In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption.
Int J Biol Macromol 2019;
139:361-366. [PMID:
31369785 DOI:
10.1016/j.ijbiomac.2019.07.189]
[Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/17/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022]
Abstract
Nanocellulose, including nano-fibrillated cellulose (NFC), has been a topic of significant interest and a number of studies have focused on using it for the fabrication of stable oil-in-water emulsions. However, limited studies have been performed to understand the potential influence of NFC on lipid digestion and absorption. In this study, a simulated digestion model, consisting of salivary, gastric and intestinal digestion phases, was used to investigate the effects of NFC on lipid digestion and absorption. To better understand the mechanisms behind, the effects of NFC on lipase activity, micellar solubility of cholesterol and bile acid diffusion were studied in addition to the cholesterol adsorption capacity of NFC, with conventional cellulose as a comparison. Results showed that NFC slightly reduced lipase activity, but NFC or cellulose at concentrations up to 1.1% (w/w) did not significantly influence lipid digestion under simulated intestinal conditions. Moreover, NFC showed greater bile acid retardation effect than cellulose, and slightly higher cholesterol adsorption capacity probably due to its larger specific surface area. Nonetheless, NFC did not significantly affect micellar solubility of cholesterol. These results suggest that NFC, when added into fat-rich foods, may have health benefits via its viscosity effect and retardation effect on bile acid absorption.
Collapse