1
|
Giacca M. Fulfilling the Promise of RNA Therapies for Cardiac Repair and Regeneration. Stem Cells Transl Med 2023; 12:527-535. [PMID: 37440203 PMCID: PMC10427962 DOI: 10.1093/stcltm/szad038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/07/2023] [Indexed: 07/14/2023] Open
Abstract
The progressive appreciation that multiple types of RNAs regulate virtually all aspects of tissue function and the availability of effective tools to deliver RNAs in vivo now offers unprecedented possibilities for obtaining RNA-based therapeutics. For the heart, RNA therapies can be developed that stimulate endogenous repair after cardiac damage. Applications in this area include acute cardioprotection after ischemia or cancer chemotherapy, therapeutic angiogenesis to promote new blood vessel formation, regeneration to form new cardiac mass, and editing of mutations to cure inherited cardiac disease. While the potential of RNA therapeutics for all these conditions is exciting, the field is still in its infancy. A number of roadblocks need to be overcome for RNA therapies to become effective, in particular, related to the problem of delivering RNA medicines into the cells and targeting them specifically to the heart.
Collapse
Affiliation(s)
- Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
- Department of Medical Sciences, University of Trieste, Italy
| |
Collapse
|
2
|
Dardente H, English WR, Valluru MK, Kanthou C, Simpson D. Debunking the Myth of the Endogenous Antiangiogenic Vegfaxxxb Transcripts. Trends Endocrinol Metab 2020; 31:398-409. [PMID: 32396842 DOI: 10.1016/j.tem.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
In this opinion article we critically assess evidence for the existence of a family of antiangiogenic vascular endothelial growth factor (Vegfaxxxb) transcripts, arising from the use of a phylogenetically conserved alternative distal splice site within exon 8 of the VEGFA gene. We explain that prior evidence for Vegfaxxxb transcripts in tissues rests heavily upon flawed RT-PCR methodologies, with the extensive use of 5'-tailing in primer design being the main issue. Furthermore, our analysis of large RNA-seq data sets (human and ovine) fails to identify a single Vegfaxxxb transcript. Therefore, we challenge the very existence of Vegfaxxxb transcripts, which further questions the physiological relevance of studies based on the use of 'anti-VEGFAxxxb' antibodies. Our analysis has implications for the proposed therapeutic use of isoform-specific anti-VEGFA strategies for treating cancer and retinopathies.
Collapse
Affiliation(s)
- Hugues Dardente
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - William R English
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Manoj K Valluru
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Chryso Kanthou
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | - David Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT7 1NN, UK
| |
Collapse
|
3
|
Jiang X, Padarti A, Qu Y, Sheng S, Abou-Fadel J, Badr A, Zhang J. Alternatively spliced isoforms reveal a novel type of PTB domain in CCM2 protein. Sci Rep 2019; 9:15808. [PMID: 31676827 PMCID: PMC6825194 DOI: 10.1038/s41598-019-52386-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) is a microvascular disorder in the central nervous system. Despite tremendous efforts, the causal genetic mutation in some CCM patients has not be identified, raising the possibility of an unknown CCM locus. The CCM2/MGC4607 gene has been identified as one of three known genes causing CCMs. In this report, we defined a total of 29 novel exons and 4 novel promoters in CCM2 genomic structure and subsequently identified a total of 50 new alternative spliced isoforms of CCM2 which eventually generated 22 novel protein isoforms. Genetic analysis of CCM2 isoforms revealed that the CCM2 isoforms can be classified into two groups based on their alternative promoters and alternative start codon exons. Our data demonstrated that CCM2 isoforms not only are specific in their subcellular compartmentation but also have distinct cellular expression patterns among various tissues and cells, indicating the pleiotropic cellular roles of CCM2 through their multiple isoforms. In fact, the complexity of the CCM2 genomic structure was reflected by the multiple layers of regulation of CCM2 expression patterns. At the transcriptional level, it is accomplished by alternative promoters, alternative splicing, and multiple transcriptional start sites and termination sites; while at the translational level, it is carried out with various cellular functions with a distinguishable CCM2 protein group pattern, specified abundance and composition of selective isoforms in a cell and tissue specific fashion. Through experimentation, we discovered a unique phosphotyrosine binding (PTB) domain, namely atypical phosphotyrosine binding (aPTB) domain. Some long CCM2 isoform proteins contain both classes of PTB domains, making them a dual PTB domain-containing protein. Both CCM1 and CCM3 can bind competitively to this aPTB domain, indicating CCM2 as the cornerstone for CCM signaling complex (CSC).
