1
|
Mohamed HR, Hamed MM, El-Wakil EA, Okasha H. GC-MS analysis, anti-inflammatory and anti-proliferative properties of the aerial parts of three Mesembryanthemum spp.. Toxicol Rep 2024; 13:101829. [PMID: 39735355 PMCID: PMC11681886 DOI: 10.1016/j.toxrep.2024.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Background Due to their variability and safety, widespread research on phytochemicals continually encourages researchers to study various plants for their potential health benefits. Objectives This study aims to explore the phytochemical constituents of the aerial parts of three Mesembryanthemum spp.; M. nodiflorum, M. forsskaolii, and M. cordifolium existed in Egyptian nature using GC-MS analysis and studying their different biological activities in correlation to computational analysis. Methods Investigation of in vitro anti-inflammatory and anticancer activities and in silico studies of identified major compounds on VEGFR. Results: Thirty-three compounds were identified, octadecanoic acid, 2, 3-dihydroxypropyl ester, and 1H-Indene, 1-hexadecyl-2, 3-dihydro are the common compounds in the three extracts with different percentages. M. forsskaolii is the most extract with diverse phytoconstituents showing significant anticancer properties against the CACO2 cells with IC50 value equal to 31.78 µg/mL. Nevertheless, all extracts showed potent anti-inflammatory activity at high concentrations (500 µg/mL). M. nodiflorum, M. forsskaolii, and M. cordifolium had IC50 on HepG2 cells equal to 73.64, 88.18, and 87.82 µg/mL. Molecular findings showed the three extracts had distinct effects on apoptosis modulation in HepG2 cells. Conclusion The findings suggest that the studied extracts had potential therapeutic properties as anti-inflammatory and anticancer agents, supported by an in-silico interaction study.
Collapse
Affiliation(s)
- Heba R. Mohamed
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| | - Manal M. Hamed
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| | - Eman A. El-Wakil
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| | - Hend Okasha
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| |
Collapse
|
2
|
Rincón‐Cervera MÁ, Pagan Loeiro da Cunha‐Chiamolera T, Chileh‐Chelh T, Carmona‐Fernández M, Urrestarazu M, Guil‐Guerrero JL. Growth parameters, phytochemicals, and antitumor activity of wild and cultivated ice plants ( Mesembryanthemum crystallinum L.). Food Sci Nutr 2024; 12:6548-6562. [PMID: 39554372 PMCID: PMC11561852 DOI: 10.1002/fsn3.4286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
The ice plant (Mesembryanthemum crystallinum L.) is a halophyte that could become an alternative crop because of its interest as a functional food and its adaptation to high-saline soils. In this work, leaves from wild ice plants were compared with their cultivated counterparts in a soilless system at different salinities and light exposures for assessing growth parameters, moisture, fatty acid profiles, total carotenoids, phenolic compounds, vitamin C, antioxidant activity, and antiproliferative activity against the HT-29 colorectal cancer cell line. Moisture ranged between 876 and 955 g kg-1, and wild plants contained higher proportions of α-linolenic acid (58.7%-60.7% of total fatty acids) than cultivated ones (20.4%-36.6%). Vitamin C ranged between 819 and 1143 mg kg-1 fresh leaves. Higher salinity led to a larger production of carotenoids, whereas plant mass, total phenolic content, and antioxidant activity increased in plants grown using L8 NS1 and L8 AP67 lamps in comparison with white-light ones. Phenolic profiles were assessed by LC coupled to a hybrid mass spectrometer Q-Orbitrap. Total phenolic acid content was 3-4-fold higher than that of flavonoids, and sinapic, p-coumaric, gallic, 4-hydroxybenzoic, and 2-hydroxy-4-methoxybenzoic acids, as well as gallocatechin, occurred in all samples. Hydroalcoholic extracts of ice plant leaves showed dose- and time-dependent antiproliferative activity against the HT-29 human colorectal cancer cell line, and GI50 was between 920 and 977 μg mL-1 of plant extract. This work contributes to improving knowledge about the growth parameters, phytochemical profiles, and biological activities of wild and cultivated ice plants.
