1
|
Gutierrez-Tordera L, Panisello L, García-Gonzalez P, Ruiz A, Cantero JL, Rojas-Criollo M, Mursil M, Atienza M, Novau-Ferré N, Mateu-Fabregat J, Mostafa H, Puig D, Folch J, Rashwan H, Marquié M, Boada M, Papandreou C, Bulló M. Metabolic Signature of Insulin Resistance and Risk of Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2025; 80:glae283. [PMID: 39569614 DOI: 10.1093/gerona/glae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Substantial evidence supports the relationship between peripheral insulin resistance (IR) and the development of Alzheimer's disease (AD)-dementia. However, the mechanisms explaining these associations are only partly understood. We aimed to identify a metabolic signature of IR associated with the progression from mild cognitive impairment (MCI) to AD-dementia. METHODS This is a case-control study on 400 MCI subjects, free of type 2 diabetes, within the ACE cohort, including individuals ATN + and ATN-. After a median of 2.1 years of follow-up, 142 subjects converted to AD-dementia. IR was assessed using the homeostasis model assessment for insulin resistance (HOMA-IR). A targeted multiplatform approach profiled over 600 plasma metabolites. Elastic net penalized linear regression with 10-fold cross-validation was employed to select those metabolites associated with HOMA-IR. The prediction ability of the signature was assessed using support vector machine and performance metrics. The metabolic signature was associated with AD-dementia risk using a multivariable Cox regression model. Using counterfactual-based mediation analysis, we investigated the mediation role of the metabolic signature between HOMA-IR and AD-dementia. The metabolic pathways in which the metabolites were involved were identified using MetaboAnalyst. RESULTS The metabolic signature comprised 18 metabolites correlated with HOMA-IR. After adjustments by confounders, the signature was associated with increased AD-dementia risk (HR = 1.234; 95% CI = 1.019-1.494; p < .05). The metabolic signature mediated 35% of the total effect of HOMA-IR on AD-dementia risk. Significant metabolic pathways were related to glycerophospholipid and tyrosine metabolism. CONCLUSIONS We have identified a blood-based metabolic signature that reflects IR and may enhance our understanding of the biological mechanisms through which IR affects AD-dementia.
Collapse
Affiliation(s)
- Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Laura Panisello
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Pablo García-Gonzalez
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Agustín Ruiz
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Luis Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University (UPO), 41013 Seville, Spain
| | - Melina Rojas-Criollo
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Muhammad Mursil
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University (UPO), 41013 Seville, Spain
| | - Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Hamza Mostafa
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Domènec Puig
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Hatem Rashwan
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Marta Marquié
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Mercè Boada
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| |
Collapse
|
2
|
Liu ZY, Zhang H, Sun XL, Liu JY. Causal association between metabolites and age-related macular degeneration: a bidirectional two-sample mendelian randomization study. Hereditas 2024; 161:51. [PMID: 39707561 DOI: 10.1186/s41065-024-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly population. Accumulating evidence has revealed the possible association between metabolites and AMD. This study aimed to assess the effect of plasma metabolites on AMD and its two subtypes using a bidirectional two-sample Mendelian randomization approach. METHODS The causality between plasma metabolites and AMD was assessed by a bidirectional two-sample Mendelian randomization (MR) analysis using the genome-wide association studies (GWAS) summary statistics of 1400 genetically determined metabolites (GDMs) and AMD. For this MR analysis, inverse variance weighted (IVW) was used as the primary method, with weighted median, MR-Egger, weighted mode, and simple mode as supplementary methods to examine the causality. MR-Egger intercept, Cochran's Q, and MR-PRESSO test were employed to evaluate possible pleiotropy and heterogeneity. RESULTS The results of IVW showed significant causal associations between 13 GDMs and AMD. 1-stearoyl-GPE (18:0), androstenediol (3β,17β) monosulfate, stearoyl sphingomyelin (d18:1/18:0), xylose, and X-11,850 exhibited a protective effect on AMD, while gulonate and mannonate increased the risk of AMD. 1-stearoyl-GPE (18:0) and X-11,850 exhibited protective effects on dry AMD. DHEAS, 1-stearoyl-GPE (18:0), 5α-androstan-3β,17β-diol disulfate, xylose, androstenediol (3β,17β) monosulfate, and N2-acetyl, N6, N6-dimethyllysine exhibited a protective effect on wet AMD, while succinimide, 16a-hydroxy DHEA 3-sulfate, and X-13,553 increased the risk of wet AMD. Horizontal pleiotropy and heterogeneity did not distort the causal estimates. In the reverse MR analysis, AMD reduced the androstenediol (3β,17β) monosulfate level, and increased the stearoyl sphingomyelin(d18:1/18:0) level. CONCLUSION This study supported the effect of plasma metabolites on AMD, providing novel insights for clinical diagnosis and prevention strategy.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China.
| | - Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Xiu-Li Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Jian-Ying Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
3
|
Li Y, Xu Y, Zhang B, Wang Z, Ma L, Sun L, Wang X, Lin Y, Li JA, Wu C. Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila. J Tradit Complement Med 2024; 14:424-434. [PMID: 39035690 PMCID: PMC11259714 DOI: 10.1016/j.jtcme.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Biwei Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhigang Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Leilei Ma
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Longyu Sun
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiuping Wang
- Institute of Coastal Agriculture Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, China
| | - Yimin Lin
- First Hospital of Qinhuangdao, 258 Wenhua Road, Qinguangdao, 066000, China
| | - Ji-an Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| |
Collapse
|
4
|
Guo H, Wu H, Hou Y, Hu P, Du J, Cao L, Yang R, Dong X, Li Z. Oat β-D-glucan ameliorates type II diabetes through TLR4/PI3K/AKT mediated metabolic axis. Int J Biol Macromol 2023; 249:126039. [PMID: 37516222 DOI: 10.1016/j.ijbiomac.2023.126039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Diabetes is one of the major global public health problems. Our previous results found that oat β-D-glucan exhibited ameliorative effects on diabetic mice, but the underlying mechanism is unclear. The present study indicates that oat β-D-glucan increased glycogen content, decreased glycogen synthase (GS) phosphorylation and increased hepatic glycogen synthase kinase 3β (GSK3β) phosphorylation for glycogen synthesis via PI3K/AKT/GSK3-mediated GS activation. Moreover, oat β-D-glucan inhibited gluconeogenesis through the PI3K/AKT/Foxo1-mediated phosphoenolpyruvate carboxykinase (PEPCK) decrease. In addition, oat β-D-glucan enhanced glucose catabolism through elevated protein levels of COQ9, UQCRC2, COXIV and ATP5F complexes involved in oxidative phosphorylation, as well as that of TFAM, a key regulator of mitochondrial gene expression. Importantly, our results showed that oat β-D-glucan maintained hepatic glucose balance via TLR4-mediated intracellular signal. After TLR4 blocking with anti-TLR4 antibody, oat β-D-glucan had almost no effect on high glucose-induced HepG2 cells. These data revealed that oat β-D-glucan maintains glucose balance by regulating the TLR4/PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030002, China
| | - YanBing Hou
- College of Life Science, Shanxi University, Taiyuan 030002, China
| | - Pengli Hu
- College of Life Science, Shanxi University, Taiyuan 030002, China
| | - Jine Du
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China
| | - Lijia Cao
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China
| | - Ruipeng Yang
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030000, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China.
