1
|
Silva I, Rodrigues ET, Tacão M, Henriques I. Microplastics accumulate priority antibiotic-resistant pathogens: Evidence from the riverine plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121995. [PMID: 37302790 DOI: 10.1016/j.envpol.2023.121995] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) might accumulate and transport antibiotic-resistant bacteria (ARB) in aquatic systems. We determined the abundance and diversity of culturable ciprofloxacin- and cefotaxime-resistant bacteria in biofilms covering MPs placed in river water, and characterized priority pathogens from these biofilms. Our results showed that the abundance of ARB colonizing MPs tends to be higher compared to sand particles. Also, higher numbers were cultivated from a mixture of polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET), compared to PP and PET alone. Aeromonas and Pseudomonas isolates were the most frequently retrieved from MPs placed before a WWTP discharge while Enterobacteriaceae dominated the culturable plastisphere 200 m after the WWTP discharge. Ciprofloxacin- and/or cefotaxime-resistant Enterobacteriaceae (n = 54 unique isolates) were identified as Escherichia coli (n = 37), Klebsiella pneumoniae (n = 3), Citrobacter spp. (n = 9), Enterobacter spp. (n = 4) and Shigella sp. (n = 1). All isolates presented at least one of the virulence features tested (i.e. biofilm formation, haemolytic activity and production of siderophores), 70% carried the intI1 gene and 85% exhibited a multi-drug resistance phenotype. Plasmid-mediated quinolone resistance genes were detected in ciprofloxacin-resistant Enterobacteriaceae [aacA4-cr (40% of the isolates), qnrS (30%), qnrB (25%), and qnrVC (8%)], along with mutations in gyrA (70%) and parC (72%). Cefotaxime-resistant strains (n = 23) harbored blaCTX-M (70%), blaTEM (61%) and blaSHV (39%). Among CTX-M producers, high-risk clones of E. coli (e.g. ST10 or ST131) and K. pneumoniae (ST17) were identified, most of which carrying blaCTX-M-15. Ten out of 16 CTX-M producers were able to transfer blaCTX-M to a recipient strain. Our results demonstrated the occurrence of multidrug resistant Enterobacteriaceae in the riverine plastisphere, harboring ARGs of clinical concern and exhibiting virulence traits, suggesting a contribution of MPs to the dissemination of antibiotic-resistant priority pathogens. The type of MPs and especially water contamination (e.g. by WWTPs discharges) seem to determine the resistome of the riverine plastisphere.
Collapse
Affiliation(s)
- Isabel Silva
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa T Rodrigues
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Marta Tacão
- CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biology University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
2
|
Shahbazi R, Salmanzadeh-Ahrabi S, Aslani MM, Alebouyeh M, Falahi J, Nikbin VS. The genotypic and phenotypic characteristics contributing to high virulence and antibiotics resistance in Escherichia coli O25-B2-ST131 in comparison to non- O25-B2-ST131. BMC Pediatr 2023; 23:59. [PMID: 36737722 PMCID: PMC9895973 DOI: 10.1186/s12887-023-03866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Escherichia coli serogroup O25b-sequence type 131 (E. coli O25-B2-ST131) is considered as multidrug-resistant and hypervirulent organism. There is lack of data about involvement of this pathogen in the children's infection. In this study, the prevalence, and clonality, virulence capacity, and antibiotic resistance phenotype and genotype of E. coli O25-B2-ST131 compared with non-O25-B2-ST131 isolates were investigated in children with urinary tract infection in Tehran, Iran. METHODS The E. coli isolates from urine samples were identified using conventional microbiological methods. Characterization of E. coli O25-B2-ST131 clone, antibiotic susceptibility, biofilm formation, ESBLs phenotype and genotype, serum resistance, hemolysis, hydrophobicity, and formation of curli fimbriae were done using conventional microbiological and molecular methods. Clonality of the isolates was done by rep-PCR typing. RESULTS Among 120 E. coli isolates, the highest and lowest antibiotic resistance was detected against ampicillin (92, 76.6%) and imipenem 5, (4.1%), respectively. Sixty-eight (56.6%) isolates were ESBL-producing and 58 (48.3%) isolates were considered as multi-drug resistance (MDR). The prevalence of ESBL-producing and MDR isolates in O25-B2-ST131 strains was higher compared with the non-O25-B2-ST131 strains (p value < 0.05). O25-B2-ST131 strains showed significant correlation with serum resistance and biofilm formation. Amongst the resistance and virulence genes, the prevalence of iucD, kpsMTII, cnf1, vat, blaCTX-M-15, and blaSHV were significantly higher among O25-B2-ST131 isolates in comparison with non-O25-B2-ST131 isolates (p value < 0.05). Considering a ≥ 80% homology cut-off, fifteen different clusters of the isolates were shown with the same rep-PCR pattern. CONCLUSIONS Our results confirmed the involvement of MDR-ESBLs producing E. coli strain O25-B2-ST131 in the occurrence of UTIs among children. Source tracking and control measures seem to be necessary for containment of the spread of hypervirulent and resistance variants in children.
