1
|
Zhao T, Karki N, Zoltowski BD, Matthews DA. Allosteric regulation in STAT3 interdomains is mediated by a rigid core: SH2 domain regulation by CCD in D170A variant. PLoS Comput Biol 2022; 18:e1010794. [PMID: 36542668 PMCID: PMC9815575 DOI: 10.1371/journal.pcbi.1010794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/05/2023] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a crucial role in cancer development and thus is a viable target for cancer treatment. STAT3 functions as a dimer mediated by phosphorylation of the SRC-homology 2 (SH2) domain, a key target for therapeutic drugs. While great efforts have been employed towards the development of compounds that directly target the SH2 domain, no compound has yet been approved by the FDA due to a lack of specificity and pharmacologic efficacy. Studies have shown that allosteric regulation of SH2 via the coiled-coil domain (CCD) is an alternative drug design strategy. Several CCD effectors have been shown to modulate SH2 binding and affinity, and at the time of writing at least one drug candidate has entered phase I clinical trials. However, the mechanism for SH2 regulation via CCD is poorly understood. Here, we investigate structural and dynamic features of STAT3 and compare the wild type to the reduced function variant D170A in order to delineate mechanistic differences and propose allosteric pathways. Molecular dynamics simulations were employed to explore conformational space of STAT3 and the variant, followed by structural, conformation, and dynamic analysis. The trajectories explored show distinctive conformational changes in the SH2 domain for the D170A variant, indicating long range allosteric effects. Multiple analyses provide evidence for long range communication pathways between the two STAT3 domains, which seem to be mediated by a rigid core which connects the CCD and SH2 domains via the linker domain (LD) and transmits conformational changes through a network of short-range interactions. The proposed allosteric mechanism provides new insight into the understanding of intramolecular signaling in STAT3 and potential pharmaceutical control of STAT3 specificity and activity.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Brian D. Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| | - Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Tuli HS, Sak K, Iqubal A, Garg VK, Varol M, Sharma U, Chauhan A, Yerer MB, Dhama K, Jain M, Jain A. STAT signaling as a target for intervention: from cancer inflammation and angiogenesis to non-coding RNAs modulation. Mol Biol Rep 2022; 49:8987-8999. [PMID: 35474053 DOI: 10.1007/s11033-022-07399-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
As a landmark, scientific investigation in cytokine signaling and interferon-related anti-viral activity, signal transducer and activator of transcription (STAT) family of proteins was first discovered in the 1990s. Today, we know that the STAT family consists of several transcription factors which regulate various molecular and cellular processes, including proliferation, angiogenesis, and differentiation in human carcinoma. STAT family members play an active role in transducing signals from cell membrane to nucleus through intracellular signaling and thus activating gene transcription. Additionally, they are also associated with the development and progression of human cancer by facilitating inflammation, cell survival, and resistance to therapeutic responses. Accumulating evidence suggests that not all STAT proteins are associated with the progression of human malignancy; however, STAT3/5 are constitutively activated in various cancers, including multiple myeloma, lymphoma, breast cancer, prostate hepatocellular carcinoma, and non-small cell lung cancer. The present review highlights how STAT-associated events are implicated in cancer inflammation, angiogenesis and non-coding RNA (ncRNA) modulation to highlight potential intervention into carcinogenesis-related cellular processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), 133 207, Mullana- Ambala, Haryana, India.
| | | | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly, Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, 140413, Gharuan, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, TR48000, Mugla, Turkey
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, 151401, Village-Ghudda, Punjab, India
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, 243122, Bareilly, Uttar Pradesh, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, 151401, Village-Ghudda, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, 151401, Village-Ghudda, Punjab, India.
| |
Collapse
|
3
|
Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY. Signal Transducer and Activator of Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic Implication. Front Oncol 2019; 9:48. [PMID: 30847297 PMCID: PMC6393348 DOI: 10.3389/fonc.2019.00048] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) pathway is connected upstream with Janus kinases (JAK) family protein and capable of integrating inputs from different signaling pathways. Each family member plays unique functions in signal transduction and crucial in mediating cellular responses to different kind of cytokines. STAT family members notably STAT3 and STAT5 have been involved in cancer progression whereas STAT1 plays opposite role by suppressing tumor growth. Persistent STAT3/5 activation is known to promote chronic inflammation, which increases susceptibility of healthy cells to carcinogenesis. Here, we review the role of STATs in cancers and inflammation while discussing current therapeutic implications in different cancers and test models, especially the delivery of STAT3/5 targeting siRNA using nanoparticulate delivery system.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed Fadhil Naema
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
4
|
Affiliation(s)
- Mark H Kaplan
- Department of Pediatrics, and Microbiology and Immunology; Indiana University School of Medicine; Indianapolis, IN USA
| |
Collapse
|
5
|
Yao W, Zhang Y, Jabeen R, Nguyen ET, Wilkes DS, Tepper RS, Kaplan MH, Zhou B. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 2013; 38:360-72. [PMID: 23376058 DOI: 10.1016/j.immuni.2013.01.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 10/16/2012] [Indexed: 12/22/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine important for the initiation and development of T helper (Th2) cell-mediated allergic inflammation. In this study, we identified a positive association between interleukin-9 (IL-9) and TSLP concentration in the serum of infants with atopic dermatitis. In primary cell cultures, the addition of TSLP led to an increase in IL-9 production from human and mouse Th9 cells, and induced an increase in signal transducer and activator of transcription 5 (STAT5) activation and binding to the Il9 promoter. In vivo, use of an adoptive transfer model demonstrated that TSLP promoted IL-9-dependent, Th9 cell-induced allergic inflammation by acting directly on T cells. Moreover, transgenic expression of TSLP in the lung stimulated IL-9 production in vivo, and anti-IL-9 treatment attenuated TSLP-induced airway inflammation. Together, our results demonstrate that TSLP promotes Th9 cell differentiation and function and define a requirement for IL-9 in TSLP-induced allergic inflammation.
Collapse
Affiliation(s)
- Weiguo Yao
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
CD4⁺T cells: differentiation and functions. Clin Dev Immunol 2012; 2012:925135. [PMID: 22474485 PMCID: PMC3312336 DOI: 10.1155/2012/925135] [Citation(s) in RCA: 907] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/12/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022]
Abstract
CD4⁺T cells are crucial in achieving a regulated effective immune response to pathogens. Naive CD4⁺T cells are activated after interaction with antigen-MHC complex and differentiate into specific subtypes depending mainly on the cytokine milieu of the microenvironment. Besides the classical T-helper 1 and T-helper 2, other subsets have been identified, including T-helper 17, regulatory T cell, follicular helper T cell, and T-helper 9, each with a characteristic cytokine profile. For a particular phenotype to be differentiated, a set of cytokine signaling pathways coupled with activation of lineage-specific transcription factors and epigenetic modifications at appropriate genes are required. The effector functions of these cells are mediated by the cytokines secreted by the differentiated cells. This paper will focus on the cytokine-signaling and the network of transcription factors responsible for the differentiation of naive CD4⁺T cells.
Collapse
|