| |
Collapse
|
5
|
Kim E. Effects of Natural Alternative Sweeteners on Metabolic Diseases. Clin Nutr Res 2023; 12:229-243. [PMID: 37593210 PMCID: PMC10432160 DOI: 10.7762/cnr.2023.12.3.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
The rising prevalence of obesity and diabetes is a significant health concern both in globally and is now regarded as a worldwide epidemic. Added sugars like sucrose and high-fructose corn syrup (HFCS) are a major concern due to their link with an increased incidence of diet-induced obesity and diabetes. The purpose of this review is to provide insight into the effects of natural sweeteners as alternatives to sucrose and HFCS, which are known to have negative impacts on metabolic diseases and to promote further research on sugar consumption with a focus on improving metabolic health. The collective evidences suggest that natural alternative sweeteners have positive impacts on various markers associated with obesity and diabetes, including body weight gain, hepatic fat accumulation, abnormal blood glucose or lipid homeostasis, and insulin resistance. Taken together, natural alternative sweeteners can be useful substitutes to decrease the risk of obesity and diabetes compared with sucrose and HFCS.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
Barbe V, de Toro-Martín J, San-Cristobal R, Garneau V, Pilon G, Couture P, Roy D, Couillard C, Marette A, Vohl MC. A discriminant analysis of plasma metabolomics for the assessment of metabolic responsiveness to red raspberry consumption. Front Nutr 2023; 10:1104685. [PMID: 37125033 PMCID: PMC10130762 DOI: 10.3389/fnut.2023.1104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/06/2023] [Indexed: 05/02/2023] Open
Abstract
Background Many studies show that the intake of raspberries is beneficial to immune-metabolic health, but the responses of individuals are heterogeneous and not fully understood. Methods In a two-arm parallel-group, randomized, controlled trial, immune-metabolic outcomes and plasma metabolite levels were analyzed before and after an 8-week red raspberry consumption. Based on partial least squares discriminant analysis (PLS-DA) on plasma xenobiotic levels, adherence to the intervention was first evaluated. A second PLS-DA followed by hierarchical clustering was used to classify individuals into response subgroups. Clinical immune and metabolic outcomes, including insulin resistance (HOMA-IR) and sensitivity (Matsuda, QUICKI) indices, during the intervention were assessed and compared between response subgroups. Results Two subgroups of participants, type 1 responders (n = 17) and type 2 responders (n = 5), were identified based on plasma metabolite levels measured during the intervention. Type 1 responders showed neutral to negative effects on immune-metabolic clinical parameters after raspberry consumption, and type 2 responders showed positive effects on the same parameters. Changes in waist circumference, waist-to-hip ratio, fasting plasma apolipoprotein B, C-reactive protein and insulin levels as well as Matsuda, HOMA-IR and QUICKI were significantly different between the two response subgroups. A deleterious effect of two carotenoid metabolites was also observed in type 1 responders but these variables were significantly associated with beneficial changes in the QUICKI index and in fasting insulin levels in type 2 responders. Increased 3-ureidopropionate levels were associated with a decrease in the Matsuda index in type 2 responders, suggesting that this metabolite is associated with a decrease in insulin sensitivity for those subjects, whereas the opposite was observed for type 1 responders. Conclusion The beneficial effects associated with red raspberry consumption are subject to inter-individual variability. Metabolomics-based clustering appears to be an effective way to assess adherence to a nutritional intervention and to classify individuals according to their immune-metabolic responsiveness to the intervention. This approach may be replicated in future studies to provide a better understanding of how interindividual variability impacts the effects of nutritional interventions on immune-metabolic health.
