1
|
Worthan SB, Grant MI, Behringer MG. Rho-dependent termination: a bacterial evolutionary capacitor for stress resistance. Transcription 2025:1-14. [PMID: 40044630 DOI: 10.1080/21541264.2025.2474367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Since the Modern Synthesis, interest has grown in resolving the "black box" between genotype and phenotype. Contained within this black box are highly plastic RNA and proteins with global effects on chromosome integrity and gene expression that serve as evolutionary capacitors - elements that enable the accumulation and buffering of genetic variation in normal conditions and reveal hidden genetic variation when induced by environmental stress. Discussion of evolutionary capacitors has primarily focused on eukaryotic translation factors and chaperones, such as Hsp90 and PSI+ prion. However, due to the coupling of transcription and translation in prokaryotes, transcription factors can be equally impactful in the modulation of gene expression and phenotypes. In this review, we discuss the prokaryotic transcription terminator Rho and how mutagenesis and plasticity of Rho influence epistasis, evolvability, and adaptation to stress in bacteria. We discuss the effects of variation in Rho generated by nature, laboratory mutagenesis, and experimental evolution; and how this variation is constrained or encouraged by Rho's extensive network of protein interactors. Exploring Rho's role as an evolutionary capacitor, along with identifying additional elements that can serve this function, can significantly advance our understanding of how organisms adapt to thrive in diverse environments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Megan I Grant
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Prakash A, Kalita A, Bhardwaj K, Mishra RK, Ghose D, Kaur G, Verma N, Pani B, Nudler E, Dutta D. Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities. J Biol Chem 2024; 300:107967. [PMID: 39510182 DOI: 10.1016/j.jbc.2024.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
The trace metal ion manganese (Mn) in excess is toxic. Therefore, a small subset of factors tightly maintains its cellular level, among which an efflux protein MntP is the champion. Multiple transcriptional regulators and a manganese-dependent translational riboswitch regulate the MntP expression in Escherichia coli. As riboswitches are untranslated RNAs, they are often associated with the Rho-dependent transcription termination in bacteria. Here, performing in vitro transcription and in vivo reporter assays, we demonstrate that Rho efficiently terminates transcription at the mntP riboswitch region. Excess manganese activates the riboswitch, restoring the coupling between transcription and translation to evade Rho-dependent transcription termination partially. RT-PCR and Western blot experiments revealed that the deletion of the riboswitch abolishes Rho-dependent termination and thereby overexpresses MntP. Interestingly, deletion of the riboswitch also renders bacteria sensitive to manganese. This manganese sensitivity is linked with the overexpression of MntP. Further spot assays, confocal microscopy, and flow cytometry experiments revealed that the high level of MntP expression was responsible for slow growth, cell filamentation, and reactive oxygen species (ROS) production. We posit that manganese-dependent transcriptional activation of mntP in the absence of Rho-dependent termination leads to excessive MntP expression, a membrane protein, causing membrane protein toxicity. Thus, we show a regulatory role of Rho-dependent termination, which prevents membrane protein toxicity by limiting MntP expression.