Collapse
Affiliation(s)
- Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Yanchun Qu
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Shen Sheng
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Ahmed Badr
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
4
|
Sargent KM, McFee RM, Spuri Gomes R, Cupp AS. Vascular endothelial growth factor A: just one of multiple mechanisms for sex-specific vascular development within the testis? J Endocrinol 2015; 227:R31-50. [PMID: 26562337 PMCID: PMC4646736 DOI: 10.1530/joe-15-0342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Many in vitro experiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However, in vivo models using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa(-/-)); Sertoli and Leydig cells (Amhr2-Cre;Vegfa(-/-)) or Sertoli cells (Amh-Cre;Vegfa(-/-) and Sry-Cre;Vegfa(-/-)) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;Vegfa(-/-) versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renee M McFee
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renata Spuri Gomes
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| |
Collapse
|
5
|
Li X, Gu F, Niu C, Wang Y, Liu Z, Li N, Pan B, He D, Kong J, Zhang S, Wang X, Yao Y, Zheng L. VEGF111b, a C-terminal splice variant of VEGF-A and induced by mitomycin C, inhibits ovarian cancer growth. J Transl Med 2015; 13:164. [PMID: 25990504 PMCID: PMC4480579 DOI: 10.1186/s12967-015-0522-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing of VEGF-A gives rise to two families – the pro-angiogenic VEGFxxx family and the anti-angiogenic VEGFxxxb family that differ by only six amino acids at their C-terminal end. The first verified and widely reported VEGFxxxb family member is VEGF165b, and here VEGF165b is a positive control. Methords VEGF111b mRNA was detected in ovarian cancer cell lines SKOV3 and OVCAR3 by RT-PCR. Western blot was used to detect VEGF111b and VEGF165b protein in the CMs and lysates of OVCAR3 cells. MTT and colony formation assay were used to detect the short-term and long-term proliferation inhibition ability of ovarian cancer cells with VEGF111b overexpression. Cell-cycle analysis was performed to further characterize VEGF111b inhibition effects. VEGF111b signaling on ovarian cancer cells were determined by western blot. The expression levels of Ki67, PCNA, CD31 and VEGF in VEGF111b overexpression xenograft model were detected by immunohistochemistry. Results Under the effect of mitomycin C, we identify a new member of VEGFxxxb family-VEGF111b in ovarian cancer cell lines. SKOV3 and OVCAR cells were transfected with empty lentivirus, VEGF111b or VEGF165b lentivirus. VEGF111b and VEGF165b overexpression inhibits proliferation of the ovarian cancer cells, but inhibition effect of VEGF111b is slightly less efficient than VEGF165b. Cell cycle analysis was further used to elucidate the mechanism involved in the inhibition effect. Further, we detected the expression of VEGF-R2 in SKOV3 and OVCAR3 cells, and shown that VEGF111b might bind to conventional VEGF-R2 with the results of reducing VEGF-R2 tyrosine phosphorylation and downstream signaling to have anti-tumor effects. In vivo VEGF111b overexpression inhibits ovarian cancer growth in xenograft mice. Conclusion Our results show that VEGF111b, as a new member of VEGFxxxb family, with similar properties to VEGF165b, plays potent anti-tumor effect in vitro and in vivo that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth. This also opens a new avenue for treating ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0522-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuli Li
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China.
| | - Fang Gu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Beijing, China.
| | - Chenguang Niu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Yuanfen Wang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China.
| | - Zhongyu Liu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China.
| | - Na Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Dan He
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China.
| | - Shaobo Zhang
- Department of General Surgery, PLA 180th hospital, Fujian, China.
