invadosome and lamella formation could identify therapeutic targets to treat fibrotic conditions, and reducing ECM stiffness could ameliorate disease progression.
Collapse
Affiliation(s)
- FuiBoon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hanane Laklai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Kedziora KM, Leyton-Puig D, Argenzio E, Boumeester AJ, van Butselaar B, Yin T, Wu YI, van Leeuwen FN, Innocenti M, Jalink K, Moolenaar WH. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases. J Biol Chem 2016; 291:4323-33. [PMID: 26740622 DOI: 10.1074/jbc.m115.695940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 01/15/2023] Open
Abstract
Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance.
Collapse
Affiliation(s)
| | | | | | | | | | - Taofei Yin
- the Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Yi I Wu
- the Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Frank N van Leeuwen
- the Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | | | | |
Collapse
|
33
|
Sudhaharan T, Sem KP, Liew HF, Yu YH, Goh WI, Chou AM, Ahmed S. Rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia. J Cell Sci 2016; 129:2829-40. [DOI: 10.1242/jcs.179655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/27/2016] [Indexed: 11/20/2022] Open
Abstract
Rif induces dorsal filopodia but the signalling pathway responsible for this has not been identified. We show here that Rif interacts with the I-BAR family protein IRTKS via its I-BAR domain. Rif also interacts with Pinkbar in N1E-115 mouse neuroblastoma cells. IRTKS and Rif induce dorsal membrane ruffles and filopodia. Dominant negative Rif inhibits the formation of IRTKS-induced morphological structures and Rif activity is blocked in IRTKS KO cells. To further define the Rif-IRTKS signalling pathway, we identify Eps8 and WAVE2 as IRTKS interactors. We find that Eps8 regulates the size and number of dorsal filopodia and membrane ruffles downstream of Rif-IRTKS, while WAVE2 modulates dorsal membrane ruffling. Furthermore, our data suggests that Tir, a protein essential for enterohemorrhagic E.coli infection, may compete for Rif for interaction with the I-BAR domain of IRKS. Based on these evidences we propose a model in which Rho family GTPases use the I-BAR proteins, IRSp53, IRTKS and Pinkbar, as a central mechanism to modulate cell morphology.
Collapse
Affiliation(s)
- Thankiah Sudhaharan
- Neural Stem Cell Laboratory, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | - Kai Ping Sem
- Neural Stem Cell Laboratory, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | - Hwi Fen Liew
- Neural Stem Cell Laboratory, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | - Wah Ing Goh
- Neural Stem Cell Laboratory, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411
| | - Ai Mei Chou
- Neural Stem Cell Laboratory, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| |
Collapse
|
34
|
Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS One 2015; 10:e0142182. [PMID: 26558612 PMCID: PMC4641600 DOI: 10.1371/journal.pone.0142182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/19/2015] [Indexed: 01/02/2023] Open
Abstract
Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses—using the rotationally constrained carboxylate in R-naproxen—led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and efficacy in the treatment of several epithelial cancer types on account of established human toxicity profiles and novel activities against Rho-family GTPases.
Collapse
|
35
|
Wang HB, Yan HC, Liu Y. Clinical significance of ECT2 expression in tissue and serum of gastric cancer patients. Clin Transl Oncol 2015; 18:735-42. [PMID: 26497353 DOI: 10.1007/s12094-015-1428-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/09/2015] [Indexed: 01/29/2023]
Abstract
The ECT2 (epithelial cell transforming sequence 2) oncogene acted as a guanine nucleotide exchange factor for RhoGTPases, and regulates cytokinesis; thus, it may play a role in the pathogenesis of gastric cancer. In this study, we investigated the expression ECT2 gene in tissues and serum of gastric cancer patients to explore its clinical significance. ECT2 mRNA expression levels in tissues and serum were examined by RT-PCR, and ECT2 protein expression in tissue was evaluated by Western blot, and was further validated by immunohistochemistry and enzyme-linked immunosorbent assay at serum level. ECT2 level was significantly increased in the GC tissues and serum compared to normal control. ECT2 expression was positively correlated with the histologic differentiation, stages of TNM, and lymph node metastasis in GC (P < 0.05). Our results suggest that ECT2 plays an important role during GC progression and it may become a new diagnostic marker and therapeutic molecular target for management of GC.