Collapse
Affiliation(s)
- Anand Prakash
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Arunima Kalita
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Kanika Bhardwaj
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajesh Kumar Mishra
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Debarghya Ghose
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Gursharan Kaur
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, New York, USA
| | - Dipak Dutta
- Department of Molecular Biochemistry and Microbiology, CSIR Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
3
|
Bhardwaj K, Kalita A, Verma N, Prakash A, Thakur R, Dutta D. Rho-dependent termination enables cellular pH homeostasis. J Bacteriol 2024; 206:e0035623. [PMID: 38169297 PMCID: PMC10810219 DOI: 10.1128/jb.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anand Prakash
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Ruchika Thakur
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
4
|
Parize E, Gerhardt EC, Oliveira AC, Pedrosa FO, Souza EM, Huergo LF, Steffens MB. Expression, purification and characterization of the transcription termination factor Rho from Azospirillum brasilense. Protein Expr Purif 2022; 198:106114. [DOI: 10.1016/j.pep.2022.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
|
5
|
Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect Drug Resist 2019; 12:2943-2959. [PMID: 31571947 PMCID: PMC6756577 DOI: 10.2147/idr.s218638] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterial infections are considered to a serious challenge of medicine, and the emergence of MDR and XDR tuberculosis is a serious public health problem. Tuberculosis can cause high morbidity and mortality around the world, particularly in developing countries. The emergence of drug-resistant Mycobacterium infection following limited therapeutic technologies coupled with the serious worldwide tuberculosis epidemic has adversely affected control programs, thus necessitating the study of the role bacteriophages in the treatment of mycobacterial infection. Bacteriophages are viruses that are isolated from several ecological specimens and do not exert adverse effects on patients. Phage therapy can be considered as a significant alternative to antibiotics for treating MDR and XDR mycobacterial infections. The useful ability of bacteriophages to kill Mycobacterium spp has been explored by numerous research studies that have attempted to investigate the phage therapy as a novel therapeutic/diagnosis approach to mycobacterial infections. However, there are restricted data about phage therapy for treating mycobacterial infections. This review presents comprehensive data about phage therapy in the treatment of mycobacterial infection, specifically tuberculosis disease.
Collapse
Affiliation(s)
- Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
6
|
A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens. J Bacteriol 2017; 200:JB.00380-17. [PMID: 29038252 DOI: 10.1128/jb.00380-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis, Mycobacterium bovis, Mycobacterium tuberculosis, Xanthomonas campestris, Xanthomonas oryzae, Corynebacterium glutamicum, Vibrio cholerae, Salmonella enterica, and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis, M. bovis, X. campestris, and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions.IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription terminator Rho. Here we show that apart from antagonizing E. coli Rho, Psu is able to inhibit Rho proteins from various phylogenetically unrelated Gram-negative and Gram-positive pathogens. Upon binding to these Rho proteins, Psu inhibited them by affecting their ATPase and RNA release functions. The expression of Psu in vivo kills various pathogens, such as Mycobacterium and Xanthomonas species. Hence, Psu could be useful for identifying peptide sequences with anti-Rho activities and might constitute part of synergistic antibiotic treatment against pathogens.
Collapse
|
7
|
Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Proc Natl Acad Sci U S A 2016; 113:E7691-E7700. [PMID: 27856760 PMCID: PMC5137716 DOI: 10.1073/pnas.1616745113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ring-shaped hexameric helicases and translocases support essential DNA-, RNA-, and protein-dependent transactions in all cells and many viruses. How such systems coordinate ATPase activity between multiple subunits to power conformational changes that drive the engagement and movement of client substrates is a fundamental question. Using the Escherichia coli Rho transcription termination factor as a model system, we have used solution and crystallographic structural methods to delineate the range of conformational changes that accompany distinct substrate and nucleotide cofactor binding events. Small-angle X-ray scattering data show that Rho preferentially adopts an open-ring state in solution and that RNA and ATP are both required to cooperatively promote ring closure. Multiple closed-ring structures with different RNA substrates and nucleotide occupancies capture distinct catalytic intermediates accessed during translocation. Our data reveal how RNA-induced ring closure templates a sequential ATP-hydrolysis mechanism, provide a molecular rationale for how the Rho ATPase domains distinguishes between distinct RNA sequences, and establish structural snapshots of substepping events in a hexameric helicase/translocase.
