1
|
Clement RL, Dilollo J, Rodríguez-López EM, Guerrier CM, Hill DA. IFNγ Signaling Impairs Regulatory B Cell Function Resulting in Worse Control of Esophageal Food Allergy. Allergy 2025. [PMID: 40387177 DOI: 10.1111/all.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Eosinophilic Esophagitis (EoE) is a chronic food allergy that causes esophageal inflammation and fibrosis and manifests with symptoms of reflux, chest pain, swallowing difficulty, and food impactions. Though the prevalence of EoE is increasing by ~15% each year, our understanding of EoE immunopathology is limited. A noted feature of EoE is the presence of food-specific IgG4 antibodies in the circulation and esophageal tissue. Production of IgG4 is confined to IL-10+ B cells (Bregs) in other allergic diseases, suggesting Bregs may be present in EoE. METHODS We examined circulating Bregs in patients with EoE milk allergy. In parallel, we performed mechanistic investigations of the role of Bregs in a murine model of food-antigen-dependent EoE. Flow cytometry and histologic analyses were used to assess esophageal and draining lymph node immune cells, and in vitro assays were used to evaluate Breg functional capacity. RESULTS Breg frequency was reduced in both EoE milk allergic subjects and an EoE disease model. Murine Breg suppressive capacity was impaired during EoE-like inflammation. Inducible deletion of Breg-derived IL-10 worsened EoE-like inflammation, while adoptive transfer of IL-10 sufficient Bregs suppressed DC activation and improved esophageal eosinophilia. IFNγ was sufficient to suppress Breg expansion and IL-10 production in vitro and contributed to Breg dysfunction and esophageal inflammation in vivo. CONCLUSION Bregs play an immunoregulatory role during EoE by controlling esophageal eosinophilia but are functionally impaired due to IFNγ-mediated signaling. These findings have important implications for understanding EoE's etiology and implementing future therapies that target IFNγ.
Collapse
Affiliation(s)
- Rachel L Clement
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Julie Dilollo
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eric M Rodríguez-López
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cleandre M Guerrier
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David A Hill
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Li B, Dong B, Xie L, Li Y. Exploring Advances in Natural Plant Molecules for Allergic Rhinitis Immunomodulation in Vivo and in Vitro. Int J Gen Med 2025; 18:529-565. [PMID: 39911299 PMCID: PMC11796455 DOI: 10.2147/ijgm.s493021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
Allergic rhinitis (AR) is a prevalent allergic disease that imposes significant economic burdens and life pressures on individuals, families, and society, particularly in the context of accelerating globalization and increasing pathogenic factors. Current clinical therapies for AR include antihistamines, glucocorticoids administered via various routes, leukotriene receptor antagonists, immunotherapy, and several decongestants. These treatments have demonstrated efficacy in alleviating clinical symptoms and pathological states. However, with the growing awareness of AR and rising expectations for improvements in quality of life, these treatments have become associated with a higher incidence of side effects and an elevated risk of drug resistance. Furthermore, the development of AR is intricately associated with dysregulation of the immune system, yet the underlying pathogenetic mechanisms remain incompletely understood. In contrast, widely available natural plant molecules offer multiple targeting pathways that uniquely modify the typical pathophysiology of AR through immunomodulatory processes. This review presents a comprehensive analysis of both in vivo and in vitro studies on natural plant molecules that modulate immunity for treating AR. Additionally, we examine their specific mechanisms of action in animal models to provide new insights for developing safe and effective targeted therapies while guiding experimental and clinical applications against AR.
Collapse
Affiliation(s)
- Bingquan Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Boyang Dong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Liangzhen Xie
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yan Li
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Zheng H, Xu S, Yang R, Jiao WE, Qiao YL, Liu JY, Fan HM, Zhou YT, Ni HF, Chen J, Deng YQ, Chen SM. Changes in and Potential Mechanisms of Circulating IgA+CD27-Class-Switched Memory B Cells in Patients With Allergic Rhinitis. J Asthma Allergy 2025; 18:69-83. [PMID: 39867643 PMCID: PMC11766316 DOI: 10.2147/jaa.s501775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
Background The role of memory B cells and their subgroups in allergic rhinitis (AR) and allergen immunotherapy (AIT) remains unclear. This study aimed to investigate the characteristics of memory B cells in the circulation of patients with AR and those undergoing AIT, as well as their clinical significance. Methods This study involved a cohort comprising 32 healthy control subjects, 39 individuals diagnosed with AR, and 31 AR patients who had received AIT for over one year. Visual analog scale (VAS) scores were used for symptom assessment, and the serum concentrations of immunoglobulins and cytokines were quantified. This study evaluated alterations in the proportions of peripheral blood memory B cells and their subpopulations, plasma cells, and various T-cell subsets across the three participant groups. Results The proportion of IgA+CD27- class-switched memory B cells in the AR group significantly decreased compared to the control group, but significantly increased following AIT (P < 0.05). In AR patients, circulating IgA+CD27- class-switched memory B cells were significantly positively correlated with Treg cells, IL-10, and IL-4 and significantly negatively correlated with IFN-γ, total IgE, sIgE, and VAS scores (P < 0.05). After AIT, the number of circulating IgA+CD27- class-switched memory B cells in AR patients was significantly positively correlated with the number of Treg cells and IL-10 and significantly negatively correlated with the VAS score (P < 0.05). Conclusion The IgA+CD27- class-switched memory cell subset in human peripheral blood may serve as a potential biomarker for evaluating AR symptoms and treatment efficacy. Its mechanism may be associated with interactions between T and B cells.