| | - Xu Wang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
6
|
Dehghanian F, Hojati Z, Kay M. New Insights into VEGF-A Alternative Splicing: Key Regulatory Switching in the Pathological Process. Avicenna J Med Biotechnol 2014; 6:192-9. [PMID: 25414781 PMCID: PMC4224658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022] Open
Abstract
Vascular endothelial growth factor (VEGF-A) is one of the most important regulatory factors in pathological and physiological angiogenesis. Alternative splicing is a complicated molecular process in VEGF-A gene expression which adds complexity to VEGF-A biology. Among all VEGF-A exons, alternative splicing of exon 8 is the key determinant of isoform switching from pro-angio-genic VEGF-xxx to anti-angiogenic VEGF-xxxb. This is known as a key molecular switching in many pathological situations. In fact, the balance between VEGF-xxx and VEGF-xxxb isoforms is a critical controlling switch in both conditions of health and disease. Here, the properties of VEGF-xxx and VEGF-xxxb isoforms were discussed and their regulatory mechanism and their roles in certain pathological processes were evaluated. In summary, it was suggested that C-terminal VEGF-A alternative splicing can provide a new treatment opportunity in angiogenic diseases.
Collapse
Affiliation(s)
| | - Zohreh Hojati
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
7
|
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114:1827-46. [PMID: 24855205 DOI: 10.1161/circresaha.114.302331] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.
Collapse
Affiliation(s)
- Serena Zacchigna
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Lorena Zentilin
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Mauro Giacca
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.).
| |
Collapse
|
8
|
Zecchin A, Pattarini L, Gutierrez MI, Mano M, Mai A, Valente S, Myers MP, Pantano S, Giacca M. Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity. J Mol Cell Biol 2014; 6:116-27. [PMID: 24620033 DOI: 10.1093/jmcb/mju010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetylases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In particular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phosphorylation and intracellular signaling upon prolonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetylation is a critical mechanism that directly affects VEGFR2 function.
Collapse
Affiliation(s)
- Annalisa Zecchin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gu F, Li X, Kong J, Pan B, Sun M, Zheng L, Yao Y. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis. Biochem Biophys Res Commun 2013; 441:18-24. [PMID: 24125722 DOI: 10.1016/j.bbrc.2013.09.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022]
Abstract
Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.
Collapse
Affiliation(s)
- Fang Gu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Angelescu C, Burada F, Ioana M, Angelescu R, Moraru E, Riza A, Marchian S, Mixich F, Cruce M, Săftoiu A. VEGF-A and VEGF-B mRNA expression in gastro-oesophageal cancers. Clin Transl Oncol 2013; 15:313-320. [PMID: 22872519 DOI: 10.1007/s12094-012-0923-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/23/2012] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Angiogenesis is essential for the local growth, invasion and metastasis of the tumours. Vascular endothelial growth factors (VEGFs) play a crucial role in tumour angiogenesis. The aim of our study was to quantify the expression of several VEGF family molecules in human gastro-oesophageal cancers and to analyse possible correlations between genes expression and clinico-pathological features. MATERIALS AND METHODS Gene expression was quantified in 43 gastro-oesophageal paired samples using qRT-PCR with TaqMan probes specific to VEGF-A, including soluble transcript variants and VEGF-B genes. RESULTS VEGF-A, including the studied splice variants and VEGF-B mRNAs were expressed in both tumour and peritumour mucosa. The expression of VEGF-A and its isoforms was higher in tumour compared with paired peritumour mucosa, while no significant difference was observed in VEGF-B expression. VEGF-A expression tended to correlate with tumour invasion. CONCLUSION VEGF-A has a tendency to over-express in gastro-oesophageal cancers, while VEGF-B does not seem involved in these tumours. Further studies are required to establish the utility of anti-VEGF-A therapy and to find biomarkers for pathogenesis or response to therapy in gastro-oesophageal tumours.
Collapse
Affiliation(s)
- Cristina Angelescu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, Bvd. 1 Mai, No. 66, Craiova, Romania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
12
|
Kosti I, Radivojac P, Mandel-Gutfreund Y. An integrated regulatory network reveals pervasive cross-regulation among transcription and splicing factors. PLoS Comput Biol 2012; 8:e1002603. [PMID: 22844237 PMCID: PMC3405991 DOI: 10.1371/journal.pcbi.1002603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
Traditionally the gene expression pathway has been regarded as being comprised of independent steps, from RNA transcription to protein translation. To date there is increasing evidence of coupling between the different processes of the pathway, specifically between transcription and splicing. To study the interplay between these processes we derived a transcription-splicing integrated network. The nodes of the network included experimentally verified human proteins belonging to three groups of regulators: transcription factors, splicing factors and kinases. The nodes were wired by instances of predicted transcriptional and alternative splicing regulation. Analysis of the network indicated a pervasive cross-regulation among the nodes; specifically, splicing factors are significantly more connected by alternative splicing regulatory edges relative to the two other subgroups, while transcription factors are more extensively controlled by transcriptional regulation. Furthermore, we found that splicing factors are the most regulated of the three regulatory groups and are subject to extensive combinatorial control by alternative splicing and transcriptional regulation. Consistent with the network results, our bioinformatics analyses showed that the subgroup of kinases have the highest density of predicted phosphorylation sites. Overall, our systematic study reveals that an organizing principle in the logic of integrated networks favor the regulation of regulatory proteins by the specific regulation they conduct. Based on these results, we propose a new regulatory paradigm postulating that gene expression regulation of the master regulators in the cell is predominantly achieved by cross-regulation.