Collapse
|
8
|
Sauert M, Wolfinger MT, Vesper O, Müller C, Byrgazov K, Moll I. The MazF-regulon: a toolbox for the post-transcriptional stress response in Escherichia coli. Nucleic Acids Res 2016; 44:6660-75. [PMID: 26908653 PMCID: PMC5001579 DOI: 10.1093/nar/gkw115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Flexible adaptation to environmental stress is vital for bacteria. An energy-efficient post-transcriptional stress response mechanism in Escherichia coli is governed by the toxin MazF. After stress-induced activation the endoribonuclease MazF processes a distinct subset of transcripts as well as the 16S ribosomal RNA in the context of mature ribosomes. As these 'stress-ribosomes' are specific for the MazF-processed mRNAs, the translational program is changed. To identify this 'MazF-regulon' we employed Poly-seq (polysome fractionation coupled with RNA-seq analysis) and analyzed alterations introduced into the transcriptome and translatome after mazF overexpression. Unexpectedly, our results reveal that the corresponding protein products are involved in all cellular processes and do not particularly contribute to the general stress response. Moreover, our findings suggest that translational reprogramming serves as a fast-track reaction to harsh stress and highlight the so far underestimated significance of selective translation as a global regulatory mechanism in gene expression. Considering the reported implication of toxin-antitoxin (TA) systems in persistence, our results indicate that MazF acts as a prime effector during harsh stress that potentially introduces translational heterogeneity within a bacterial population thereby stimulating persister cell formation.
Collapse
Affiliation(s)
- Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Michael T Wolfinger
- Max F. Perutz Laboratories, Department of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, University of Vienna, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Konstantin Byrgazov
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| |
Collapse
|
9
|
Genomic and proteomic characterization of SE-I, a temperate bacteriophage infecting Erysipelothrix rhusiopathiae. Arch Virol 2016; 161:3137-50. [PMID: 27541818 DOI: 10.1007/s00705-016-3018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/16/2016] [Indexed: 12/11/2022]
Abstract
A bacteriophage infecting pathogenic Erysipelothrix rhusiopathiae was isolated from a swine farm experiencing an outbreak of acute swine erysipelas; we designated this phage SE-I. SE-I has an icosahedral head, a long tail and a double-stranded DNA genome. The 34,997-bp genome has a GC content of 34 % and contains 43 open reading frames (ORFs) encoding packaging, structural, lysin-holin, and hypothetical proteins. Components of purified SE-I were separated using SDS-PAGE and analyzed using liquid chromatography-mass spectrometry. Nine proteins were identified, encoded by ORF9, ORF15, ORF23, ORF30, ORF31, ORF33, ORF39, ORF40 and ORF 42. A phylogenetic tree constructed based on the sequence of the large terminase subunit revealed that SE-I is closely related to Staphylococcus phages P954 and phi3396. The CHAP-domain-containing protein encoded by ORF25 was expressed in E. coli and which was able to inactivate host bacteria. SE-I was able to infect 7 of 13 E. rhusiopathiae strains, but was unable to infect Salmonella, Streptococcus suis, and Staphylococcus aureus. This is the first report of the isolation, characterization, and genomic and proteomic analysis of a temperate phage infecting E. rhusiopathiae, and it might lead to the development of new anti- E. rhusiopathiae agents.
Collapse
|
10
|
An RNA motif advances transcription by preventing Rho-dependent termination. Proc Natl Acad Sci U S A 2015; 112:E6835-43. [PMID: 26630006 DOI: 10.1073/pnas.1515383112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription termination factor Rho associates with most nascent bacterial RNAs as they emerge from RNA polymerase. However, pharmacological inhibition of Rho derepresses only a small fraction of these transcripts. What, then, determines the specificity of Rho-dependent transcription termination? We now report the identification of a Rho-antagonizing RNA element (RARE) that hinders Rho-dependent transcription termination. We establish that RARE traps Rho in an inactive complex but does not prevent Rho binding to its recruitment sites. Although translating ribosomes normally block Rho access to an mRNA, inefficient translation of an open reading frame in the leader region of the Salmonella mgtCBR operon actually enables transcription of its associated coding region by favoring an RNA conformation that sequesters RARE. The discovery of an RNA element that inactivates Rho signifies that the specificity of nucleic-acid binding proteins is defined not only by the sequences that recruit these proteins but also by sequences that antagonize their activity.