Collapse
Affiliation(s)
- Han Zheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jia-Yu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Hui-Ming Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan-Ting Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Hai-Feng Ni
- Department of Otolaryngology-Head and Neck Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Lipińska-Opałka A, Leszczyńska-Pilich M, Będzichowska A, Tomaszewska A, Rustecka A, Kalicki B. The Role of Regulatory B Lymphocytes in Allergic Diseases. Biomedicines 2024; 12:2721. [PMID: 39767628 PMCID: PMC11726865 DOI: 10.3390/biomedicines12122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE OF REVIEW Regulatory B cells (Bregs) are a key component in the regulation of the immune system. Their immunosuppressive function, which includes limiting the inflammatory cascade, occurs through interactions with other immune cells and the secretion of cytokines, primarily IL-10. As knowledge about B cells continues to expand, their diversity is becoming more recognized, with many subpopulations identified in both human and animal models. However, identifying specific transcription factors or markers that could definitively distinguish regulatory B cells remains a challenge. This review summarizes recent findings on the role of B regulatory cells in allergic diseases. RECENT FINDINGS In patients with bronchial asthma, atopic dermatitis, and food allergies, the number of regulatory B cells is reduced, and disease severity is inversely proportional to the quantity of these cells. Furthermore, in patients with atopic dermatitis, the ability of regulatory B cells to produce IL-10 in response to IL-6 stimulation is diminished. However, allergen immunotherapy has been shown to induce the formation of regulatory T cells as well as regulatory B cells. SUMMARY The success of future therapies based on B cells may depend on deepening our current understanding of their phenotypes, induction, differentiation, and function. Research in these areas is essential for understanding the mechanisms regulating Breg activity and for developing potential targeted therapies in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Agnieszka Lipińska-Opałka
- Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland; (A.T.); (B.K.)
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Michalina Leszczyńska-Pilich
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Agata Będzichowska
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Agata Tomaszewska
- Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland; (A.T.); (B.K.)
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Agnieszka Rustecka
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| | - Bolesław Kalicki
- Faculty of Medicine, University of Warsaw, 02-089 Warsaw, Poland; (A.T.); (B.K.)
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine–National Research Institute, 01-141 Warsaw, Poland; (M.L.-P.); (A.B.); (A.R.)
| |
Collapse
|
5
|
Tian S, Xia J, Liu K, Ma Y, Tian H, Wang W, Zhang R, Zhao C, Gong S. The role of CD24 hiCD27 + regulatory B cells in human chronic rhinosinusitis with/without nasal polyps. Immunobiology 2024; 229:152854. [PMID: 39340956 DOI: 10.1016/j.imbio.2024.152854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Regulatory B cells (Bregs) reduce allergic and autoimmune inflammation. However, their role in chronic rhinosinusitis (CRS) remains unknown. This study investigated the frequency and function of Breg subsets in the peripheral blood of patients with CRS. METHODS The demographic and clinical characteristics were compared among control, CRSsNP, neCRSwNP, and eCRSwNP groups. The expression of various Breg subtypes was evaluated in peripheral blood mononuclear cells (PBMCs) of patients with eosinophilic CRS with nasal polyps (eCRSwNP), non-eosinophilic CRS with nasal polyps (neCRSwNP), CRS without nasal polyps (CRSsNP). CD19+CD24hiCD27+ B cells (B10 cells) were isolated by flow cytometry, followed by RNA sequencing (RNA-seq). Finally, IL-10 secreted by B10 cells were evaluated through the intracellular stain. RESULTS A higher number of eosinophils in peripheral blood and nasal polyps were found in eCRSwNP compared with neCRSwNP, CRSsNP, and control groups. The frequency of B10 in the peripheral blood B cells (B10%) of patients with eCRSwNP was significantly lower than that in the neCRSwNP and control groups. B10% was negatively correlated with the quantity of tissue eosinophils, and the percentage and absolute value of peripheral blood eosinophils. The eCRSwNP, neCRSwNP and control groups had 1403 differentially expressed genes, 35 of which were identified in four highly enriched pathways. Additionally, the frequency of IL-10+B10 cells in peripheral blood was lower in patients with eCRSwNP than in the neCRSwNP and control groups. CONCLUSION This study is the first to reveal differences in both the quantity and IL-10 secretion of B10 cells in patients with eCRSwNP and neCRSwNP. These variations were strongly negatively associated with eosinophils in nasal polyps and peripheral blood. IL-10+B10 cells may play a key role in the pathological mechanisms of CRS, particularly the recurrence of eCRSwNP.