Collapse
Affiliation(s)
- Valentin Barbe
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Juan de Toro-Martín
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Rodrigo San-Cristobal
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Véronique Garneau
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - Geneviève Pilon
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- Québec Heart and Lung Institute (IUCPQ) Research Center, Québec City, QC, Canada
| | - Patrick Couture
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Québec City, QC, Canada
| | - Denis Roy
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
| | - Charles Couillard
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
| | - André Marette
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- Québec Heart and Lung Institute (IUCPQ) Research Center, Québec City, QC, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, santé et société (NUTRISS), Université Laval, Québec City, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
- School of Nutrition, Université Laval, Québec City, QC, Canada
- *Correspondence: Marie-Claude Vohl,
| |
Collapse
|
7
|
Shao MM, Xiang HJ, Lu H, Yin PH, Li GW, Wang YM, Chen L, Chen QG, Zhao C, Lu Q, Wu T, Ji G. Candidate metabolite markers of peripheral neuropathy in Chinese patients with type 2 diabetes. Am J Transl Res 2022; 14:5420-5440. [PMID: 36105024 PMCID: PMC9452362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To analyze the serum and urine metabolites present in type 2 diabetes mellitus (T2DM) patients and T2DM patients with diabetic peripheral neuropathy (DPN) and to select differentially expressed biomarkers for early diagnosis of DPN. METHODS Serum and urine metabolites from 74 T2DM patients with peripheral neuropathy and 41 without peripheral neuropathy were analyzed using gas chromatograph system with time-of-flight mass spectrometer metabolomics to detect biomarkers of peripheral neuropathy in T2DM. RESULTS There were increased serum triglycerides, alanine aminotransferase, and decreased C-peptide, and total cholesterol levels in T2DM patients with DPN compared to those without peripheral neuropathy. Metabolomic analysis revealed visible differences in metabolic characteristics between two groups, and overall 53 serum differential metabolites and 56 urine differential metabolites were identified with variable influence on projection (VIP) >1 and P<0.05. To further analyze the correlation between the identified metabolites and DPN, four serum metabolites and six urine metabolites were selected with VIP>2, and fold change (FC) >1, including serum β-alanine, caproic acid, β-alanine/L-aspartic acid, and L-arabinose/L-arabitol, and urine gluconic acid, erythritol, galactonic acid, guanidoacetic acid, cytidine, and aminoadipic acid. Furthermore, five serum biomarkers and six urine biomarkers were found to show significant changes (P<0.05, VIP>1, and FC>1) respectively in patients with mild, moderate, and severe DPN. In addition, we found that glyoxylate and dicarboxylate metabolism was a differential metabolic pathway not only between T2DM and DPN, but also among different degrees of DPN. The differential metabolites such as β-alanine and caproic acid are expected to be biomarkers for DPN patients, and the significant changes in glyoxylate and dicarboxylate metabolism may be related to the pathogenesis of DPN. CONCLUSION There were serum and urine spectrum metabolomic differences in patients with DPN, which could serve as biomarkers for T2DM and DPN patients.
Collapse
Affiliation(s)
- Ming-Mei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Hong-Jiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Hao Lu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Pei-Hao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200062, China
| | - Guo-Wen Li
- Pharmacy Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| | - Yun-Man Wang
- Putuo Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200062, China
| | - Lin Chen
- Putuo Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200062, China
| | - Qing-Guang Chen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Cheng Zhao
- Pharmacy Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| | - Qun Lu
- Pharmacy Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200071, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
8
|
Thakur V, Kumar V, Kumar V, Singh D. Xylooligosaccharides production using multi-substrate specific xylanases secreted by a psychrotolerant Paenibacillus sp. PCH8. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Cheudjeu A. The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites. Molecules 2022; 27:molecules27061947. [PMID: 35335311 PMCID: PMC8954261 DOI: 10.3390/molecules27061947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity.
Collapse
|
10
|
Wang A, Zhang Z, Ding Q, Yang Y, Bindelle J, Ran C, Zhou Z. Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes 2022; 13:1-15. [PMID: 33840371 PMCID: PMC8043178 DOI: 10.1080/19490976.2021.1900996] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The capability of carbohydrate utilization in fish is limited compared to mammals. It has scientific and practical significance to improve the ability of fish to use carbohydrates. The efficiency of dietary carbohydrate utilization varies among fish with different feeding habits, which are associated with differential intestinal microbiota. In this study, we found that zebrafish fed with omnivorous diet (OD) and herbivorous diet (HD) showed better glucose homeostasis compared with carnivorous diet (CD) fed counterpart and the differential glucose utilization efficiency was attributable to the intestinal microbiota. The commensal bacterium Cetobacterium somerae, an acetate producer, was enriched in OD and HD groups, and administration of C. somerae in both adult zebrafish and gnotobiotic larval zebrafish models resulted in improved glucose homeostasis and increased insulin expression, supporting a causative role of C. somerae enrichment in glucose homeostasis in fish. The enrichment of C. somerae was constantly associated with higher acetate levels, and dietary supplementation of acetate promotes glucose utilization in zebrafish, suggesting a contribution of acetate in the function of C. somerae. Furthermore, we found that the beneficial effect of both acetate and C. somerae on glucose homeostasis was mediated through parasympathetic activation. Overall, this work highlights the existence of a C. somerae-brain axis in the regulation of glucose homeostasis in fish and suggests a role of acetate in mediating the axis function. Our results suggest potential strategies for improvement of fish carbohydrate utilization.