Collapse
Affiliation(s)
- Razieh Shahbazi
- grid.411354.60000 0001 0097 6984Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Deh Vank Ave., Tehran, 1993891176 Iran
| | - Siavosh Salmanzadeh-Ahrabi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Deh Vank Ave., Tehran, 1993891176, Iran.
| | - Mohammad Mehdi Aslani
- grid.420169.80000 0000 9562 2611Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Alebouyeh
- grid.411600.2Pediatric Infections Research Center, Research for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Falahi
- Health Clinical Science Research Center, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Vajihe Sadat Nikbin
- grid.420169.80000 0000 9562 2611Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Downing T, Lee MJ, Archbold C, McDonnell A, Rahm A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022; 114:110509. [PMID: 36273742 DOI: 10.1016/j.ygeno.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland; The Pirbright Institute, UK.
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Conor Archbold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Adam McDonnell
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexander Rahm
- GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
4
|
Epidemiology of Plasmid Lineages Mediating the Spread of Extended-Spectrum Beta-Lactamases among Clinical Escherichia coli. mSystems 2022; 7:e0051922. [PMID: 35993734 PMCID: PMC9601178 DOI: 10.1128/msystems.00519-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prevalence of extended-spectrum beta-lactamases (ESBLs) among clinical isolates of Escherichia coli has been increasing, with this spread driven by ESBL-encoding plasmids. However, the epidemiology of ESBL-disseminating plasmids remains understudied, obscuring the roles of individual plasmid lineages in ESBL spread. To address this, we performed an in-depth genomic investigation of 149 clinical ESBL-like E. coli isolates from a tertiary care hospital. We obtained high-quality assemblies for 446 plasmids, revealing an extensive map of plasmid sharing that crosses time, space, and bacterial sequence type boundaries. Through a sequence-based network, we identified specific plasmid lineages that are responsible for the dissemination of major ESBLs. Notably, we demonstrate that IncF plasmids separate into 2 distinct lineages that are enriched for different ESBLs and occupy distinct host ranges. Our work provides a detailed picture of plasmid-mediated spread of ESBLs, demonstrating the extensive sequence diversity within identified lineages, while highlighting the genetic elements that underlie the persistence of these plasmids within the clinical E. coli population. IMPORTANCE The increasing incidence of nosocomial infections with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli represents a significant threat to public health, given the limited treatment options available for such infections. The rapid ESBL spread is suggested to be driven by localization of the resistance genes on conjugative plasmids. Here, we identify the contributions of different plasmid lineages in the nosocomial spread of ESBLs. We provide further support for plasmid-mediated spread of ESBLs but demonstrate that some ESBL genes rely on dissemination through plasmids more than the others. We identify key plasmid lineages that are enriched in major ESBL genes and highlight the encoded genetic elements that facilitate the transmission and stable maintenance of these plasmid groups within the clinical E. coli population. Overall, our work provides valuable insight into the dissemination of ESBLs through plasmids, furthering our understating of factors underlying the increased prevalence of these genes in nosocomial settings.
Collapse
|
5
|
Bueris V, Sellera FP, Fuga B, Sano E, Carvalho MPN, Couto SCF, Moura Q, Lincopan N. Convergence of virulence and resistance in international clones of WHO critical priority enterobacterales isolated from Marine Bivalves. Sci Rep 2022; 12:5707. [PMID: 35383231 PMCID: PMC8983722 DOI: 10.1038/s41598-022-09598-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored blaCTX-M-type or blaCMY-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species.