Collapse
Affiliation(s)
- Shiyu Tian
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiao Xia
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Youxiang Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Tian
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weiwei Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruxiang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Zhang ZQ, Li JY, Bao YW, Song YQ, Song DX, Wang C, Zhu XH. Immunocytes do not mediate food intake and the causal relationship with allergic rhinitis: a comprehensive Mendelian randomization. Front Nutr 2024; 11:1432283. [PMID: 39399526 PMCID: PMC11466801 DOI: 10.3389/fnut.2024.1432283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Observational studies indicate a correlation between food intake and allergic rhinitis. The potential interplay between the immune system and allergic rhinitis might contribute causally to both food intake and allergic rhinitis, providing promising therapeutic avenues. However, elucidating the causal relationship and immune-mediated mechanisms between food intake and allergic rhinitis remains a pending task. Methods We utilized a two-sample Mendelian randomization (MR) methodology to explore the causal relationship between food intake and allergic rhinitis. Furthermore, we investigated the potential causal relationship of immune cell signals with allergic rhinitis, as well as the potential causal relationship between food intake and immune cell signals. Moreover, employing both two-step Mendelian randomization and multivariable Mendelian randomization, we delved into the mediating role of immune cell signals in the causal relationship between food intake and allergic rhinitis. Leveraging publicly accessible genetic datasets, our analysis encompassed 903 traits, comprising 171 food intake features, 731 immune cell features, and one trait related to allergic rhinitis. Result We found causal relationships between seven types of food intake and allergic rhinitis, as well as between 30 immune cell phenotypes and allergic rhinitis. Furthermore, our two-step Mendelian randomization analysis and multivariable Mendelian randomization analysis indicate that immune cells do not mediate the causal relationship between food intake and allergic rhinitis. Conclusion To the best of our knowledge, we are the first to incorporate a large-scale dataset integrating immune cell features, food intake features, and allergic rhinitis into Mendelian randomization analysis. Our research findings indicate that there are causal relationships between six types of food intake and allergic rhinitis, as well as between 30 immune cell phenotypes and allergic rhinitis. Additionally, immune cells do not mediate these relationships.
Collapse
Affiliation(s)
- Zhi-qiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing-yang Li
- Department of Clinical Medicine, The First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - You-wei Bao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Qi Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-xu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin-hua Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
8
|
Dang M, Yu J, Galant-Swafford J, Karam SD. The dichotomy of regulatory B cells in cancer versus allergic disease. Mol Carcinog 2024; 63:11-21. [PMID: 37712547 PMCID: PMC10994235 DOI: 10.1002/mc.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Regulatory B cells (Bregs) are an immunosuppressive cell phenotype that affects the immune system by limiting the inflammatory cascade. Dysregulation of Bregs can interestingly play a dichotomous role in the pathophysiology of many diseases and is especially highlighted when examining cancer pathology compared to allergic disease. This study reviews the existing literature on Bregs and compares their role in allergic disease in contrast to cancer development. Upregulation of Bregs in cancer states has been associated with poor prognostic outcomes across various cancer types, and Breg proliferation was associated with chronic interferon signaling, activation of the BCR-BTK (B cell receptor-Bruton's tyrosine kinase) pathway, and release of C-X-C motif ligand 13. In contrast, Breg dysfunction has been identified as a key mechanism in many allergic diseases, such as allergic asthma, allergic rhinitis, atopic dermatitis, and contact dermatitis. Development of Breg-targeted immunotherapies is currently at the preclinical level, but strategies differentially focus on Breg depletion in cancer versus Breg stimulation in allergy. Our review highlights the divergent functions that Bregs play in cancer compared to allergy. We conclude that natural homeostasis hinges on a fine balance between the dichotomous role of Bregs-over or underactivation can result in a pathological state.
Collapse
Affiliation(s)
- Melissa Dang
- Department of Internal Medicine, Sky Ridge Medical Center, Lone Tree, Colorado, USA
| | - Justin Yu
- Department of Otolaryngology—Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Yang G, Suo L, Hu S, Liu H, Wang X, Xiao X, Liu J, Zeng X, Hong J, Guan L, Xue J, Yang P. Characterization of the immune regulatory property of CD22 + CD9 + B cells. Immunol Suppl 2022; 167:328-339. [PMID: 35754150 DOI: 10.1111/imm.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Immunodisruptive homeostasis is recognized in allergic disorders. The mechanism of restoration of immunologic homeostasis in the body is not fully understood. Galectin-9 (Gal9) and CD22 have immune regulatory functions. The goal of this study is to test the role of CD22+ CD9+ B regulatory cells in immune homeostasis the body. A much smaller amount of IL-10 in B10 cells was detected in patients with AR in contrast to healthy subjects. The IL-10 expression levels in B10 cells were positively correlated with the CD22 expression. CD22 mediated the effects of Gal9 on the enhanced expression of IL-10 in AR B10 cells. Gal9 overcame the refractory induction of IL-10 in B-cells of AR subjects. The immune regulatory ability of AR B10 cells could be restored by Gal9. Combination of Gal9 and SIT induced and activated antigen-specific B10 cells. The B10 cells of Gal9/specific immunotherapy-treated AR mice showed immunosuppressive functions on T-cell activities and induction of type 1 regulatory T cells in an antigen-specific manner. Administration of Gal9 potentiated the effects of specific immunotherapy in mice with AR. In summary, a fraction of regulatory B cells, the CD19+ CD22+ CD9+ B cells, was characterized in the present study. CD22 mediates the effects of Gal9 to promote immunotherapy for allergic diseases by inducing B10 cells. In an antigen specific manner, the B10 cells suppressed CD4+ T cell activities, and alleviated experimental AR.