Collapse
|
11
|
D'Heygère F, Schwartz A, Coste F, Castaing B, Boudvillain M. Monitoring RNA unwinding by the transcription termination factor Rho from Mycobacterium tuberculosis. Methods Mol Biol 2015; 1259:293-311. [PMID: 25579593 DOI: 10.1007/978-1-4939-2214-7_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transcription termination factor Rho is a ring-shaped, homo-hexamieric RNA translocase that dissociates transcription elongation complexes and transcriptional RNA-DNA duplexes (R-loops) in bacteria. The molecular mechanisms underlying these biological functions have been essentially studied with Rho enzymes from Escherichia coli or close Gram-negative relatives. However, phylo-divergent Rho factors may have distinct properties. Here, we describe methods for the preparation and in vitro characterization (ATPase and helicase activities) of the Rho factor from Mycobacterium tuberculosis, a specimen with uncharacteristic molecular and enzymatic features. These methods set the stage for future studies aimed at better defining the diversity of enzymatic properties of Rho across the bacterial kingdom.
Collapse
Affiliation(s)
- François D'Heygère
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, cedex 2, France
| | | | | | | | | |
Collapse
|
12
|
Mitra A, Misquitta R, Nagaraja V. Mycobacterium tuberculosis Rho is an NTPase with distinct kinetic properties and a novel RNA-binding subdomain. PLoS One 2014; 9:e107474. [PMID: 25229539 PMCID: PMC4167861 DOI: 10.1371/journal.pone.0107474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022] Open
Abstract
Two mechanisms--factor independent and dependent termination--ensure the completion of RNA synthesis in eubacteria. Factor-dependent mechanism relies on the Rho protein to terminate transcription by interacting with RNA polymerase. Although well studied in Escherichia coli, the properties of the Rho homologs from most bacteria are not known. The rho gene is unusually large in genus Mycobacterium and other members of actinobacteria, having ∼150 additional residues towards the amino terminal end. We describe the distinct properties of Rho from Mycobacterium tuberculosis. It is an NTPase with a preference for purine nucleoside triphosphates with kinetic properties different from E. coli homolog and an ability to use various RNA substrates. The N-terminal subdomain of MtbRho can bind to RNA by itself, and appears to contribute to the interaction of the termination factor with RNAs. Furthermore, the interaction with RNA induces changes in conformation and oligomerization of MtbRho.
Collapse
Affiliation(s)
- Anirban Mitra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Rachel Misquitta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
13
|
Synthetic promoters functional in Francisella novicida and Escherichia coli. Appl Environ Microbiol 2013; 80:226-34. [PMID: 24141126 DOI: 10.1128/aem.02793-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we describe the identification of synthetic, controllable promoters that function in the bacterial pathogen Francisella novicida, a model facultative intracellular pathogen. Synthetic DNA fragments consisting of the tetracycline operator (tetO) flanked by a random nucleotide sequence were inserted into a Francisella novicida shuttle plasmid upstream of a promoterless artificial operon containing the reporter genes cat and lacZ. Fragments able to promote transcription were selected for based on their ability to drive expression of the cat gene, conferring chloramphenicol resistance. Promoters of various strengths were found, many of which were repressed in the presence of the tetracycline repressor (TetR) and promoted transcription only in the presence of the TetR inducer anhydrotetracycline. A subset of both constitutive and inducible synthetic promoters were characterized to find their induction ratios and to identify their transcription start sites. In cases where tetO was located between or downstream of the -10 and -35 regions of the promoter, control by TetR was observed. If the tetO region was upstream of the -35 region by more than 9 bp, it did not confer TetR control. We found that three of three promoters isolated in F. novicida functioned at a comparable level in E. coli; however, none of the 10 promoters isolated in E. coli functioned at a significant level in F. novicida. Our results allowed us to isolate minimal F. novicida promoters of 47 and 48 bp in length.