Collapse
Affiliation(s)
- Vanessa Bueris
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. .,Laboratory of Genetics, Butantan Institute, São Paulo, Brazil.
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Marcelo P N Carvalho
- Department of Veterinary Clinic and Surgery, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Quézia Moura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Heiden SE, Hübner NO, Bohnert JA, Heidecke CD, Kramer A, Balau V, Gierer W, Schaefer S, Eckmanns T, Gatermann S, Eger E, Guenther S, Becker K, Schaufler K. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med 2020; 12:113. [PMID: 33298160 PMCID: PMC7724794 DOI: 10.1186/s13073-020-00814-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Antibiotic-resistant Klebsiella pneumoniae are a major cause of hospital- and community-acquired infections, including sepsis, liver abscess, and pneumonia, driven mainly by the emergence of successful high-risk clonal lineages. The K. pneumoniae sequence type (ST) 307 lineage has appeared in several different parts of the world after first being described in Europe in 2008. From June to October 2019, we recorded an outbreak of an extensively drug-resistant ST307 lineage in four medical facilities in north-eastern Germany. METHODS Here, we investigated these isolates and those from subsequent cases in the same facilities. We performed whole-genome sequencing to study phylogenetics, microevolution, and plasmid transmission, as well as phenotypic experiments including growth curves, hypermucoviscosity, siderophore secretion, biofilm formation, desiccation resilience, serum survival, and heavy metal resistance for an in-depth characterization of this outbreak clone. RESULTS Phylogenetics suggest a homogenous phylogram with several sub-clades containing either isolates from only one patient or isolates originating from different patients, suggesting inter-patient transmission. We identified three large resistance plasmids, carrying either NDM-1, CTX-M-15, or OXA-48, which K. pneumoniae ST307 likely donated to other K. pneumoniae isolates of different STs and even other bacterial species (e.g., Enterobacter cloacae) within the clinical settings. Several chromosomally and plasmid-encoded, hypervirulence-associated virulence factors (e.g., yersiniabactin, metabolite transporter, aerobactin, and heavy metal resistance genes) were identified in addition. While growth, biofilm formation, desiccation resilience, serum survival, and heavy metal resistance were comparable to several control strains, results from siderophore secretion and hypermucoviscosity experiments revealed superiority of the ST307 clone, similar to an archetypical, hypervirulent K. pneumoniae strain (hvKP1). CONCLUSIONS The combination of extensive drug resistance and virulence, partly conferred through a "mosaic" plasmid carrying both antibiotic resistance and hypervirulence-associated features, demonstrates serious public health implications.
Collapse
Affiliation(s)
- Stefan E Heiden
- Institute of Pharmacy, Pharmaceutical Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Nils-Olaf Hübner
- Central Unit for Infection Prevention and Control, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen A Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Veronika Balau
- IMD Laboratory Greifswald, Institute of Medical Diagnostics, Greifswald, Germany
| | | | | | - Tim Eckmanns
- Department for Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Ruhr University Bochum, Bochum, Germany
| | - Elias Eger
- Institute of Pharmacy, Pharmaceutical Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Sebastian Guenther
- Institute of Pharmacy, Pharmaceutical Biology, University of Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Institute of Pharmacy, Pharmaceutical Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany.