Collapse
Affiliation(s)
- Idit Kosti
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Predrag Radivojac
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
13
|
Clifford RL, John AE, Brightling CE, Knox AJ. Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. THE JOURNAL OF IMMUNOLOGY 2012; 189:819-31. [PMID: 22689881 DOI: 10.4049/jimmunol.1103641] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF), a key angiogenic molecule, is aberrantly expressed in several diseases including asthma where it contributes to bronchial vascular remodeling and chronic inflammation. Asthmatic human airway smooth muscle cells hypersecrete VEGF, but the mechanism is unclear. In this study, we defined the mechanism in human airway smooth muscle cells from nonasthmatic and asthmatic patients. We found that asthmatic cells lacked a repression complex at the VEGF promoter, which was present in nonasthmatic cells. Recruitment of G9A, trimethylation of histone H3 at lysine 9 (H3K9me3), and a resultant decrease in RNA polymerase II at the VEGF promoter was critical to repression of VEGF secretion in nonasthmatic cells. At the asthmatic promoter, H3K9me3 was absent because of failed recruitment of G9a; RNA polymerase II binding, in association with TATA-binding protein-associated factor 1, was increased; H3K4me3 was present; and Sp1 binding was exaggerated and sustained. In contrast, DNA methylation and histone acetylation were similar in asthmatic and nonasthmatic cells. This is the first study, to our knowledge, to show that airway cells in asthma have altered epigenetic regulation of remodeling gene(s). Histone methylation at genes such as VEGF may be an important new therapeutic target.
Collapse
|
14
|
Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc Natl Acad Sci U S A 2012; 109:6886-91. [PMID: 22511716 DOI: 10.1073/pnas.1201626109] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Physical forces play a major role in the organization of developing tissues. During vascular development, physical forces originating from a fluid phase or from cells pulling on their environment can alter cellular signaling and the behavior of cells. Here, we observe how tissue deformation spatially modulates angiogenic signals and angiogenesis. Using soft lithographic templates, we assemble three-dimensional, geometric tissues. The tissues contract autonomously, change shape stereotypically and form patterns of vascular structures in regions of high deformations. We show that this emergence correlates with the formation of a long-range gradient of Vascular Endothelial Growth Factor (VEGF) in interstitial cells, the local overexpression of the corresponding receptor VEGF receptor 2 (VEGFR-2) and local differences in endothelial cells proliferation. We suggest that tissue contractility and deformation can induce the formation of gradients of angiogenic microenvironments which could contribute to the long-range patterning of the vascular system.
Collapse
|
15
|
Giacca M, Zacchigna S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 2012; 19:622-9. [PMID: 22378343 DOI: 10.1038/gt.2012.17] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the enormous progress made in terms of prevention and early intervention, a pressing need remains to develop innovative therapeutic strategies for ischemic cardiovascular disorders, including acute myocardial infarction, chronic cardiac ischemia, peripheral artery disease and stroke. The induction of new blood vessel formation by delivering angiogenic genes to ischemic tissues continues to appear as a promising, alternative strategy to currently available therapies. In aspiring to induce therapeutic angiogenesis, the members of the vascular endothelial growth factor (VEGF) family have long been recognized as major molecular tools. Remarkably, VEGF family members have recently been recognized to also exert multiple, non-angiogenic effects on various cell types, including neurons, skeletal muscle and cardiac cells. Here, we critically review the VEGF-based therapies that have already reached clinical experimentation and highlight the pleiotropic activities of VEGF factors that might create new opportunities for therapeutic application.
Collapse
Affiliation(s)
- M Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology,Padriciano 99, Trieste, Italy.
| | | |
Collapse
|