Collapse
|
14
|
Transcription termination controls prophage maintenance in Escherichia coli genomes. Proc Natl Acad Sci U S A 2013; 110:14414-9. [PMID: 23940369 DOI: 10.1073/pnas.1303400110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prophages represent a large fraction of prokaryotic genomes and often provide new functions to their hosts, in particular virulence and fitness. How prokaryotic cells maintain such gene providers is central for understanding bacterial genome evolution by horizontal transfer. Prophage excision occurs through site-specific recombination mediated by a prophage-encoded integrase. In addition, a recombination directionality factor (or excisionase) directs the reaction toward excision and prevents the phage genome from being reintegrated. In this work, we describe the role of the transcription termination factor Rho in prophage maintenance through control of the synthesis of transcripts that mediate recombination directionality factor expression and, thus, excisive recombination. We show that Rho inhibition by bicyclomycin allows for the expression of prophage genes that lead to excisive recombination. Thus, besides its role in the silencing of horizontally acquired genes, Rho also maintains lysogeny of defective and functional prophages.
Collapse
|
15
|
D’Heygère F, Rabhi M, Boudvillain M. Phyletic distribution and conservation of the bacterial transcription termination factor Rho. Microbiology (Reading) 2013; 159:1423-1436. [DOI: 10.1099/mic.0.067462-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- François D’Heygère
- Ecole doctorale Santé, Sciences Biologiques et Chimie du Vivant (ED 549), Université d’Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Makhlouf Rabhi
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Marc Boudvillain
- ITP Sciences Biologiques et Chimie du Vivant, Université d’Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| |
Collapse
|
16
|
Abstract
How do cells stop transcribing RNA Polymerase II to promote proper gene expression and prevent transcriptional havoc in the genome? In the case of Leishmania, a uniquely modified DNA base blocks RNA Polymerase II and suggests an interesting new model for transcription termination.
Collapse
Affiliation(s)
- Dane Z Hazelbaker
- Department of Biological Chemistry, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
Boudvillain M, Figueroa-Bossi N, Bossi L. Terminator still moving forward: expanding roles for Rho factor. Curr Opin Microbiol 2013; 16:118-24. [DOI: 10.1016/j.mib.2012.12.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 12/29/2022]
|
18
|
Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E. Regulatory RNAs and target mRNA decay in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:742-7. [PMID: 23500183 DOI: 10.1016/j.bbagrm.2013.02.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Recent advances in prokaryote genetics have highlighted the important and complex roles of small regulatory RNAs (sRNAs). Although blocking mRNA translation is often the main function of sRNAs, these molecules can also induce the degradation of target mRNAs using a mechanism that drastically differs from eukaryotic RNA interference (RNAi). Whereas RNAi relies on RNase III-like machinery that is specific to double-strand RNAs, sRNA-mediated mRNA degradation in Escherichia coli and Samonella typhimurium depends on RNase E, a single-strand specific endoribonuclease. Surprisingly, the latest descriptions of sRNA-mediated mRNA degradation in various bacteria suggest a variety of previously unsuspected mechanisms. In this review, we focus on recently characterized mechanisms in which sRNAs can bind to target mRNAs to induce decay. These new mechanisms illustrate how sRNAs and mRNA structures, including riboswitches, act cooperatively with protein partners to initiate the decay of mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 2013. [PMID: 23207917 DOI: 10.1101/gad.196741.112] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the prevalence of antisense transcripts in bacterial transcriptomes, little is known about how their synthesis is controlled. We report that a major function of the Escherichia coli termination factor Rho and its cofactor, NusG, is suppression of ubiquitous antisense transcription genome-wide. Rho binds C-rich unstructured nascent RNA (high C/G ratio) prior to its ATP-dependent dissociation of transcription complexes. NusG is required for efficient termination at minority subsets (~20%) of both antisense and sense Rho-dependent terminators with lower C/G ratio sequences. In contrast, a widely studied nusA deletion proposed to compromise Rho-dependent termination had no effect on antisense or sense Rho-dependent terminators in vivo. Global colocalization of the histone-like nucleoid-structuring protein (H-NS) with Rho-dependent terminators and genetic interactions between hns and rho suggest that H-NS aids Rho in suppression of antisense transcription. The combined actions of Rho, NusG, and H-NS appear to be analogous to the Sen1-Nrd1-Nab3 and nucleosome systems that suppress antisense transcription in eukaryotes.