| |
Collapse
|
7
|
Li D, Reid CJ, Kudinha T, Jarocki VM, Djordjevic SP. Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microb Genom 2020; 6:mgen000475. [PMID: 33206038 PMCID: PMC8116683 DOI: 10.1099/mgen.0.000475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are the most common bacterial infections requiring medical attention and a leading justification for antibiotic prescription. Trimethoprim is prescribed empirically for uncomplicated cases. UTIs are primarily caused by extraintestinal pathogenic Escherichia coli (ExPEC) and ExPEC strains play a central role in disseminating antimicrobial-resistance genes worldwide. Here, we describe the whole-genome sequences of trimethoprim-resistant ExPEC and/or ExPEC from recurrent UTIs (67 in total) from patients attending a regional Australian hospital from 2006 to 2008. Twenty-three sequence types (STs) were observed, with ST131 predominating (28 %), then ST69 and ST73 (both 7 %). Co-occurrence of trimethoprim-resistance genes with genes conferring resistance to extended-spectrum β-lactams, heavy metals and quaternary ammonium ions was a feature of the ExPEC described here. Seven trimethoprim-resistance genes were identified, most commonly dfrA17 (38 %) and dfrA12 (18 %). An uncommon dfrB4 variant was also observed. Two blaCTX-M variants were identified - blaCTX-M-15 (16 %) and blaCTX-M-14 (10 %). The former was always associated with dfrA12, the latter with dfrA17, and all blaCTX-M genes co-occurred with chromate-resistance gene chrA. Eighteen class 1 integron structures were characterized, and chrA featured in eight structures; dfrA genes featured in seventeen. ST131 H30Rx isolates possessed distinct antimicrobial gene profiles comprising aac(3)-IIa, aac(6)-Ib-cr, aph(3')-Ia, aadA2, blaCTX-M-15, blaOXA-1 and dfrA12. The most common virulence-associated genes (VAGs) were fimH, fyuA, irp2 and sitA (all 91 %). Virulence profile clustering showed ST131 H30 isolates carried similar VAGs to ST73, ST405, ST550 and ST1193 isolates. The sole ST131 H27 isolate carried molecular predictors of enteroaggregative E. coli/ExPEC hybrid strains (aatA, aggR, fyuA). Seven isolates (10 %) carried VAGs suggesting ColV plasmid carriage. Finally, SNP analysis of serial UTI patients experiencing worsening sequelae demonstrated a high proportion of point mutations in virulence factors.
Collapse
Affiliation(s)
- Dmitriy Li
- Ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Cameron J. Reid
- Ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Timothy Kudinha
- NSW Health Pathology, Microbiology, Orange Hospital, Orange, NSW 2800, Australia
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Veronica M. Jarocki
- Ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | |
Collapse
|
8
|
Decano AG, Tran N, Al-Foori H, Al-Awadi B, Campbell L, Ellison K, Mirabueno LP, Nelson M, Power S, Smith G, Smyth C, Vance Z, Woods C, Rahm A, Downing T. Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. Access Microbiol 2020; 3:acmi000179. [PMID: 33997610 PMCID: PMC8115979 DOI: 10.1099/acmi.0.000179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Biotechnology, Dublin City University, Ireland.,Present address: School of Medicine, University of St., Andrews, UK
| | - Nghia Tran
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland
| | | | | | | | - Kevin Ellison
- School of Biotechnology, Dublin City University, Ireland
| | - Louisse Paolo Mirabueno
- School of Biotechnology, Dublin City University, Ireland.,Present address: National Institute of Agricultural Botany - East Malling Research, Kent, UK
| | - Maddy Nelson
- School of Biotechnology, Dublin City University, Ireland
| | - Shane Power
- School of Biotechnology, Dublin City University, Ireland
| | | | - Cian Smyth
- School of Biotechnology, Dublin City University, Ireland.,Present address: Dept of Biology, Maynooth University, Dublin, Ireland
| | - Zoe Vance
- School of Genetics & Microbiology, Trinity College Dublin, Ireland
| | | | - Alexander Rahm
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland.,Present address: GAATI Lab, Université de la Polynésie Française, Puna'auia, French Polynesia
| | - Tim Downing
- School of Biotechnology, Dublin City University, Ireland
| |
Collapse
|
9
|
Virulence and resistance properties of E. coli isolated from urine samples of hospitalized patients in Rio de Janeiro, Brazil - The role of mobile genetic elements. Int J Med Microbiol 2020; 310:151453. [PMID: 33045580 DOI: 10.1016/j.ijmm.2020.151453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 02/04/2023] Open
Abstract
