1
|
Kim MS, Park S, Kwon Y, Kim T, Lee CH, Jang H, Kim EJ, Jung JI, Min S, Park KH, Choi SE. Effects of Ulmus macrocarpa Extract and Catechin 7-O- β-D-apiofuranoside on Muscle Loss and Muscle Atrophy in C2C12 Murine Skeletal Muscle Cells. Curr Issues Mol Biol 2024; 46:8320-8339. [PMID: 39194708 DOI: 10.3390/cimb46080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Muscle atrophy is known to be one of the symptoms leading to sarcopenia, which significantly impacts the quality of life, mortality, and morbidity. Therefore, the development of therapeutics for muscle atrophy is essential. This study focuses on addressing muscle loss and atrophy using Ulmus macrocarpa extract and its marker compound, catechin 7-O-β-D-apiofuranoside, by investigating their effects on biomarkers associated with muscle cell apoptosis. Additionally, protein and gene expression in a muscle atrophy model were examined using Western blotting and RT-PCR. Ulmus macrocarpa has been used as food or medicine due to its safety, including its roots, barks, and fruit. Catechin 7-O-β-D apiofuranoside is an indicator substance of plants of the Ulmus genus and has been reported to have various effects such as antioxidant and anti-inflammatory effects. The experimental results demonstrated that catechin glycoside and Ulmus macrocarpa extract decreased the expression of the muscle-degradation-related proteins Atrogin-1 and Muscle RING-Finger protein-1 (MuRF1) while increasing the expression of the muscle-synthesis-related proteins Myoblast determination (MyoD) and Myogenin. Gene expression confirmation experiments validated a decrease in the expression of Atrogin and MuRF1 mRNA and an increase in the expression of MyoD and Myogenin mRNA. Furthermore, an examination of muscle protein expression associated with the protein kinase B (Akt)/forkhead box O (FoxO) signaling pathway confirmed a decrease in the expression of FoxO, a regulator of muscle protein degradation. These results confirm the potential of Ulmus macrocarpa extract to inhibit muscle apoptosis, prevent muscle decomposition, and promote the development of functional materials for muscle synthesis, health-functional foods, and natural-product-derived medicines.
Collapse
Affiliation(s)
- Min Seok Kim
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - Sunmin Park
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - Yeeun Kwon
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - TaeHee Kim
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
| | - Chan Ho Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - HyeonDu Jang
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jae In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangil Min
- Division of Transplantation and Vascular Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Republic of Korea
| | - Sun Eun Choi
- Dr. Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon 24341, Republic of Korea
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Lee HS, Jung JI, Hong IK, Jang Y, Kim HB, Kim EJ. Anti-osteoporotic effects of Boswellia serrata gum resin extract in vitro and in vivo. Nutr Res Pract 2024; 18:309-324. [PMID: 38854466 PMCID: PMC11156763 DOI: 10.4162/nrp.2024.18.3.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study evaluated the beneficial effects of an ethanol extract of Boswellia serrata gum resin (FJH-UBS) in osteoporosis. MATERIALS/METHODS MC3T3-E1 osteoblastic cells and RAW 264.7 osteoclastic cells were treated with FJH-UBS. The alkaline phosphatase (ALP) activity, mineralization, collagen synthesis, osteocalcin content, and Runt-related transcription factor 2 (RUNX2) and Osterix expression were measured in MC3T3-E1 cells. The actin ring structures, tartrate-resistant acid phosphatase (TRAP) activity, and the nuclear factor of activator T-cells, cytoplasm 1 (NFATc1) expression were evaluated in RAW 264.7 cells. Ovariectomized ICR mice were orally administered FJH-UBS for eight weeks. The bone mineral density (BMD) and the serum levels of osteocalcin, procollagen 1 N-terminal propeptide (P1NP), osteoprotegerin, and TRAP 5b were analyzed. RESULTS FJH-UBS increased the ALP activity, collagen, osteocalcin, mineralization, and RUNX2 and osterix expression in MC3T3-E1 osteoblastic cells, whereas it decreased the TRAP activity, actin ring structures, and NFATc1 expression in RAW 264.7 osteoclastic cells. In ovariectomy-induced osteoporosis mice, FJH-UBS positively restored all of the changes in the bone metabolism biomarkers (BMD, osteocalcin, P1NP, osteoprotegerin, and TRAP 5b) caused by the ovariectomy. CONCLUSION FJH-UBS has anti-osteoporotic activity by promoting osteoblast activity and inhibiting osteoclast activity in vitro and in vivo, suggesting that FJH-UBS is a potential functional food ingredient for osteoporosis.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jae In Jung
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| | - In-Kee Hong
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - YoungSun Jang
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - Hye-Bin Kim
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - Eun Ji Kim
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
3
|
