1
|
Denyshchenko V, Evans C, O'Neill T, Krstev J, Filipczak E, O'Toole S, Lobaskin V, Scholz D. CELS-3D-Cutting edge light source for exciting fluorescence in microtome-based 3D microscopy and targeted correlative microscopy. J Anat 2025; 246:782-797. [PMID: 39604800 PMCID: PMC11996705 DOI: 10.1111/joa.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
We discovered that the light entering a triangular ultramicrotome glass knife from the bottom exits the knife through its cutting edge, forming an oblique light sheet illumination suitable for imaging. We adopted this light sheet for side illumination of the sample blocks during sectioning on the ultramicrotome, for 3D imaging, and for targeting fluorescent features for confocal-, electron- and correlative microscopy. In this paper, we present a working prototype named CELS-3D (Cutting Edge Light Source, Three-Dimensional), a microscope mounted on an ultramicrotome. We characterised CELS-3D and applied it for 3D imaging of human liver spheroids with a diameter of approximately 500 μm. The structure of nuclei and tight junctions has been successfully reconstructed over the full spheroid volume. In contrast, a confocal microscope was unable to image spheroids to a depth of greater than 50 μm. CELS-3D shows fluorescence during serial sectioning in an online mode; therefore, it can apply for targeting fluorescence structures for correlative microscopy. We successfully applied CELS-3D for targeted correlative microscopy of human liver spheroids and C. elegans. The CELS-3D can be utilised for less- and non-transparent samples, which encompasses a range of applications, including operation biopsies, experimental organoids/spheroids, artificial cartilage, and bone, among others. The CELS-3D can be effortlessly mounted on the top of any commercially available ultramicrotome, and its operation is straightforward and intuitive.
Collapse
Affiliation(s)
- Vladyslav Denyshchenko
- Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| | | | - Tiina O'Neill
- Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| | - Jakub Krstev
- School of Biomolecular and Biomedical ScienceDublinIreland
| | | | - Silas O'Toole
- School of PhysicsUniversity College DublinDublinIreland
| | | | - Dimitri Scholz
- Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| |
Collapse
|
2
|
Belicova L, Repnik U, Delpierre J, Gralinska E, Seifert S, Valenzuela JI, Morales-Navarrete HA, Franke C, Räägel H, Shcherbinina E, Prikazchikova T, Koteliansky V, Vingron M, Kalaidzidis YL, Zatsepin T, Zerial M. Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. J Cell Biol 2021; 220:212522. [PMID: 34328499 PMCID: PMC8329733 DOI: 10.1083/jcb.202103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.
Collapse
Affiliation(s)
- Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Helin Räägel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Nelson Laboratories LLC, Salt Lake City, UT
| | | | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
3
|
Abstract
TGR5 (G protein-coupled bile acid receptor 1, GPBAR-1) is a G protein-coupled receptor with seven transmembrane domains and is widely distributed in various organs and tissues. As an important bile acid receptor, TGR5 can be activated by primary and secondary bile acids. Increased expression of TGR5 is a risk factor for polycystic liver disease and hepatobiliary cancer. However, there is evidence that the anti-inflammatory effect of the TGR5 receptor and its regulatory effect on hydrophobic bile acid confer protective effects against most liver diseases. Recent studies have shown that TGR5 receptor activation can alleviate the development of diabetic liver fibrosis, regulate the differentiation of natural killer T cells into NKT10 cells, increase the secretion of anti-inflammatory factors, inhibit the invasion of hepatitis B virus, promote white adipose tissue browning, improve arterial vascular dynamics, maintain tight junctions between bile duct cells, and protect against apoptosis. In portal hypertension, TGR5 receptor activation can inhibit the contraction of hepatic stellate cells and improve intrahepatic microcirculation. In addition, the discovery of the regulatory relationship between the TGR5 receptor and miRNA-26a provides a new direction for further studies of the molecular mechanism underlying the effects of TGR5. In this review, we describe recent findings linking TGR5 to various liver diseases, with a focus on the mechanisms underlying its effects and potential therapeutic implications.
Collapse
Affiliation(s)
- Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Tang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chang Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lijin Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Merlen G, Kahale N, Ursic-Bedoya J, Bidault-Jourdainne V, Simerabet H, Doignon I, Tanfin Z, Garcin I, Péan N, Gautherot J, Davit-Spraul A, Guettier C, Humbert L, Rainteau D, Ebnet K, Ullmer C, Cassio D, Tordjmann T. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut 2020; 69:146-157. [PMID: 30723104 DOI: 10.1136/gutjnl-2018-316975] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.
Collapse
Affiliation(s)
- Grégory Merlen
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Nicolas Kahale
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | | | | - Hayat Simerabet
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Doignon
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Zahra Tanfin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Garcin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Noémie Péan
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Julien Gautherot
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Anne Davit-Spraul
- Service de Biochimie, Hopital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France.,Service d'Anatomie Pathologique, Hopital Bicêtre, Le Kremlin-Bicêtre, France
| | - Lydie Humbert
- ER7, Université Pierre et Marie Curie-Paris-6, Paris, France
| | | | - Klaus Ebnet
- Institute-associated Research Group 'Cell adhesion and cell polarity', Institute of Medical Biochemistry, ZMBE, Münster, University of Münster, Münster, Germany
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Doris Cassio
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | |
Collapse
|
5
|
Yao H, Fu X, Zi X, Jia W, Qiu Y. Perioperative oral supplementation with fish oil promotes liver regeneration following partial hepatectomy in mice via AMPK activation. Mol Med Rep 2017; 17:3905-3911. [PMID: 29286119 DOI: 10.3892/mmr.2017.8362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to observe the effects of perioperative oral supplementation with fish oil (FO) on liver regeneration in mice and examine the potential mechanism. A total of 120 male ICR mice were randomly divided into 5 groups: Sham, Control, fish oil (FO), Compound C [the AMP‑activated protein kinase (AMPK) inhibitor dorsomorphin], and Compound C + FO. Changes in liver function, alterations in hepatocyte proliferation and in the expression of polarization markers, and activation of AMPK signaling were examined following partial hepatectomy (PH). The results demonstrated that restoration of serum alanine aminotransferase (ALT) and total bilirubin (TBIL) levels were significantly faster in FO‑treated mice compared with Control mice, and this effect was suppressed by treatment with Compound C. FO‑treated mice exhibited increased numbers of Ki‑67 positive hepatocytes and their postoperative liver‑to‑body weight ratio was significantly increased compared with the Control mice, which was also suppressed by co‑treatment with the AMPK inhibitor. Furthermore, protein expression of Occludin, Claudin‑3, tight junction protein 1 and bile salt export pump was gradually increased in FO‑treated mice compared with Control, whereas Compound C treatment reversed this effect. Therefore, the present study revealed that perioperative oral supplementation with FO may promote liver regeneration and improved liver function in mice following PH through AMPK activation.
Collapse
Affiliation(s)
- Hui Yao
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao Fu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xuejian Zi
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenjun Jia
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
6
|
|