Extraintestinal pathogenic E. coli (ExPEC) is the most frequent etiological agent of urinary tract infections (UTIs). Particular evolutionary successful lineages are associated with severe UTIs and higher incidences of multidrug resistance. Most of the resistance genes are acquired by horizontal transfer of plasmids and other mobile genetic elements (MGEs), and this process has been associated with the successful dissemination of particular lineages. Here, we identified the presence of MGEs and their role in virulence and resistance profiles of isolates obtained from the urine of hospitalized patients in Brazil. Isolates belonging to the successful evolutionary lineages of sequence type (ST) 131, ST405, and ST648 were found to be multidrug-resistant, while those belonging to ST69 and ST73 were often not. Among the ST131, ST405, and ST648 isolates with a resistant phenotype, a high number of mainly IncFII plasmids was identified. The plasmids contained resistance cassettes, and these were also found within phage-related sequences and the chromosome of the isolates. The resistance cassettes were found to harbor several resistance genes, including blaCTX-M-15. In addition, in ST131 isolates, diverse pathogenicity islands similar to those found in highly virulent ST73 isolates were detected. Also, a new genomic island associated with several virulence genes was identified in ST69 and ST131 isolates. In addition, several other MGEs present in the ST131 reference strain EC958 were identified in our isolates, most of them exclusively in ST131 isolates. In contrast, genomic islands present in this reference strain were only partially present or completely absent in our ST131 isolates. Of all isolates studied, ST73 and ST131 isolates had the most similar virulence profile. Overall, no clear association was found between the presence of specific MGEs and virulence profiles. Furthermore, the interplay between virulence and resistance by acquiring MGEs seemed to be lineage dependent. Although the acquisition of IncF plasmids, specific PAIs, GIs, and other MGEs seemed to be involved in the success of some lineages, it cannot explain the success of different lineages, also indicating other (host) factors are involved in this process. Nevertheless, the detection, identification, and surveillance of lineage-specific MGEs may be useful to monitor (new) emerging clones.
Collapse
|
10
|
Decano AG, Downing T. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep 2019; 9:17394. [PMID: 31758048 PMCID: PMC6874702 DOI: 10.1038/s41598-019-54004-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli ST131 is a major cause of infection with extensive antimicrobial resistance (AMR) facilitated by widespread beta-lactam antibiotic use. This drug pressure has driven extended-spectrum beta-lactamase (ESBL) gene acquisition and evolution in pathogens, so a clearer resolution of ST131's origin, adaptation and spread is essential. E. coli ST131's ESBL genes are typically embedded in mobile genetic elements (MGEs) that aid transfer to new plasmid or chromosomal locations, which are mobilised further by plasmid conjugation and recombination, resulting in a flexible ESBL, MGE and plasmid composition with a conserved core genome. We used population genomics to trace the evolution of AMR in ST131 more precisely by extracting all available high-quality Illumina HiSeq read libraries to investigate 4,071 globally-sourced genomes, the largest ST131 collection examined so far. We applied rigorous quality-control, genome de novo assembly and ESBL gene screening to resolve ST131's population structure across three genetically distinct Clades (A, B, C) and abundant subclades from the dominant Clade C. We reconstructed their evolutionary relationships across the core and accessory genomes using published reference genomes, long read assemblies and k-mer-based methods to contextualise pangenome diversity. The three main C subclades have co-circulated globally at relatively stable frequencies over time, suggesting attaining an equilibrium after their origin and initial rapid spread. This contrasted with their ESBL genes, which had stronger patterns across time, geography and subclade, and were located at distinct locations across the chromosomes and plasmids between isolates. Within the three C subclades, the core and accessory genome diversity levels were not correlated due to plasmid and MGE activity, unlike patterns between the three main clades, A, B and C. This population genomic study highlights the dynamic nature of the accessory genomes in ST131, suggesting that surveillance should anticipate genetically variable outbreaks with broader antibiotic resistance levels. Our findings emphasise the potential of evolutionary pangenomics to improve our understanding of AMR gene transfer, adaptation and transmission to discover accessory genome changes linked to novel subtypes.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Biotechnology, Dublin City University, Dublin, Ireland
- School of Medicine, University of, St. Andrews, UK
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
11
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.