Collapse
Affiliation(s)
- Anran Wang
- Department of AgroBioChem/Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, Liège University (ULiège), Gembloux, Belgium,China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Qianwen Ding
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Jérôme Bindelle
- Department of AgroBioChem/Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, Liège University (ULiège), Gembloux, Belgium
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina,Chao Ran
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, BeijingChina,CONTACT Zhi-gang Zhou
| |
Collapse
|
11
|
Alam YH, Kim R, Jang C. Metabolism and Health Impacts of Dietary Sugars. J Lipid Atheroscler 2022; 11:20-38. [PMID: 35118020 PMCID: PMC8792817 DOI: 10.12997/jla.2022.11.1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022] Open
Abstract
Consumption of excessive amounts of added sugars and their effects on human health has been a major concern in the last several decades. Epidemiological data suggest that the incidence of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, cardiovascular disease and diabetes, has increased due to chronic surplus consumption of these sugars. While many of these sugars have been isolated and studied for centuries, their health impacts and exact underlying mechanisms are still unclear. In this review, we discuss the pathophysiological role of 6 major simple sugars present in the human diet and the biochemical and molecular pathways related to their metabolism by different organs and gut microbiota, with a focus on the most recent investigations.
Collapse
Affiliation(s)
- Yasmine Henna Alam
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Raymond Kim
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Behl T, Gupta A, Sehgal A, Sharma S, Singh S, Sharma N, Diaconu CC, Rahdar A, Hafeez A, Bhatia S, Al-Harrasi A, Bungau S. A spotlight on underlying the mechanism of AMPK in diabetes complications. Inflamm Res 2021; 70:939-957. [PMID: 34319417 DOI: 10.1007/s00011-021-01488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is one of the centenarian metabolic disorders and is considered as a stellar and leading health issue worldwide. According to the International Diabetes Federation (IDF) Diabetes Atlas and National Diabetes Statistics, the number of diabetic patients will increase at an exponential rate from 463 to 700 million by the year 2045. Thus, there is a great need for therapies targeting functions that can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. 5' adenosine monophosphate-activated protein kinase (AMPK) activation, by various direct and indirect factors, might help to overcome the hurdles (like insulin resistance) associated with the conventional approach. MATERIALS AND RESULTS A thorough review and analysis was conducted using various database including MEDLINE and EMBASE databases, with Google scholar using various keywords. This extensive review concluded that various drugs (plant-based, synthetic indirect/direct activators) are available, showing tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without causing insulin resistance, and improving insulin sensitivity. Moreover, these drugs have an effect against diabetes and are therapeutically beneficial in the treatment of diabetes-associated complications (neuropathy and nephropathy) via mechanism involving inhibition of nuclear translocation of SMAD4 (SMAD family member) expression and association with peripheral nociceptive neurons mediated by AMPK. CONCLUSION From the available information, it may be concluded that various indirect/direct activators show tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without resulting in insulin resistance, and may improve insulin sensitivity, as well. Therefore, in a nut shell, it may be concluded that the regulation of APMK functions by various direct/indirect activators may bring promising results. These activators may emerge as a novel therapy in diabetes and its associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Camelia Cristina Diaconu
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, Bucharest, Romania.,Department 5, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur, Uttar Pradesh, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
13
|
Efficient and modified 2-NBDG assay to measure glucose uptake in cultured myotubes. J Pharmacol Toxicol Methods 2021; 109:107069. [PMID: 33892108 DOI: 10.1016/j.vascn.2021.107069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Under type-2 diabetes, insulin resistance develops in skeletal muscles as a key defect and to study the disorder, its manifestation, and possible solution, measurement of glucose uptake is a fundamental necessity. Of various approaches (i.e. scintillation counting, flow cytometry, fluorometry and spectrophotometry) fluorescent labelled glucose analogue, 2-NBDG solution is the most popular one. Although 2-NBDG based assay is the most widely used approach in various cells including skeletal muscle, even then all available protocols possess huge variability which impacts the overall data reproducibility. Moreover, starvation (use of glucose/serum free medium), one of the prerequisite condition for glucose uptake assay, itself induces stress specifically during longer pre-incubation periods and alters muscle cell metabolism and morphology, but the fact has not been duly considered. Therefore in the present article, using specific skeletal muscle cells i.e. C2C12 myotubes, we have re-established the conditions like pre-incubation time period, concentrations of insulin, glucose and serum/BSA while maintaining the cultured myotubes in morphologically healthy state. Our lab standardized protocols were observed to be effective in studying insulin resistance condition induced by diverse stresses (oxidative & inflammation) in myotubes. Comparative study conducted with already established protocols demonstrates that the present method is more efficient, effective and better improvised for studying glucose uptake in C2C12.