Collapse
Affiliation(s)
- H-B Wang
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - H-C Yan
- Department of Oncology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Y Liu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
36
|
Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci Rep 2015; 5:14748. [PMID: 26458510 PMCID: PMC4602187 DOI: 10.1038/srep14748] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/08/2015] [Indexed: 11/09/2022] Open
Abstract
Tumor cell invasion requires the molecular and physical adaptation of both the cell and its microenvironment. Here we show that tumor cells are able to switch between the use of microvesicles and invadopodia to facilitate invasion through the extracellular matrix. Invadopodia formation accompanies the mesenchymal mode of migration on firm matrices and is facilitated by Rac1 activation. On the other hand, during invasion through compliant and deformable environments, tumor cells adopt an amoeboid phenotype and release microvesicles. Notably, firm matrices do not support microvesicle release, whereas compliant matrices are not conducive to invadopodia biogenesis. Furthermore, Rac1 activation is required for invadopodia function, while its inactivation promotes RhoA activation and actomyosin contractility required for microvesicle shedding. Suppression of RhoA signaling blocks microvesicle formation but enhances the formation of invadopodia. Finally, we describe Rho-mediated pathways involved in microvesicle biogenesis through the regulation of myosin light chain phosphatase. Our findings suggest that the ability of tumor cells to switch between the aforementioned qualitatively distinct modes of invasion may allow for dissemination across different microenvironments.
Collapse
|
37
|
Baruzzi A, Remelli S, Lorenzetto E, Sega M, Chignola R, Berton G. Sos1 Regulates Macrophage Podosome Assembly and Macrophage Invasive Capacity. THE JOURNAL OF IMMUNOLOGY 2015; 195:4900-12. [PMID: 26447228 DOI: 10.4049/jimmunol.1500579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/03/2015] [Indexed: 12/29/2022]
Abstract
Podosomes are protrusive structures implicated in macrophage extracellular matrix degradation and three-dimensional migration through cell barriers and the interstitium. Podosome formation and assembly are regulated by cytoskeleton remodeling requiring cytoplasmic tyrosine kinases of the Src and the Abl families. Considering that Abl has been reported to phosphorylate the guanine nucleotide exchange factor Sos1, eliciting its Rac-guanine nucleotide exchange factor activity, and Rac regulates podosome formation in myeloid cells and invadopodia formation in cancer cells, we addressed whether Sos1 is implicated in podosome formation and function in macrophages. We found that ectopically expressed Abl or the Src kinase Fgr phosphorylate Sos1, and the Src kinases Hck and Fgr are required for Abl and Sos1 phosphorylation and Abl/Sos1 interaction in macrophages. Sos1 localizes to podosomes in both murine and human macrophages, and its silencing by small interfering RNA results in disassembly of murine macrophage podosomes and a marked reduction of GTP loading on Rac. Matrix degradative capacity, three-dimensional migration through Matrigel, and transmigration through an endothelial cell monolayer of Sos1-silenced macrophages were inhibited. In addition, Sos1- or Abl-silenced macrophages, or macrophages treated with the selective Abl inhibitor imatinib mesylate had a reduced capability to migrate into breast tumor spheroids, the majority of cells remaining at the margin and the outer layers of the spheroid itself. Because of the established role of Src and Abl kinases to regulate also invadopodia formation in cancer cells, our findings suggest that targeting the Src/Abl/Sos1/Rac pathway may represent a double-edged sword to control both cancer-invasive capacities and cancer-related inflammation.
Collapse
Affiliation(s)
- Anna Baruzzi
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy
| | - Sabrina Remelli
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy
| | - Erika Lorenzetto
- Department of Neurological and Movement Sciences, University of Verona, 37134 Verona, Italy; and
| | - Michela Sega
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Giorgio Berton
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
38
|
Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol 2015; 36:103-12. [PMID: 26363959 PMCID: PMC4728192 DOI: 10.1016/j.ceb.2015.08.005] [Citation(s) in RCA: 576] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
39
|
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
40
|
Veillat V, Spuul P, Daubon T, Egaña I, Kramer IJ, Génot E. Podosomes: Multipurpose organelles? Int J Biochem Cell Biol 2015; 65:52-60. [DOI: 10.1016/j.biocel.2015.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/20/2015] [Indexed: 01/11/2023]
|
41
|
Affiliation(s)
| | - Nicolas Bourmeyster
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers Poitiers Cédex, France
| |
Collapse
|
42
|
Linder S, Wiesner C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 2015; 72:121-35. [PMID: 25300510 PMCID: PMC11113205 DOI: 10.1007/s00018-014-1731-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesion and invasion structures that are particularly prominent in cells of the monocytic lineage such as macrophages, dendritic cells, and osteoclasts. They are multifunctional organelles that combine several key abilities required for cell migration and invasion. The podosome repertoire includes well-established functions such as cell-substrate adhesion, and extracellular matrix degradation, recently discovered abilities such as rigidity and topology sensing as well as antigen sampling, and also more speculative functions such as cell protrusion stabilization and transmigration. Collectively, podosomes not only enable dynamic interactions of cells with their surroundings, they also gather information about the pericellular environment, and are actively involved in its reshaping. This review presents an overview of the current knowledge on podosome composition, architecture, and regulation. We focus in particular on the growing list of podosome functions and discuss the specific properties of podosomes in macrophages, dendritic cells, and osteoclasts. Moreover, this article highlights podosome-related intracellular transport processes, the formation of podosomes in 3D environments as well as potentially podosome-associated diseases involving monocytic cells.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | |
Collapse
|