Collapse
|
12
|
Hojabri Z, Darabi N, Arab M, Saffari F, Pajand O. Clonal diversity, virulence genes content and subclone status of Escherichia coli sequence type 131: comparative analysis of E. coli ST131 and non-ST131 isolates from Iran. BMC Microbiol 2019; 19:117. [PMID: 31146674 PMCID: PMC6543562 DOI: 10.1186/s12866-019-1493-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Escherichia coli sequence type 131 (ST131) is a well established clone causing significant extraintestinal infections worldwide. However, no studies have been reported the phenotypic and molecular traits of ST131 isolates in comparison to other clones of E. coli from Iran. So, we determined the differences between 69 ST131 strains collected during a one year surveillance study and 84 non-ST131 isolates, including 56 clinical fluoroquinolone resistant and 28 broiler colibacillosis isolates in terms of clonality and genetic background. RESULTS ST131 isolates were associated with phylogroup B2 (68 out of 69 isolates, 98.4%), while clinical non-ST131 and fluoroquinolone resistant broiler isolates mainly belonged to phylogroup A. The highest virulence score was observed in ST131 clone, while they showed less diversity in virulence profiles than other clinical isolates. Almost all of the ST131 isolates (95.6%) were ExPEC and had the highest virulence scores, but their resistance scores were less than clinical non-ST131 isolates. Broiler isolates showed higher prevalence of ExPEC-associated virulence genes and CTX-M-G1/G9 resistance determinants as compared to clinical non-ST131 isolates. While blaOXA-48/NDM carbapenemases were mostly found in ST131 clone, resistance rate against ertapenem was higher among clinical non-ST131 strains. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, followed by non-ST131 and broiler isolates. CONCLUSIONS ST131 isolates possess the ability to make a balance between clonality and extent of resistance/virulence genes content, so this phenomenon gives a fitness advantage over other E. coli clones. The broilers E. coli population poses a potential zoonotic risk which could be transmitted to the community through the food chain. A number of factors are involved in the dissemination of and infections due to ST131 clone.
Collapse
Affiliation(s)
- Zoya Hojabri
- Microbiology Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Darabi
- Microbiology Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maedeh Arab
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fereshteh Saffari
- Microbiology Department, Faculty of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Pajand
- Microbiology Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. .,Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Genomic and Functional Analysis of Emerging Virulent and Multidrug-Resistant Escherichia coli Lineage Sequence Type 648. Antimicrob Agents Chemother 2019; 63:AAC.00243-19. [PMID: 30885899 DOI: 10.1128/aac.00243-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Abstract
The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.
Collapse
|
14
|
Decano AG, Ludden C, Feltwell T, Judge K, Parkhill J, Downing T. Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. mSphere 2019; 4:e00130-19. [PMID: 31068432 PMCID: PMC6506616 DOI: 10.1128/msphere.00130-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022] Open
Abstract
The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes blaCTX-M-14, blaCTX-M-15, and blaCTX-M-27, which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding blaCTX-M genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with blaCTX-M-15, blaCTX-M-14, and blaCTX-M-27 genes identified in three, one, and one isolates, respectively. One sample had no blaCTX-M gene. Two samples had chromosomal blaCTX-M-14 and blaCTX-M-15 genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes.
Collapse
Affiliation(s)
| | - Catherine Ludden
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Kim Judge
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
15
|
Identification of novel DNA sequence associated with pathogenicity island III536 locus in Uropathogenic Escherichia coli isolate and distribution of virulence determinants in β-lactam resistant isolates. Microb Pathog 2018; 123:393-397. [DOI: 10.1016/j.micpath.2018.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022]
|
16
|
Tracking bacterial virulence: global modulators as indicators. Sci Rep 2016; 6:25973. [PMID: 27169404 PMCID: PMC4864382 DOI: 10.1038/srep25973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/26/2016] [Indexed: 01/30/2023] Open
Abstract
The genomes of Gram-negative bacteria encode paralogues and/or orthologues of global modulators. The nucleoid-associated H-NS and Hha proteins are an example: several enterobacteria such as Escherichia coli or Salmonella harbor H-NS, Hha and their corresponding paralogues, StpA and YdgT proteins, respectively. Remarkably, the genome of the pathogenic enteroaggregative E. coli strain 042 encodes, in addition to the hha and ydgT genes, two additional hha paralogues, hha2 and hha3. We show in this report that there exists a strong correlation between the presence of these paralogues and the virulence phenotype of several E. coli strains. hha2 and hha3 predominate in some groups of intestinal pathogenic E. coli strains (enteroaggregative and shiga toxin-producing isolates), as well as in the widely distributed extraintestinal ST131 isolates. Because of the relationship between the presence of hha2/hha3 and some virulence factors, we have been able to provide evidence for Hha2/Hha3 modulating the expression of the antigen 43 pathogenic determinants. We show that tracking global modulators or their paralogues/orthologues can be a new strategy to identify bacterial pathogenic clones and propose PCR amplification of hha2 and hha3 as a virulence indicator in environmental and clinical E. coli isolates.