Collapse
Affiliation(s)
- Gui Yang
- Department of Otolaryngology & Allergy, Longgang Central Hospital, Shenzhen, China
| | - Limin Suo
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Suqing Hu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Huazhen Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xinxin Wang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiaojun Xiao
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Jie Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xianhai Zeng
- Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Jingyi Hong
- Department of Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Li Guan
- Department of Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.,Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| |
Collapse
|
10
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
11
|
Xu K, Miao L, Chen W, Wu H, Gong Y, Tu X, Guo W, Pan B, Qu C, Wu X, Wang B. Establishment of the reference intervals of lymphocyte subsets for healthy Chinese Han adults and its influencing factors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1495. [PMID: 34805357 PMCID: PMC8573445 DOI: 10.21037/atm-21-4031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Background Cellular immune monitoring is becoming more critical in the clinic, but its application has not yet become sufficiently widespread. One reason may be the different reference intervals among clinical laboratories due to several factors. Percentage and number of lymphocyte subsets are standard indicators of cellular immune detection. The present study aimed to establish standardized reference intervals of lymphocyte subsets in the healthy Chinese Han adult population and examine such influencing factors as age, gender, region, and measurement instruments. Methods A total of 496 healthy Chinese Han people aged 18–59 years from 3 China Mainland regions (north, east, and south) were enrolled. The sample of each center was simultaneously examined by three flow cytometers (FACSCantoTMII, FACSLyricTM, and FACSCaliburTM). A single-platform flow cytometry-based absolute count technique was used to quantify the percentage and number of each lymphocyte subset. The flow cytometry results were analyzed by variance analysis and Z test to determine the influence of age, gender, and instruments on lymphocyte subsets. Results Multi-center, age-specific, and gender-specific reference intervals of healthy Chinese Han adults’ lymphocyte subsets were established. There was no statistical difference in the results from the three flow cytometers. Gender affected the results of CD4+ (%) and the absolute count of CD3−CD16+CD56+, where CD4+ (%) was higher in women, and the absolute count of CD3−CD16+CD56+ was higher in men. Age mainly affected the CD4+/CD8+ ratio, which was statistically higher in groups aged over 40 years; the percentage and number of CD3−CD19+ were more elevated in age groups below 30 years; however, the difference was not statistically significant. Conclusions This study established the reference intervals of lymphocyte subsets for healthy Chinese Han adult populations under the standardized methods. This study was the first nationwide study in China to use a flow cytometry-based single-platform method to establish the reference intervals of lymphocyte subsets of the healthy Chinese Han adult population. Gender and age were shown to influence the results of lymphocyte subsets.
Collapse
Affiliation(s)
- Kangli Xu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| | - Linzi Miao
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Weiye Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Wu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Xiaoxin Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Xinzhong Wu
- Department of Transfusion Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
| |
Collapse
|
12
|
Restimulia L, Ilyas S, Munir D, Putra A, Madiadipoera T, Farhat F, Sembiring RJ, Ichwan M, Amalina ND, Alif I. The CD4+CD25+FoxP3+ Regulatory T Cells Regulated by MSCs Suppress Plasma Cells in a Mouse Model of Allergic Rhinitis. Med Arch 2021; 75:256-261. [PMID: 34759444 PMCID: PMC8563054 DOI: 10.5455/medarh.2021.75.256-261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Allergic Rhinitis (AR) is the most common immunological disease that has been associated with inflammatory responses and is characterized by sneezing. Previous studies found that AR's allergen exposure significantly induces plasma cells and reduces regulatory T (Treg) cells, a population that contributes to control AR. Therefore, upregulating Treg expression can regulate plasma cells leading to inhibit sneezing in AR. Mesenchymal stem cells (MSCs) are multipotent stem cells that have the immunoregulatory and antiinflammation ability by secreting various cytokines including IL-10 and TGF-β which potent as a promising therapeutic modality for allergic airway diseases, including AR. Objective: To investigate the role of MSCs in generating CD4+, CD25+, and Foxp3+ Regulatory T cells associated with suppressing plasma cell in AR model. Methods: In this study, fifteen male Wistar rats (6 to 8 weeks old) were randomly divided into three groups (control group, sham group, and MSCs treatment group). OVA nasal challenge was conducted daily from day 15 to 21, and MSCs (1x106) were administrated intraperitoneally to OVA-sensitized rats on day 21. Sneezing was observed from day 22 to 28. The rats were sacrificed on day 22 and day 28. The expression of CD4+ CD25+ Foxp3+ in Treg and plasma cells was analyzed by flow cytometry assay. Results: This study showed that the percentage of plasma cell and sneezing times significantly decreased in MSCs treatment. This finding was aligned with the significant increase of CD4+CD25+Foxp3+ Treg level. Conclusion: MSCs administration suppress plasma cells population and sneezing times by up regulating Treg to control AR.
