1
|
Satiaputra J, Sternicki LM, Hayes AJ, Pukala TL, Booker GW, Shearwin KE, Polyak SW. Native mass spectrometry identifies an alternative DNA-binding pathway for BirA from Staphylococcus aureus. Sci Rep 2019; 9:2767. [PMID: 30808984 PMCID: PMC6391492 DOI: 10.1038/s41598-019-39398-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
An adequate supply of biotin is vital for the survival and pathogenesis of Staphylococcus aureus. The key protein responsible for maintaining biotin homeostasis in bacteria is the biotin retention protein A (BirA, also known as biotin protein ligase). BirA is a bi-functional protein that serves both as a ligase to catalyse the biotinylation of important metabolic enzymes, as well as a transcriptional repressor that regulates biotin biosynthesis, biotin transport and fatty acid elongation. The mechanism of BirA regulated transcription has been extensively characterized in Escherichia coli, but less so in other bacteria. Biotin-induced homodimerization of E. coli BirA (EcBirA) is a necessary prerequisite for stable DNA binding and transcriptional repression. Here, we employ a combination of native mass spectrometry, in vivo gene expression assays, site-directed mutagenesis and electrophoretic mobility shift assays to elucidate the DNA binding pathway for S. aureus BirA (SaBirA). We identify a mechanism that differs from that of EcBirA, wherein SaBirA is competent to bind DNA as a monomer both in the presence and absence of biotin and/or MgATP, allowing homodimerization on the DNA. Bioinformatic analysis demonstrated the SaBirA sequence used here is highly conserved amongst other S. aureus strains, implying this DNA-binding mechanism is widely employed.
Collapse
Affiliation(s)
- Jiulia Satiaputra
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Harry Perkins Institute of Medical Research, Shenton Park, Western Australia, 6008, Australia
| | - Louise M Sternicki
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Andrew J Hayes
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Faculty of Health and Medical Sciences, Adelaide, South Australia, 5005, Australia
| | - Tara L Pukala
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Grant W Booker
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Keith E Shearwin
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Steven W Polyak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
2
|
Genomic characterization and comparison of seven Myoviridae bacteriophage infecting Bacillus thuringiensis. Virology 2016; 489:243-51. [DOI: 10.1016/j.virol.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/02/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022]
|
3
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|