Liang J, Bao D, Ye Z, Cao B, Lu Z, Chen J. Neferine alleviates ovariectomy-induced osteoporosis by enhancing osteogenic differentiation of bone marrow mesenchymal stem cells via regulation of the p38MAPK pathway. Connect Tissue Res 2024; 65:253-264. [PMID: 38753365 DOI: 10.1080/03008207.2024.2351097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Osteoporosis, a skeletal ailment marked by bone metabolism imbalance and disruption of bone microarchitecture, Neferine, a bisbenzylisoquinoline alkaloid with diverse pharmacological activities, has received limited attention in the context of osteoporosis treatment. METHODS We employed a bilateral ovariectomy (OVX) rat model to induce osteoporosis and subsequently administered Neferine treatment for four weeks following successful model establishment. Throughout the modeling and treatment phases, we closely monitored rat body weights. We assessed alterations in bone tissue microstructure through micro-CT, HE staining, and safranin O-fast green staining. Levels of bone formation and resorption markers in serum were evaluated using ELISA assay. Western blot analysis was employed to determine the expression levels of p38MAPK, p-p38MAPK, and bone formation-related genes in bone tissue. We isolated and cultured OVX rat BMSCs (OVX-BMSCs) and induced osteogenic differentiation while simultaneously introducing Neferine and the p38MAPK inhibitor SB203580 for intervention. RESULTS Neferine treatment effectively curbed the rapid weight gain in OVX rats, ameliorated bone loss, and decreased serum levels of TRAP, CTX-I, PINP, and BALP. Most notably, Neferine promoted the expression of bone formation-related factors in bone tissue of OVX rats, while concurrently activating the p38MAPK signaling pathway. In in vitro experiments, Neferine facilitated the expression of bone formation-related factors in OVX-BMSCs, increased the osteogenic differentiation potential of OVX-BMSCs, and activated the p38MAPK signaling pathway. Nevertheless, SB203580 partially reversed Neferine's promotive effect. CONCLUSION Neferine can boost the osteoblastic differentiation of BMSCs and alleviate OVX-induced osteoporosis in rats by activating the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Jianwei Liang
- Department of Orthopedics, Taizhou First People's Hospital, Taizhou, China
| | - Dandan Bao
- Department of Pharmacy, Taizhou First People's Hospital, Taizhou, China
| | - Zhan Ye
- Department of Orthopedics, Taizhou First People's Hospital, Taizhou, China
| | - Binhao Cao
- Department of Orthopedics, Taizhou First People's Hospital, Taizhou, China
| | - Zhenyu Lu
- Department of Orthopedics, Taizhou First People's Hospital, Taizhou, China
| | - Jianjun Chen
- Department of Orthopedics, Taizhou First People's Hospital, Taizhou, China
| |
Collapse
|
4
|
Wang C, Shen J, Zhang W, Wang X, Xu X, Lu X, Xu D, Yao L. Aberrant expression of miR-33a-3p/IGF2 in postmenopausal osteoporosis patients and its role and mechanism in osteoporosis. J Orthop Surg Res 2023; 18:487. [PMID: 37415192 PMCID: PMC10326950 DOI: 10.1186/s13018-023-03883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP), the most frequent bone-related disease, is characterized by bone loss and fragile fractures, which is related to low bone density (BMD). This study aimed to illustrate the expression and mechanism of miR-33a-3p in osteoporosis. METHODS TargetScan and luciferase reporter assay were applied for verifying the relevance between miR-33a-3p and IGF2. Levels of miR-33a-3p, IGF2, Runx2, ALP and Osterix were checked using RT-qPCR and western blotting. hBMSCs proliferation, apoptosis and ALP activity were analyzed by MTT, flow cytometry (FCM) analysis and ALP detection kit, respectively. Moreover, the calcification of cells was assessed using Alizarin Red S staining. The average BMD was evaluated by dual-energy X-ray absorptiometry (DEXA) assay. RESULTS IGF2 was a target of miR-33a-3p. The level of miR-33a-3p was substantially higher and IGF2 expression was memorably lower in the serum of osteoporosis patients than that in healthy volunteers. Our results also pointed out that miR-33a-3p was reduced and IGF2 expression was enhanced during osteogenic differentiation. We concluded that miR-33a-3p negatively regulated the level of IGF2 in hBMSCs. Besides, miR-33a-3p mimic inhibited the osteogenic differentiation of hBMSCs via inhibiting the level of Runx2, ALP and Osterix and decreasing ALP activity. IGF2 plasmid dramatically reversed the influence of miR-33a-3p mimic on IGF2 expression, hBMSCs proliferation and apoptosis, and osteogenic differentiation of hBMSCs. CONCLUSION miR-33a-3p affected osteogenic differentiation of hBMSCs by targeting IGF2, indicating a potential use of miR-33a-3p as plasma biomarker and therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Changxin Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Jianfei Shen
- Nuclear Medicine Department, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161000, China
| | - Wei Zhang
- Endocrine Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Xiaoyu Wang
- Nuclear Medicine Department, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161000, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Xianghui Lu
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Dongbin Xu
- Qiqihar Medical University, Qiqihar, 161000, China
| | - Lan Yao
- Nuclear Medicine Department, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161000, China.
| |
Collapse
|
5
|
Eo H, Lee S, Kim SH, Ju IG, Huh E, Lim J, Park S, Oh MS. Petasites japonicus leaf extract inhibits Alzheimer's-like pathology through suppression of neuroinflammation. Food Funct 2022; 13:10811-10822. [DOI: 10.1039/d2fo01989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroinflammation is a crucial step involved in development and progression of Alzheimer's disease. The current study found that Petasites japonicus leaf extract inhibits neuroinflammation induced by lipopolysaccharides and amyloid beta oligomers.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong Hye Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeongin Lim
- NATUREBIO Co., Ltd., Seoul Biohub Industry-Academic Cooperation Center, Seoul 02447, Republic of Korea
| | - Sangsu Park
- NATUREBIO Co., Ltd., Seoul Biohub Industry-Academic Cooperation Center, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|