Collapse
|
14
|
Kim E, Kim Y, Lee J, Shin JH, Seok PR, Kim Y, Yoo SH. Leucrose, a natural sucrose isomer, suppresses dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization via JAK1/STAT6 signaling. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Huntley NF, Patience JF. Xylose: absorption, fermentation, and post-absorptive metabolism in the pig. J Anim Sci Biotechnol 2018; 9:4. [PMID: 29340150 PMCID: PMC5759861 DOI: 10.1186/s40104-017-0226-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Xylose, as β-1,4-linked xylan, makes up much of the hemicellulose in cell walls of cereal carbohydrates fed to pigs. As inclusion of fibrous ingredients in swine diets continues to increase, supplementation of carbohydrases, such as xylanase, is of interest. However, much progress is warranted to achieve consistent enzyme efficacy, including an improved understanding of the utilization and energetic contribution of xylanase hydrolysis product (i.e. xylooligosaccharides or monomeric xylose). This review examines reports on xylose absorption and metabolism in the pig and identifies gaps in this knowledge that are essential to understanding the value of carbohydrase hydrolysis products in the nutrition of the pig. Xylose research in pigs was first reported in 1954, with only sporadic contributions since. Therefore, this review also discusses relevant xylose research in other monogastric species, including humans. In both pigs and poultry, increasing purified D-xylose inclusion generally results in linear decreases in performance, efficiency, and diet digestibility. However, supplementation levels studied thus far have ranged from 5% to 40%, while theoretical xylose release due to xylanase supplementation would be less than 4%. More than 95% of ingested D-xylose disappears before the terminal ileum but mechanisms of absorption have yet to be fully elucidated. Some data support the hypothesis that mechanisms exist to handle low xylose concentrations but become overwhelmed as luminal concentrations increase. Very little is known about xylose metabolic utilization in vertebrates but it is well recognized that a large proportion of dietary xylose appears in the urine and significantly decreases the metabolizable energy available from the diet. Nevertheless, evidence of labeled D-xylose-1-14C appearing as expired 14CO2 in both humans and guinea pigs suggests that there is potential, although small, for xylose oxidation. It is yet to be determined if pigs develop increased xylose metabolic capacity with increased adaptation time to diets supplemented with xylose or xylanase. Overall, xylose appears to be poorly utilized by the pig, but it is important to consider that only one study has been reported which supplemented D-xylose dietary concentrations lower than 5%. Thus, more comprehensive studies testing xylose metabolic effects at dietary concentrations more relevant to swine nutrition are warranted.