Collapse
|
17
|
Dautzenberg MJD, Haverkate MR, Bonten MJM, Bootsma MCJ. Epidemic potential of Escherichia coli ST131 and Klebsiella pneumoniae ST258: a systematic review and meta-analysis. BMJ Open 2016; 6:e009971. [PMID: 26988349 PMCID: PMC4800154 DOI: 10.1136/bmjopen-2015-009971] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Observational studies have suggested that Escherichia coli sequence type (ST) 131 and Klebsiella pneumoniae ST258 have hyperendemic properties. This would be obvious from continuously high incidence and/or prevalence of carriage or infection with these bacteria in specific patient populations. Hyperendemicity could result from increased transmissibility, longer duration of infectiousness, and/or higher pathogenic potential as compared with other lineages of the same species. The aim of our research is to quantitatively estimate these critical parameters for E. coli ST131 and K. pneumoniae ST258, in order to investigate whether E. coli ST131 and K. pneumoniae ST258 are truly hyperendemic clones. PRIMARY OUTCOME MEASURES A systematic literature search was performed to assess the evidence of transmissibility, duration of infectiousness, and pathogenicity for E. coli ST131 and K. pneumoniae ST258. Meta-regression was performed to quantify these characteristics. RESULTS The systematic literature search yielded 639 articles, of which 19 data sources provided information on transmissibility (E. coli ST131 n=9; K. pneumoniae ST258 n=10)), 2 on duration of infectiousness (E. coli ST131 n=2), and 324 on pathogenicity (E. coli ST131 n=285; K. pneumoniae ST258 n=39). Available data on duration of carriage and on transmissibility were insufficient for quantitative assessment. In multivariable meta-regression E. coli isolates causing infection were associated with ST131, compared to isolates only causing colonisation, suggesting that E. coli ST131 can be considered more pathogenic than non-ST131 isolates. Date of isolation, location and resistance mechanism also influenced the prevalence of ST131. E. coli ST131 was 3.2 (95% CI 2.0 to 5.0) times more pathogenic than non-ST131. For K. pneumoniae ST258 there were not enough data for meta-regression assessing the influence of colonisation versus infection on ST258 prevalence. CONCLUSIONS With the currently available data, it cannot be confirmed nor rejected, that E. coli ST131 or K. pneumoniae ST258 are hyperendemic clones.
Collapse
Affiliation(s)
- M J D Dautzenberg
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M R Haverkate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands Faculty of Sciences, Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Schaufler K, Semmler T, Pickard DJ, de Toro M, de la Cruz F, Wieler LH, Ewers C, Guenther S. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages. Front Microbiol 2016; 7:336. [PMID: 27014251 PMCID: PMC4794485 DOI: 10.3389/fmicb.2016.00336] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/03/2016] [Indexed: 11/20/2022] Open
Abstract
Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-“cured” variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages.