Collapse
Affiliation(s)
- Lia Restimulia
- Departement of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.,Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Delfitri Munir
- Departement of Doctoral Degree Program, faculty of medicine, universitas sumatera utara, Medan, Indonesia.,Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Medan, Indonesia.,Pusat Unggulan Inovasi (PUI) Stem Cell, Universitas Sumatera Utara (USU), Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Department of Pathology, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Department of Postgraduate Biomedical Science, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
| | - Teti Madiadipoera
- Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Farhat Farhat
- Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rosita Juwita Sembiring
- Departement of Doctoral Degree Program, faculty of medicine, universitas sumatera utara, Medan, Indonesia
| | - Muhammad Ichwan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Nur Dina Amalina
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia
| | - Iffan Alif
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
| |
Collapse
|
13
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
14
|
Taurine promotes the production of CD4 +CD25 +FOXP3 + Treg cells through regulating IL-35/STAT1 pathway in a mouse allergic rhinitis model. Allergy Asthma Clin Immunol 2021; 17:59. [PMID: 34147127 PMCID: PMC8214264 DOI: 10.1186/s13223-021-00562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background Allergic rhinitis (AR) is one of the most widespread immune conditions worldwide. However, common treatments often present with significant side effects or are cost-prohibitive for much of the population. A plethora of treatments have been used for the treatment of AR including antihistamines, steroids, and immune modulators. Among the treatments which have shown potential for efficacy in treating AR with a minimum of side effects but remains understudied is the conditionally essential amino acid taurine. Taurine has been previously shown to reduce AR symptoms. Here, we examine the role of taurine in modulating T regulatory cells, modulating the cytokine response in AR, and restoring healthy nasal mucosa. Methods Blood samples from 20 healthy donors and 20 AR patients were compared for CD4+CD25+FoxP3+ T regulatory (Treg) cell population percentage, cytokine release, and STAT1 signaling with and without taurine treatment or IL-35 neutralization. An OVA-induced AR mouse model was administered vehicle, taurine, or taurine plus an IL-35 neutralizing antibody and assayed for sneezing frequency, inflammatory cytokine response, nasal mucosa goblet cell density, and T regulatory cell percentage. CD4+ cells were further examined for cytokine release, STAT1 phosphorylation, and response to an anti-IL-35 antibody with and without a STAT1 inhibitor. Results Comparison of blood from normal donors and AR patients showed a reduction in CD4+CD25+FoxP3+ Treg cells in AR patients and a strong correlation between Treg percentage and IL-35 release. A similar pattern of Treg suppression was found in untreated AR mice when compared to normal control mice wherein there was a reduction in Treg percentage and a corresponding decrease in IL-35 release. AR mice also demonstrated increased sneezing frequency, an infiltration of goblet cell in nasal mucosa, and a reduction in IL-35 release from CD4+ cells. Conversely, IL-4, IL-5, and IL-13 secretion from CD4+ cells were increased in AR model mice, as was STAT1 phosphorylation. When AR mice were treated with taurine, sneezing frequency and nasal mucosa goblet cell content were reduced while Treg abundance was increased to that of normal mice. Accordingly, IL-35 release was restored, while IL-4, IL-5, and IL-13 secretion from CD4+ cells were suppressed. Likewise, STAT1 phosphorylation was inhibited with taurine treatment. Taurine-treated mice also given an IL-35 neutralizing antibody exhibited AR pathology including frequent sneezing and high nasal goblet cell content while retaining a restoration of Tregs. Furthermore, murine AR model CD4+ cells exposed to recombinant IL-35 responded with a reduction in inflammatory cytokine release and a decrease in STAT1 phosphorylation, mimicking the effect of taurine treatment. Conclusions Taurine induces release of IL-35 in AR; IL-35 promotes the production of CD4+CD25+FoxP3+ Treg cells via a STAT1-dependent pathway. The restoration of Treg populations by taurine normalizes the inflammatory response, reduces AR symptomology, and reduces histopathologic signs of AR. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-021-00562-1.
Collapse
|
15
|
Qiu CY, Cui XY, Lu MP, Yin M, Xu WY, Zhu XJ, Yang Q, Cheng L. CircRNA expression profiles and circRNA-miRNA-mRNA crosstalk in allergic rhinitis. World Allergy Organ J 2021; 14:100548. [PMID: 34221216 PMCID: PMC8233375 DOI: 10.1016/j.waojou.2021.100548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are involved in inflammation; however, their role in allergic rhinitis (AR) remains unclear. In this study, we analyzed circRNA expression and identified a circRNA-miRNA-mRNA network through which circRNAs regulate AR pathogenesis. Methods We analyzed circRNA, miRNA, and mRNA expression profiles in the nasal mucosa by high-throughput sequencing (HTS), using a fold-change >1.5 and p-value < 0.05 to pinpoint significantly differentially expressed (DE) circRNAs, miRNAs, and mRNAs in AR. A DEcircRNA-DEmiRNA-DEmRNA crosstalk network was then constructed using bioinformatics and statistical analysis. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyses were performed to identify the biological terms enriched in the network; whereas RT-PCR and Sanger sequencing were used to confirm the circRNAs. Results A total of 264 DEcircRNAs were identified by HTS, including 120 upregulated and 144 downregulated in AR compared to controls. A DEcircRNA-DEmiRNA-DEmRNA crosstalk network was constructed with 17 miRNAs, 11 circRNAs, 29 mRNAs, and 64 interaction pairs. These genes were involved in the Wnt signaling pathway, TNF biosynthesis, inflammatory responses, the PI3K-Akt signaling pathway, and Toll-like receptors. Of the 11 DEcircRNAs, hsa_circ_0008668 and circTRIQK were upregulated, whereas hsa_circ_0029853 and circRNA_01002 were downregulated in AR tissues. Sanger sequencing confirmed the back-splicing junctions of these circRNAs. Conclusions We constructed a novel DEcircRNA-DEmiRNA-DEmRNA network for AR that provides a basis for future studies to investigate its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chang-Yu Qiu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-Yan Cui
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Yin
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Wan-Yun Xu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-Jie Zhu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