Collapse
Affiliation(s)
- Nichole F Huntley
- Department of Animal Science, 213 Kildee Hall, Iowa State University, Ames, 50011 IA USA
| | - John F Patience
- Department of Animal Science, 201B Kildee Hall, Iowa State University, Ames, 50011 IA USA
| |
Collapse
|
16
|
Chung JY, Kim YS, Kim Y, Yoo SH. Regulation of Inflammation by Sucrose Isomer, Turanose, in Raw 264.7 Cells. J Cancer Prev 2017; 22:195-201. [PMID: 29018785 PMCID: PMC5624461 DOI: 10.15430/jcp.2017.22.3.195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022] Open
Abstract
Increased sugar consumption has been proposed to be a risk factor for obesity-related metabolic disorders. The objective of this study was to investigate the anti-inflammatory effect of turanose in Raw 264.7 macrophages. Turanose (3-O-α-D-glucosyl-D-fructose), an isomer of sucrose, naturally exists in honey. For these studies, macrophages were treated with total glucose (Glu), 50% Glu/50% turanose (T50), 25% Glu/75% turanose (T75), and 100% turanose (T100), each with a total concentration of 25 mM in cell media. Expressions of inflammatory enzymes and cytokines were analyzed. Cell viability was not affected in the turanose treated groups compared to the Glu group. Lipopolysaccharide and glucose-induced nitric oxide production, protein expression of inducible nitric oxide synthase, COX-2, and superoxide dismutase 2, and mRNA expression levels of interleukin (IL)-1β and IL-18 were significantly suppressed by turanose treatment. These results demonstrate that turanose exerts anti-inflammatory effects in vitro, and possesses potential to serve therapeutic functional sweetener for testing in vivo and in clinical trials.
Collapse
Affiliation(s)
- Joo-Yeon Chung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Yoo-Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Korea
| |
Collapse
|
17
|
Pfützner A, Demircik F, Sachsenheimer D, Spatz J, Pfützner AH, Ramljak S. Impact of Xylose on Glucose-Dehydrogenase-Based Blood Glucose Meters for Patient Self-Testing. J Diabetes Sci Technol 2017; 11:577-583. [PMID: 28745092 PMCID: PMC5505425 DOI: 10.1177/1932296816678428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pentose xylose is enriched in edible algae, and is increasingly used as a slowly metabolized carbohydrate in functional food. It is known to interfere with glucose-dehydrogenase-based (GDH) blood glucose measurement systems for patients self-testing. The aim of our study was to investigate the extent of xylose interference in commercially available blood glucose meters. A heparinized whole blood sample was manipulated to contain 3 different glucose concentrations (50-80 mg/dL, 130-160 mg/dL, and 250-300 mg/dL) and 4 different xylose concentrations (0 mg/dL, 25 mg/dL, 50 mg/dL, and 100 mg/dL). Each sample was measured 3 times with 2 different strip lots per test meter (AccuChek Aviva, AccuChek Connect, Contour Next, FreeStyle Freedom Lite, FreeStyle Insulinx, MyStar Extra, OneTouch Verio IQ, and Wellion Calla, reference: YSI GlucoStat analyzer). For analysis, we calculated the xylose capture rate, that is, the xylose amount wrongly displayed as glucose. No xylose interference was seen with 4 meters: AccuChek Aviva (mean capture rate 0%), AccuChek Connect (-2%), MyStar Extra (10%), and Wellion Calla (8%). In contrast, substantial interference was observed with Contour Next (100%), FreeStyle Freedom Lite (104%), FreeStyle Insulinx (120%), and OneTouch Verio IQ (162%). We observed xylose interference in several GDH-based meters. This may become important with increased use of xylose in dietary and functional food products, in particular in products designed for weight loss. Our findings may affect the meter selection for patients who are consuming such food products as part of their lifestyle treatment regimen.
Collapse
Affiliation(s)
- Andreas Pfützner
- Pfützner Science & Health Institute, Mainz, Germany
- Sciema UG, Mainz, Germany
- Andreas Pfützner, MD, PhD, Pfützner Science & Health Institute, Parcusstr 8, Mainz D-55116, Germany.
| | - Filiz Demircik
- Pfützner Science & Health Institute, Mainz, Germany
- Sciema UG, Mainz, Germany
| | | | | | | | | |
Collapse
|