Collapse
Affiliation(s)
- Jason M Peters
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bossi L, Schwartz A, Guillemardet B, Boudvillain M, Figueroa-Bossi N. A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev 2012; 26:1864-73. [PMID: 22895254 DOI: 10.1101/gad.195412.112] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene regulation by bacterial trans-encoded small RNAs (sRNAs) is generally regarded as a post-transcriptional process bearing exclusively on the translation and/or the stability of target messenger RNA (mRNA). The work presented here revealed the existence of a transcriptional component in the regulation of a bicistronic operon-the chiPQ locus-by the ChiX sRNA in Salmonella. By studying the mechanism by which ChiX, upon pairing near the 5' end of the transcript, represses the distal gene in the operon, we discovered that the action of the sRNA induces Rho-dependent transcription termination within the chiP cistron. Apparently, by inhibiting chiP mRNA translation cotranscriptionally, ChiX uncouples translation from transcription, causing the nascent mRNA to become susceptible to Rho action. A Rho utilization (rut) site was identified in vivo through mutational analysis, and the termination pattern was characterized in vitro with a purified system. Remarkably, Rho activity at this site was found to be completely dependent on the function of the NusG protein both in vivo and in vitro. The recognition that trans-encoded sRNA act cotranscriptionally unveils a hitherto neglected aspect of sRNA function in bacteria.
Collapse
|
21
|
Shashni R, Mishra S, Kalayani BS, Sen R. Suppression of in vivo Rho-dependent transcription termination defects: evidence for kinetically controlled steps. MICROBIOLOGY-SGM 2012; 158:1468-1481. [PMID: 22442304 DOI: 10.1099/mic.0.056804-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The conventional model of Rho-dependent transcription termination in bacteria requires RNA-dependent translocase activity of the termination factor Rho as well as many kinetically controlled steps to execute efficient RNA release from the transcription elongation complex (EC). The involvement of the kinetically controlled steps, such as RNA binding, translocation and RNA release from the EC, means that this termination process must be kinetically coupled to the transcription elongation process. The existence of these steps in vivo has not previously been delineated in detail. Moreover, the requirement for translocase activity in Rho-dependent termination has recently been questioned by a radical view, wherein Rho binds to the elongating RNA polymerase (RNAP) prior to loading onto the mRNA. Using growth assays, microarray analyses and reporter-based transcription termination assays in vivo, we showed that slowing of the transcription elongation rate by using RNAP mutants (rpoB8 and rpoB3445) and growth of the strains in minimal medium suppressed the termination defects of five Rho mutants, three NusG mutants defective for Rho binding and the defects caused by two Rho inhibitors, Psu and bicyclomycin. These results established the existence of kinetically controlled steps in the in vivo Rho-dependent termination process and further reinforced the importance of 'kinetic coupling' between the two molecular motors, Rho and RNAP, and also argue strongly that the Rho translocation model is an accurate representation of the in vivo situation. Finally, these results indicated that one of the major roles of NusG in in vivo Rho-dependent termination is to enhance the speed of RNA release from the EC.