In Vitro Characterization of Human CD24 hiCD38 hi Regulatory B Cells Shows CD9 Is Not a Stable Breg Cell Marker. Int J Mol Sci 2021; 22:ijms22094583. [PMID: 33925530 PMCID: PMC8123770 DOI: 10.3390/ijms22094583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Regulatory B (Breg) cells are endowed with immune suppressive functions. Various human and murine Breg subtypes have been reported. While interleukin (IL)-10 intracellular staining remains the most reliable way to identify Breg cells, this technique hinders further essential functional studies. Recent findings suggest that CD9 is an effective surface marker of murine IL-10 competent Breg cells. However, the stability of CD9 and its relevance as a unique marker for human Breg cells, which have been widely characterized as CD24hiCD38hi, have not been investigated. Here, we demonstrate that CD9 expression is sensitive to in vitro B cell stimulations. CD9 expression could either be re-expressed or downregulated in purified CD9-negative B cells and CD9-positive B cells, respectively. We found no significant differences in the Breg differentiation capacity of the CD9-negative and CD9-positive B cells. Furthermore, CD9-positive B cells co-express CD40 and CD86, suggesting their nature as B cell activation or co-stimulatory molecules, rather than regulatory ones. Therefore, we report the relatively unstable CD9 as a distinct surface molecule, indicating the need for further research for a more reliable marker to purify human Breg cells.
Collapse
|
17
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
18
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
19
|
Yao Y, Wang N, Chen C, Pan L, Wang Z, Yunis J, Chen Z, Zhang Y, Hu S, Xu X, Zhu R, Yu D, Liu Z. CD23 expression on switched memory B cells bridges T-B cell interaction in allergic rhinitis. Allergy 2020; 75:2599-2612. [PMID: 32198890 DOI: 10.1111/all.14288] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The contribution of B-cell subsets and T-B cell interaction to the pathogenesis of allergic rhinitis (AR) and mechanisms of allergen immunotherapy (AIT) remain poorly understood. This study aimed to outline circulating B-cell signature, the underlying mechanism, and its association with clinical response to AIT in patients with AR. METHODS IgD/CD27 and CD24/CD38 core gating systems were used to determine frequencies and phenotypes of B cells. Correlations between B cells, T cells, antigen-specific IgE, and disease severity in AR patients were investigated. Switched memory B cells were co-cultured with type 2 follicular helper T (Tfh2) cells and follicular regulatory T (Tfr) cells. Associations between B-cell subsets and clinical benefits of AIT were analyzed. RESULTS Frequencies and absolute numbers of circulating memory B cells were increased in AR patients. CD23 expression on CD19+ CD20+ CD27+ IgD- switched memory B cells was significantly enhanced and positively correlated with antigen-specific IgE levels, symptom scores, and Tfh2/Tfr cell ratio in AR patients. Compared with those from healthy controls, Tfh2 cells from AR patients had a greater capacity to induce CD23 expression on switched memory B cells via IL-4, which was unable to be sufficiently suppressed by AR-associated Tfr cells with defective IL-10 expression. CD23 expression on switched memory B cells was downregulated after 12-month AIT, which positively associated with disease remission in AR patients. CONCLUSION T-B cell interaction, bridged by CD23 expression particularly on switched memory B cells, may be involved in the disease pathogenesis and mechanism of AIT in patients with AR.
Collapse
Affiliation(s)
- Yin Yao
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Nan Wang
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Cai‐Ling Chen
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Li Pan
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Zhi‐Chao Wang
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Joseph Yunis
- Faculty of Medicine The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Zhi‐An Chen
- Department of Immunology and Infectious Disease John Curtin School of Medical Research Australian National University Canberra ACT Australia
| | - Yu Zhang
- Laboratory of Immunology for Environment and Health Shandong Analysis and Test Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Si‐Tao Hu
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| | - Xiao‐Yan Xu
- Department of Otolaryngology‐Head and Neck Surgery China Resources & Wisco General Hospital Wuhan China
| | - Rong‐Fei Zhu
- Department of Allergy Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Di Yu
- Department of Immunology and Infectious Disease John Curtin School of Medical Research Australian National University Canberra ACT Australia
- Laboratory of Immunology for Environment and Health Shandong Analysis and Test Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck Surgery Tongji Medical College Tongji Hospital Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
20
|
Gu Y, Li K, Sun J, Zhang J. Characterization of CD19 + CD24 hi CD38 hi B cells in Chinese adult patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2020; 34:2863-2870. [PMID: 32242984 DOI: 10.1111/jdv.16399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease. Human interleukin-10+ B cells (B10 cells) is one of regulatory B cells and is enriched in CD19+ CD24hi CD38hi B cells. A little is known about these cells in atopic dermatitis. OBJECTIVE To study CD19+ CD24hi CD38hi B cells and their clinical significance in Chinese adult patients with atopic dermatitis. METHODS Thirty-two adult patients with AD and nineteen healthy controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and stained with fluorescein-conjugated monoclonal antibodies for CD19, CD24, CD27, CD38 and Annexin V. The stained PBMCs were analysed by flow cytometry. B10 cells were prepared by stimulating PBMCs with CpG, LPS and CD40L followed by restimulation with phorbol12-myristate 13-acetate (PMA) and ionomycin. Serum IL-10, B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) levels were measured by using the ELISA. Apoptosis and proliferation of CD19+ CD24hi CD38hi B cells were measured by flow cytometry. 4/P-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (Erk) phosphorylation were also studied. RESULTS The number of CD19+ CD24hi CD38hi B cells in patients with AD was similar to that in healthy controls. However, B10 cells were decreased in patients with AD. The proportion of B10 cells was negatively associated with blood basophil counts but not associated with disease activity. CD19+ CD24hi CD38hi B cells from AD patients were more susceptible to apoptosis upon stimulation with CpG, LPS and CD40L. B cells from AD patients showed lower STAT3 and Erk phosphorylation. CONCLUSIONS CD19+ CD24hi CD38hi B cells were unchanged in atopic dermatitis while B10 cells were decreased. The increased B-cell apoptosis, decreased STAT3 and Erk phosphorylation might contribute to these changes.