Collapse
Affiliation(s)
- Miguel Ángel Rincón‐Cervera
- Food Technology Division, ceiA3, CIAMBITALUniversity of AlmeríaAlmeríaSpain
- Institute of Nutrition and Food TechnologyUniversity of ChileSantiagoChile
| | | | - Tarik Chileh‐Chelh
- Food Technology Division, ceiA3, CIAMBITALUniversity of AlmeríaAlmeríaSpain
| | | | | | | |
Collapse
|
3
|
Mohammed HA, Emwas AH, Khan RA. Salt-Tolerant Plants, Halophytes, as Renewable Natural Resources for Cancer Prevention and Treatment: Roles of Phenolics and Flavonoids in Immunomodulation and Suppression of Oxidative Stress towards Cancer Management. Int J Mol Sci 2023; 24:ijms24065171. [PMID: 36982245 PMCID: PMC10048981 DOI: 10.3390/ijms24065171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Halophytes and xerophytes, plants with adequate tolerance to high salinity with strong ability to survive in drought ecosystem, have been recognized for their nutritional and medicinal values owing to their comparatively higher productions of secondary metabolites, primarily the phenolics, and the flavonoids, as compared to the normal vegetation in other climatic regions. Given the consistent increases in desertification around the world, which are associated with increasing salinity, high temperature, and water scarcity, the survival of halophytes due to their secondary metabolic contents has prioritized these plant species, which have now become increasingly important for environmental protection, land reclamation, and food and animal-feed security, with their primary utility in traditional societies as sources of drugs. On the medicinal herbs front, because the fight against cancer is still ongoing, there is an urgent need for development of more efficient, safe, and novel chemotherapeutic agents, than those currently available. The current review describes these plants and their secondary-metabolite-based chemical products as promising candidates for developing newer cancer therapeutics. It further discusses the prophylactic roles of these plants, and their constituents in prevention and management of cancers, through an exploration of their phytochemical and pharmacological properties, with a view on immunomodulation. The important roles of various phenolics and structurally diverse flavonoids as major constituents of the halophytes in suppressing oxidative stress, immunomodulation, and anti-cancer effects are the subject matter of this review and these aspects are outlined in details.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Kalicharan B, Naidoo Y, van Staden J. Ethnopharmacology and biological activities of the Aizoaceae. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115988. [PMID: 36460295 DOI: 10.1016/j.jep.2022.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Aizoaceae is one of the largest succulent plant families. Most members of the family are ornamental and form part of specialist succulent collections. The exceptional diversity of the Aizoaceae is not only limited to its growth forms, habitat, and chemistry, but is also reflected in its many traditional uses. Selected species are well known for their use in traditional medicines, with recent scientific studies validating their biological activity. AIM OF THE STUDY Herein, this review aimed to articulate foundational and current global research endeavors related to the traditional uses and pharmacological activities of the Aizoaceae. MATERIALS AND METHODS Research articles and search terms related to the ethnopharmacology and bioactivities of the Aizoaceae between 1940 and 2022 were evaluated using electronic databases such as Google Scholar, PubMed, ScienceDirect, Scopus, JSTOR, and Web of Science. RESULTS Popular Aizoaceae genera including Mesembryanthemum, Trianthema, and Tetragonia are noted for their cultural value and are key components in herbal medicines for the treatment of a myriad of disorders. Isolated bioactive compounds isolated from selected species demonstrated varied antimicrobial, antioxidant, and neuroprotective functions in basic pharmacological studies. However, most studies lacked reliable correlation to in vivo activity and did not adequately validate the safety and efficacy of potential therapeutic compounds. CONCLUSIONS While the cultural and therapeutic value of popular Aizoaceae species have been highlighted in the literature, there remains glaring inconsistencies among other related species. Data deficiency may be ameliorated by further studies focused on taxonomic markers, chemical characterization and underlying molecular mechanisms of activity of a wider pool of species to enhance our knowledge of this hyperdiverse family.
Collapse
Affiliation(s)
- B Kalicharan
- School of Life Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa; Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Y Naidoo
- School of Life Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa
| | - J van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
5
|
Calvo MM, Martín-Diana AB, Rico D, López-Caballero ME, Martínez-Álvarez O. Antioxidant, Antihypertensive, Hypoglycaemic and Nootropic Activity of a Polyphenolic Extract from the Halophyte Ice Plant ( Mesembryanthemum crystallinum). Foods 2022; 11:foods11111581. [PMID: 35681331 PMCID: PMC9180490 DOI: 10.3390/foods11111581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
This study aims to determine the potential antioxidant, antihypertensive, hypoglycaemic and nootropic activity of a purified polyphenolic extract from the halophyte ice plant (Mesembryanthemum crystallinum). The ice plant extract showed good antioxidant activity measured by DPPH, ORAC, TEAC, FRAP and ferrous ion chelating activity. Moreover, the extract showed potent ACE, DPP-IV and PEP-inhibitory activity (90.5%, 98.6% and 73.1%, respectively, at a final concentration of 1 mg/mL). The extract was fractionated and the fraction with the highest content of total phenolic compounds showed the highest bioactivity, suggesting that polyphenols could be mainly responsible for the abovementioned activities. The tentative polyphenol identification by HPLC-ESI-QTOF-MS in this fraction revealed that flavones (>65%) are the major group, with apigenin (38%) predominating, followed by diosmin (17.7%) and luteolin (11.9%). They could presumably be the main elements responsible for the enzymatic inhibition activity. Additionally, 4-hydroxybenzoic acid, p-coumaric acid and a hydroxycinnamic acid derivative (2-O-(p-cumaroyl)-l-malic acid) were found in the extract. To our knowledge, this is the first time that some of these activities have been reported for halophyte extracts.
Collapse
Affiliation(s)
- Marta María Calvo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
| | - Ana Belén Martín-Diana
- Agricultural Technological Institute of Castile and León (ITACyL), Government of Castile and León, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.)
| | - Daniel Rico
- Agricultural Technological Institute of Castile and León (ITACyL), Government of Castile and León, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.)
| | - María Elvira López-Caballero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
| | - Oscar Martínez-Álvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
- Correspondence:
| |
Collapse
|
6
|
Lau M, Chua K, Sabaratnam V, Kuppusamy UR. In vitro
and
in silico
anticancer evaluation of a medicinal mushroom,
Ganoderma neo‐japonicum
Imazeki, against human colonic carcinoma cells. Biotechnol Appl Biochem 2020; 68:902-917. [DOI: 10.1002/bab.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Meng‐Fei Lau
- Department of Biomedical Science Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
- Mushroom Research Centre University of Malaya Kuala Lumpur 50603 Malaysia
| | - Kek‐Heng Chua
- Department of Biomedical Science Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
- Mushroom Research Centre University of Malaya Kuala Lumpur 50603 Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre University of Malaya Kuala Lumpur 50603 Malaysia
- Institute of Biological Science Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
- Mushroom Research Centre University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|