Collapse
Affiliation(s)
- Rajesh Shashni
- Laboratory of Transcription Biology, Center for DNA Fingerprinting and Diagnostics, Tuljaguda complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad - 500 001, India
| | - Saurabh Mishra
- Laboratory of Transcription Biology, Center for DNA Fingerprinting and Diagnostics, Tuljaguda complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad - 500 001, India
| | - B Sudha Kalayani
- Laboratory of Transcription Biology, Center for DNA Fingerprinting and Diagnostics, Tuljaguda complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad - 500 001, India
| | - Ranjan Sen
- Laboratory of Transcription Biology, Center for DNA Fingerprinting and Diagnostics, Tuljaguda complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad - 500 001, India
| |
Collapse
|
22
|
Schwartz A, Rabhi M, Margeat E, Boudvillain M. Analysis of helicase-RNA interactions using nucleotide analog interference mapping. Methods Enzymol 2012; 511:149-69. [PMID: 22713319 DOI: 10.1016/b978-0-12-396546-2.00007-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nucleotide analog interference mapping (NAIM) is a combinatorial approach that probes individual atoms and functional groups in an RNA molecule and identifies those that are important for a specific biochemical function. Here, we show how NAIM can be adapted to reveal functionally important atoms and groups on RNA substrates of helicases. We explain how NAIM can be used to investigate translocation and unwinding mechanisms of helicases and discuss the advantages and limitations of this powerful chemogenetic approach.
Collapse
Affiliation(s)
- Annie Schwartz
- CNRS UPR4301, Centre de Biophysique Moléculaire, Orléans cedex 2, France
| | | | | | | |
Collapse
|
23
|
Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3'-end chronicles. J Mol Biol 2011; 412:793-813. [PMID: 21439297 PMCID: PMC3622210 DOI: 10.1016/j.jmb.2011.03.036] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/01/2023]
Abstract
The process of transcription termination is essential to proper expression of bacterial genes and, in many cases, to the regulation of bacterial gene expression. Two types of bacterial transcriptional terminators are known to control gene expression. Intrinsic terminators dissociate transcription complexes without the assistance of auxiliary factors. Rho-dependent terminators are sites of dissociation mediated by an RNA helicase called Rho. Despite decades of study, the molecular mechanisms of both intrinsic and Rho-dependent termination remain uncertain in key details. Most knowledge is based on the study of a small number of model terminators. The extent of sequence diversity among functional terminators and the extent of mechanistic variation as a function of sequence diversity are largely unknown. In this review, we consider the current state of knowledge about bacterial termination mechanisms and the relationship between terminator sequence and steps in the termination mechanism.
Collapse
Affiliation(s)
- Jason M. Peters
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Abbey D. Vangeloff
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
24
|
Mutagenesis-based evidence for an asymmetric configuration of the ring-shaped transcription termination factor Rho. J Mol Biol 2010; 405:497-518. [PMID: 21059356 DOI: 10.1016/j.jmb.2010.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 11/01/2010] [Indexed: 11/20/2022]
Abstract
Transcription termination factor Rho is an ATP-dependent ring-shaped molecular motor that tracks along RNA to dissociate RNA-DNA duplexes and transcription complexes in its path. The Rho hexamer contains two distinct sites for interaction with RNA. The primary binding site is composed of pyrimidine-specific binding clefts that are located in the N-terminal domains and anchor Rho to transcripts at C-rich Rut (Rho utilization) sites. Components of the secondary binding site (SBS) in the C-terminal domains directly couple RNA binding to ATP hydrolysis in order to translocate RNA through the Rho ring. Published crystal structures of RNA-bound Rho display distinct architectures ('trimer-of-dimers' or asymmetric hexamer) and SBS-RNA interaction networks that suggested conflicting models of RNA "handoff" or "escort" by the Rho subunits. To probe the mechanism of mechanochemical transduction in Rho, we have mutated into alanines (or glycines) the residues that make SBS contacts with RNA in the 'trimer-of-dimers' structure supporting the "handoff" model. We find that the resulting single-point mutants have similar RNA binding affinities but exhibit significantly different ATP hydrolysis, transcription termination, and RNA-DNA unwinding activities that are more compatible with the asymmetric Rho structure than with the 'trimer-of-dimers' structure and the resulting "handoff" model. We discuss our findings in connection with specific features of the asymmetric Rho structure yet argue that a simple RNA "escort" model is insufficient to account for all experimental evidence.
Collapse
|