Collapse
Affiliation(s)
- Y Gu
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - K Li
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - J Sun
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - J Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
21
|
Salazar A, Nieto JE, Velazquez-Soto H, Jiménez-Martínez MC. Activation of IL-10+ B cells: A novel immunomodulatory mechanism for therapeutic bacterial suspensions. SAGE Open Med 2020; 8:2050312120901547. [PMID: 32002185 PMCID: PMC6963315 DOI: 10.1177/2050312120901547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/23/2019] [Indexed: 01/22/2023] Open
Abstract
Objectives: Bacterial components are used to improve immune responses in patients with respiratory infections. Pharmacological formulations of bacterial components include a mixture of bacterial antigens, some of which are complete inactivated bacteria, that is, named bacterial suspensions; while others are fragments of bacteria, which are presented as bacterial lysates. Although bacterial lysates have been broadly used as immune-stimulators, the biological support for the therapeutic effectiveness of bacterial suspension has not yet been studied. Thus, the aim of our study was to investigate the immunological activity induced by bacterial suspension. Methods: This work was an exploratory translational study. Peripheral blood mononuclear cells were obtained from healthy donors and cultured in time–dose dependent assays with a commercial bacterial suspension. Flow cytometry was used for phenotypic analysis and for determining soluble cytokines in culture supernatants. Results: We observed that bacterial suspension activates B cells in a dose-dependent manner. Peripheral blood mononuclear cells were able to secrete IL-6 and IL-10 after 24 h of bacterial suspension stimulation. TLR2 expression was observed mainly on CD19+ CD38Lo B cells after 72 h of culture; remarkably, most of the TLR2+ CD19+ cells were also IL-10+. Conclusion: Our findings suggest that bacterial suspension induces the activation of B cell subsets as well as the secretion of IL-6 and IL-10. Expression of TLR2 on CD19+ cells could act as an activation loop of IL-10+ B regulatory cells. The clinical implications of these findings are discussed at the end of this article.
Collapse
Affiliation(s)
- Alberto Salazar
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.,Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana," Mexico City, Mexico
| | - Jane E Nieto
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana," Mexico City, Mexico
| | - Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana," Mexico City, Mexico
| | - Maria C Jiménez-Martínez
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.,Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana," Mexico City, Mexico
| |
Collapse
|
22
|
Wiest M, Upchurch K, Hasan MM, Cardenas J, Lanier B, Millard M, Turner J, Oh S, Joo H. Phenotypic and functional alterations of regulatory B cell subsets in adult allergic asthma patients. Clin Exp Allergy 2019; 49:1214-1224. [PMID: 31132180 DOI: 10.1111/cea.13439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/25/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND IL-10-producing regulatory B cells (Bregs) are widely ascribed immune regulatory functions. However, Breg subsets in human asthma have not been fully investigated. OBJECTIVE We studied Breg subsets in adult allergic asthma patients by assessing two major parameters, frequency and IL-10 expression. We then investigated factors that affect these two parameters in patients. METHODS Peripheral blood mononuclear cells (PBMCs) of adult allergic asthma patients (N = 26) and non-asthmatic controls (N = 28) were used to assess the frequency of five subsets of transitional B cells (TBs), three subsets of CD24high CD27+ B cells and B1 cells. In addition to clinical data, IL-10 expression by individual Breg subsets was assessed by flow cytometry. RESULTS Asthma patients had decreases of CD5+ and CD1d+ CD5+ , but an increase of CD27+ TBs which was significant in patients with moderate asthma (60 < FEV1 < 80). Regardless of asthma severity, there was no significant alteration in the frequencies of 6 other Breg subsets tested. However, we found that oral corticosteroid (OCS) significantly affected the frequency of Bregs in Breg subset-specific manners. OCS decreased CD5+ and CD1d+ CD5+ TBs, but increased CD27+ TBs and CD10+ CD24high CD27+ cells. Furthermore, OCS decreased IL-10 expression by CD27+ TBs, all 3 CD24high CD27+ B cell subsets (CD5+ , CD10+ and CD1d+ ) and B1 cells. OCS-mediated inhibition of IL-10 expression was not observed in the other Breg subsets tested. CONCLUSION & CLINICAL RELEVANCE Alterations in the frequency of Bregs and their ability to express IL-10 are Breg subset-specific. OCS treatment significantly affects the frequency as well as their ability to express IL-10 in Breg subset-specific manners.