Collapse
Affiliation(s)
- Katharina Schaufler
- Veterinary Faculty, Institute of Microbiology and Epizootics, Freie Universität Berlin Berlin, Germany
| | - Torsten Semmler
- Veterinary Faculty, Institute of Microbiology and Epizootics, Freie Universität BerlinBerlin, Germany; Robert Koch InstituteBerlin, Germany
| | | | - María de Toro
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (UC-SODERCAN-CSIC), Universidad de Cantabria Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (UC-SODERCAN-CSIC), Universidad de Cantabria Santander, Spain
| | - Lothar H Wieler
- Veterinary Faculty, Institute of Microbiology and Epizootics, Freie Universität BerlinBerlin, Germany; Robert Koch InstituteBerlin, Germany
| | - Christa Ewers
- Veterinary Faculty, Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-Universität Giessen Giessen, Germany
| | - Sebastian Guenther
- Veterinary Faculty, Institute of Microbiology and Epizootics, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
19
|
Ciesielczuk H, Doumith M, Hope R, Woodford N, Wareham DW. Characterization of the extra-intestinal pathogenic Escherichia coli ST131 clone among isolates recovered from urinary and bloodstream infections in the United Kingdom. J Med Microbiol 2015; 64:1496-1503. [DOI: 10.1099/jmm.0.000179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- H. Ciesielczuk
- Antimicrobial Research Group, Centre for Immunology and Infectious Disease, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, UK
- Department of Clinical Microbiology, Royal Free Hospital, Pond Street, London, UK
| | - M. Doumith
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, UK
| | - R. Hope
- Centre for Infectious Disease Surveillance and Control, Healthcare Associated Infection and Antimicrobial Resistance Department, Public Health England, Colindale, UK
| | - N. Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Colindale, UK
| | - D. W. Wareham
- Antimicrobial Research Group, Centre for Immunology and Infectious Disease, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
20
|
Yang Y, Zhang A, Lei C, Wang H, Guan Z, Xu C, Liu B, Zhang D, Li Q, Jiang W, Pan Y, Yang C. Characteristics of Plasmids Coharboring 16S rRNA Methylases, CTX-M, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Isolates from Chickens in China. Foodborne Pathog Dis 2015; 12:873-80. [DOI: 10.1089/fpd.2015.2025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yongqiang Yang
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Anyun Zhang
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Changwei Lei
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongning Wang
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
- “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Zhongbin Guan
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Changwen Xu
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Bihui Liu
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongdong Zhang
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Qingzhou Li
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Jiang
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Pan
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Chunmei Yang
- College of Life Science, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
21
|
Calhau V, Domingues S, Ribeiro G, Mendonça N, Da Silva GJ. Interplay between pathogenicity island carriage, resistance profile and plasmid acquisition in uropathogenic Escherichia coli. J Med Microbiol 2015; 64:828-835. [PMID: 26293926 DOI: 10.1099/jmm.0.000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aimed to characterize the relationship between pathogenicity islands (PAIs), single virulence genes and resistance among uropathogenic Escherichia coli, evaluating the resistance plasmid carriage fitness cost related to PAIs. For 65 urinary E. coli, antimicrobial susceptibility and extended-spectrum β-lactamase production were determined with the Vitek 2 Advanced Expert system. Phylogroup determination, detection of PAIs and virulence genes papAH, papC, sfa/foc, afa/dra, iutA, kpsMII, cnf1, eaeA, hlyA, stx1 and stx2, plasmid replicon typing and screening for plasmidic resistance determinants qnr, aac(6')-Ib-cr, qepA and bla(CTX-M) were carried out by PCR. Conjugation was performed between a donor carrying IncF, IncK and bla(CTX-M-15), and receptors carrying one to six PAIs. The relative fitness of transconjugants was estimated by pairwise competition experiments. PAI IV(536) (68 %), gene iutA (57 %) and resistance to ampicillin were the most prevalent traits. PAI I(536), PAI II(536), PAI III(536) and PAI II(J96) were exclusively associated with susceptibility to amoxicillin/clavulanic acid, cefotaxime, ceftazidime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole, and were more prevalent in strains susceptible to ampicillin and cefalotin. PAI IV(536), PAI II(CFT073) and PAI I(CFT073) were more prevalent among isolates showing resistance to amoxicillin/clavulanic acid, cefalotin, cefotaxime, ceftazidime and gentamicin. An inverse relationship was observed between the number of plasmids and the number of PAIs carried. Transconjugants were obtained for receptors carrying three or fewer PAIs. The mean relative fitness rates of these transconjugants were 0.87 (two PAIs), 1.00 (one PAI) and 1.09 (three PAI). The interplay between resistance, PAI carriage and fitness cost of plasmid acquisition could be considered PAI specific, and not necessarily associated with the number of PAIs.
Collapse
Affiliation(s)
- Vera Calhau
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Clinical Pathology Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Sara Domingues
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Graça Ribeiro
- Clinical Pathology Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Nuno Mendonça
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
|