Collapse
Affiliation(s)
- Mathew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| | | | - Md Mahmudul Hasan
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| | | | - Bobby Lanier
- North Texas Institute for Clinical Trials, Ft Worth, Texas
| | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, Texas
| | - Jacob Turner
- Baylor Institute for Immunology Research, Dallas, Texas
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, Arizona.,Institute for Biomedical Studies, Baylor University, Waco, Texas
| |
Collapse
|
23
|
Wirz OF, Głobińska A, Ochsner U, Veen W, Eller E, Christiansen ES, Halken S, Nielsen C, Bindslev‐Jensen C, Antó JM, Bousquet J, Akdis CA, Akdis M. Comparison of regulatory B cells in asthma and allergic rhinitis. Allergy 2019; 74:815-818. [PMID: 30449036 DOI: 10.1111/all.13672] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Anna Głobińska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Immunology, Rheumatology and Allergy Medical University of Lodz Lodz Poland
| | - Urs Ochsner
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Esben Eller
- Department of Dermatology & Allergy Center Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense C Denmark
| | - Elisabeth S. Christiansen
- Department of Dermatology & Allergy Center Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense C Denmark
- Hans Christian Andersen Children's Hospital Odense University Hospital University of Southern Denmark Odense C Denmark
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital Odense University Hospital University of Southern Denmark Odense C Denmark
| | - Christian Nielsen
- Department of Clinical Immunology Odense University Hospital Odense C Denmark
| | - Carsten Bindslev‐Jensen
- Department of Dermatology & Allergy Center Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense C Denmark
| | - Josep M. Antó
- Centre for Research in Environmental Epidemiology (CREAL) ISGLoBAL Barcelona Spain
- IMIM (Hospital del Mar Research Institute) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
| | - Jean Bousquet
- University Hospital Montpellier France
- MACVIA‐France Contre les MAladies Chronique spour un VIeillissement Actif en France European Innovation Partnership on Active and Healthy Ageing Reference Site Montpellier France
- INSERM VIMA: Ageing and Chronic Diseases, Epidemiological and Public Health Approaches, U1168 Paris France
- UVSQ, UMR‐S 1168 Université Versailles St‐Quentin‐en‐Yvelines Versailles France
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
24
|
Salazar A, Casanova-Méndez I, Pacheco-Quito M, Velázquez-Soto H, Ayala-Balboa J, Graue-Hernández EO, Serafín-López J, Jiménez-Martínez MC. Low Expression of IL-10 in Circulating Bregs and Inverted IL-10/TNF-α Ratio in Tears of Patients with Perennial Allergic Conjunctivitis: A Preliminary Study. Int J Mol Sci 2019; 20:1035. [PMID: 30818819 PMCID: PMC6429471 DOI: 10.3390/ijms20051035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022] Open
Abstract
Allergic conjunctivitis (AC) is one of the most common ophthalmological disorders seen in clinical practice. Growing evidence from recent years suggests that a subset of IL-10-expressing B cells is involved in inflammatory allergic diseases. In this study, we aimed to evaluate the potential involvement of blood Bregs cells in perennial allergic conjunctivitis (PAC), and interleukins (IL)-1β, IL-6, IL-8, IL-10, and IL-12, and tumor necrosis factor (TNF)-α, were measured in tear samples and compared with healthy controls (HC) using flow cytometry. Non-significant differences in CD19⁺IL-10⁺ cell frequency between PAC patients and healthy controls (HC) were observed. Nevertheless, when we analyzed the mean fluorescence intensity (MFI) of IL-10 on CD19⁺CD38Lo/Med/Hi-gated cells, we observed a significant decrease in MFI in all Bregs subsets in PAC patients. Additionally, tear cytokines showed 2.8 times lower levels of IL-10 than TNF-α in PAC patients when compared to HC. Our findings demonstrate an immunological dysregulation in patients with allergic conjunctivitis, characterized by the low expression of IL-10 in circulating CD19⁺CD38⁺ Bregs subsets and an inverted tear IL-10/TNF-α ratio, promoting a local pro-inflammatory microenvironment. These findings highlight the novel pathologic changes involved in ocular allergic diseases. Understanding systemic and local mechanisms will aid the design of immunomodulating therapeutics at different levels.
Collapse
Affiliation(s)
- Alberto Salazar
- Departamento de Inmunología, ENCB, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Israel Casanova-Méndez
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Michele Pacheco-Quito
- Cornea and Refractive Surgery Department, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Henry Velázquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Julio Ayala-Balboa
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Enrique O Graue-Hernández
- Cornea and Refractive Surgery Department, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Jeanet Serafín-López
- Departamento de Inmunología, ENCB, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - María C Jiménez-Martínez
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico. P.O. Box 70159, 04510 Mexico City, Mexico.
| |
Collapse
|